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What Is the Expected Return on a Stock?

IAN W. R. MARTIN and CHRISTIAN WAGNER∗

ABSTRACT

We derive a formula for the expected return on a stock in terms of the risk-neutral

variance of the market and the stock’s excess risk-neutral variance relative to that

of the average stock. These quantities can be computed from index and stock option

prices; the formula has no free parameters. The theory performs well empirically

both in and out of sample. Our results suggest that there is considerably more vari-

ation in expected returns, over time and across stocks, than has previously been

acknowledged.

IN THIS PAPER, WE DERIVE A NEW formula that expresses the expected return on

a stock in terms of the risk-neutral variance of the market, the risk-neutral

variance of the individual stock, and the value-weighted average of stocks’ risk-

neutral variance. Then we show that the formula performs well empirically.

The inputs to the formula—the three measures of risk-neutral variance—

are computed directly from option prices. As a result, our approach has some

distinctive features that separate it from more conventional approaches to the

cross section.

First, as it is based on current market prices rather than, say, accounting

information, it can in principle be implemented in real time. Nor does it require

that we use any historical information. It thus represents a parsimonious al-

ternative to pooling data on many firm characteristics (as, for instance, in

Lewellen (2015)).
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Second, our formula provides conditional forecasts at the level of the individ-

ual stock. Rather than asking, say, what the unconditional average expected

return is on a portfolio of small value stocks, we can ask, what is the expected

return on Apple, today?

Third, the formula makes specific quantitative predictions about the relation-

ship between expected returns and the three measures of risk-neutral variance.

It does not require estimation of any parameters. This can be contrasted with

factor models, in which both factor loadings and the factors themselves are esti-

mated from the data (with all of the associated concerns about data snooping).

There is a closer comparison with the Capital Asset Pricing Model (CAPM),

which makes a specific prediction about the relationship between expected re-

turns and betas, but even the CAPM requires that the forward-looking betas

that come out of theory be estimated based on historical data.

Our approach does not have this deficiency and, as we will show, it performs

better empirically than the CAPM. But, like the CAPM, it requires that we

take a stance on the conditionally expected return on the market. We do so by

applying the results of Martin (2017), who argues that the risk-neutral variance

of the market provides a lower bound on the equity premium. In particular,

we exploit Martin’s more aggressive claim that, empirically, the lower bound

is approximately tight, so that risk-neutral variance directly measures the

equity premium. We also present results that avoid dependence on this claim,

however, by forecasting expected returns in excess of the market. In doing so,

we isolate the purely cross-sectional predictions of our framework that are

independent from the market-timing issue of forecasting the equity premium.

As these predictions exploit the cross section as well as the time series, the

associated empirical results are stronger in a statistical sense than those of

Martin (2017).

We introduce the theoretical framework in Section I. We then show how to

construct the three risk-neutral variance measures, and discuss some of their

properties, in Section II.

Our main empirical results are presented in Section III. We test the frame-

work for S&P 100 and S&P 500 stocks at forecast horizons ranging from

1 month to 2 years. Papers in the predictability literature typically aim to

uncover variables that are statistically significant in forecasting regressions.

We share this goal, of course, but as our model makes predictions about the

quantitative relationship between expected returns and risk-neutral variances,

we hope also to find that the estimated coefficients on the predictor variables

are close to specific numbers that come out of the theory. For most specifica-

tions, we find that that we do not reject the model, whereas we reject the null

hypothesis of no predictability at the 6-month, 1-year, and 2-year horizons.

In Section IV, we examine how our findings relate to stock characteristics.

Notably, we run panel regressions of realized returns onto beta, size, book-to-

market, and past returns. In our sample, size and book-to-market are statisti-

cally significant forecasters of excess returns, though not of returns in excess

of the market. When we include our predictive variables based on risk-neutral

variance, these characteristics become statistically insignificant, but the
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risk-neutral variance variables themselves are significant predictors (of both

excess returns and excess-of-market returns). Moreover, they enter with coef-

ficients that are insignificantly different from those predicted by our theory. In

a similar vein, we show that returns on portfolios sorted on the characteristics

are consistent with the model.

In Section V, we assess the out-of-sample predictive performance of the for-

mula when its coefficients are constrained to equal the values implied by the

theory. We compute out-of-sample R2 coefficients that compare the formula’s

predictions to those of a range of competitors, as in Goyal and Welch (2008).

We start by comparing against competitors that are themselves out-of-sample

predictors (in the sense of being based on a priori considerations, without in-

sample information). The formula outperforms all such competitors at horizons

of 3, 6, 12, and 24 months, both for expected returns and for expected returns

in excess of the market.

More ambitiously, we next compare the formula against competitors that

have in-sample information. At the 6- and 12-month horizons, the only case

in which our model of expected excess returns “loses” is when we allow the

competitor predictor to know both the in-sample average realized return across

stocks and the multivariate in-sample relationship between realized returns

and beta, size, book-to-market, and past returns. When we allow the competitor

to know only the in-sample average and the univariate relationship between

realized returns and any one of the characteristics, our formula outperforms.

Even more strikingly, in the case in which we forecast returns in excess of the

market, the formula outperforms the competitor armed with knowledge of the

in-sample average and of the multivariate relationship.

These empirical successes are particularly notable because the formula

makes some dramatic predictions about stock returns. Figure 1 plots the time

series of expected excess returns, relative to the riskless asset and relative to

the market, for Apple and JPMorgan Chase & Co. over the period January

1996 to October 2014. According to our model, expected returns spiked for both

stocks during the depths of the financial crisis of 2008 to 2009. In the case of

Apple, this largely reflected a high market-wide equity premium rather than

an Apple-specific phenomenon, whereas JP Morgan Chase’s expected excess

return was high even relative to the market risk premium. The figure also

plots expected excess returns computed using the CAPM with 1-year rolling

historical betas and the equity premium computed from the SVIX index of Mar-

tin (2017), or fixed at 6%, to illustrate the point (which, as we will show, holds

more generally) that our model generates more volatility in expected returns,

both over time and in the cross section, than does the CAPM.

We conclude in Section VI. The Appendix contains a discussion of the rela-

tionship between our volatility measures and implied correlation, and provides

details of the bootstrap procedure. Finally, further empirical results and analy-

sis of the finite-sample properties of our block bootstrap procedure are provided

in an Internet Appendix.1

1 The Internet Appendix may be found in the online version of this article.
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Figure 1. Expected excess returns and expected returns in excess of the market, annual

horizon. This figure illustrates our results. It plots the time series of expected excess returns and

expected returns in excess of the market for Apple Inc. and JP Morgan Chase & Co. at an annual

horizon (solid line) and, for comparison, the corresponding time series using the CAPM with a

constant equity premium of 6% (dotted line) or an equity premium calculated using the SVIX

index (dashed line). (Color figure can be viewed at wileyonlinelibrary.com)

Related Literature. A large literature documents the importance of idiosyn-

cratic volatility for future stock returns, though draws mixed conclusions. For

instance, Ang et al. (2006) find a negative relation both for total volatility

and for idiosyncratic volatility (defined as the residual variance of Fama and

French (1993) three-factor regressions on daily returns over the past month).

By contrast, Fu (2009) finds a positive relation when idiosyncratic volatility is

measured by the conditional variance obtained from fitting an EGARCH model

to residuals of Fama and French (1993) regressions on monthly returns.
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Our model attributes an important role to average stock variance (measured

as the value-weighted sum of individual stock risk-neutral variances), a pre-

diction that we confirm empirically. This result echoes the finding of Herskovic

et al. (2016) that idiosyncratic volatility (measured from past returns) exhibits

a strong factor structure and that firms’ loadings on the common component

predict equity returns. Furthermore, our measure of average stock variance

may capture a potential factor structure in the cross section of equity options,

as documented by Christoffersen, Fournier, and Jacobs (2017) across 29 Dow

Jones firms.

Various authors have explored the forecasting power of options-based mea-

sures. An et al. (2014) find that increases in implied volatilities of at-the-money

call and put options have opposing implications, predicting high and low sub-

sequent stock returns, respectively. Conrad, Dittmar, and Ghysels (2013) study

the relationship between risk-neutral moments and realized returns and find a

negative, though not statistically significant, relationship between risk-neutral

variance and subsequent stock returns. They work with the risk-neutral vari-

ance of log returns (following Bakshi, Kapadia, and Madan (2003)), so their

volatility indices load particularly strongly on the prices of deep out-of-the-

money put options. In contrast to both of these papers, our theoretical results

lead us to focus on the risk-neutral variance of index- and stock-level simple

returns. The resulting volatility indices load equally on the prices of options of

all strikes.

Other papers work within the CAPM and attempt to estimate betas more

accurately by incorporating forward-looking information from options. French,

Groth, and Kolari (1983) estimate beta using a stock’s historical return cor-

relation with the market and option-implied volatilities for the stock and the

market. Buss and Vilkov (2012) take a similar approach, but estimate corre-

lation from a parametric model that links correlation under the risk-neutral

and the objective measure. Chang et al. (2012) make assumptions under which

expected correlation can be computed from the ratio of option-implied stock to

market skewness; this implies, however, that a firm’s implied beta will be posi-

tive only if its skewness has the same sign as market skewness, so will typically

not provide a meaningful CAPM beta for firms with positive skewness.

In a more closely related, and contemporaneous, paper, Kadan and Tang

(2018) adapt an idea of Martin (2017) to derive a lower bound on expected

stock returns. To understand the main differences between their approach and

ours, recall that Martin starts from an identity that relates the equity premium

to a risk-neutral variance term and a (real-world) covariance term. He exploits

the identity by arguing that a negative correlation condition (NCC) holds for

the market return, so that the covariance term is nonpositive in quantitatively

reasonable models of financial markets. If so, the risk-neutral variance of the

market provides a lower bound on the equity premium.2 Kadan and Tang (2018)

modify this approach to derive a lower bound for expected stock returns based

2 Schneider and Trojani (2019) propose a related approach to forecasting the equity premium

based, in part, on variants of the NCC.
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on an NCC for individual stocks. But it is trickier to make the argument that

the NCC should hold at the individual stock level, so their lower bound applies

only for a subset of S&P 500 stocks.

I. Theory

Our starting point is the gross return with maximal expected log return: call

it Rg,t+1, so Et log Rg,t+1 ≥ Et log Ri,t+1 for any gross return Ri,t+1. This growth-

optimal return has the special property, unique among returns, that 1/Rg,t+1

is a stochastic discount factor (SDF). To see this, note that it is attained by

choosing portfolio weights {gn}
N
n=1 on the tradable returns (on stocks, stock

options, index options, and the riskless asset) to solve

max
{gn}

N
n=1

E log

N∑

n=1

gnRn,t+1 such that

N∑

n=1

gn = 1.

The first-order conditions for this problem are

E

(
Ri,t+1∑N

n=1 gnRn,t+1

)
= ψ for all i,

where ψ is a Lagrange multiplier; we follow Roll (1973) and Long (1990) in as-

suming that these first-order conditions have an interior solution. Multiplying

by gi and summing over i, we see that ψ = 1, and hence that the reciprocal of

Rg,t+1 ≡
∑N

n=1 gnRn,t+1 is an SDF.

We denote by E
∗
t the associated risk-neutral expectation (more precisely, the

time t + 1 forward-neutral expectation), which is defined via

1

R f ,t+1

E
∗
t Xt+1 = Et

(
Xt+1

Rg,t+1

)
, (1)

where R f ,t+1 is the gross riskless rate from time t to time t + 1.

A useful perspective to keep in mind is that of an unconstrained log investor

who is marginal for all asset prices, including options, but chooses to invest

his or her wealth fully in the market, whose gross return we write as Rm,t+1.

(Martin (2017) and Kremens and Martin (2019) show that this represents a

sensible benchmark when forecasting returns on the market and on curren-

cies, respectively.) Such an investor must perceive the market itself as growth

optimal, so that if Et represents the expectations of the log investor, equation

(1) and subsequent equations hold with Rg,t+1 = Rm,t+1.

The key property of the growth-optimal portfolio, which follows directly from

(1), is that

Et

Ri,t+1

R f ,t+1

− 1 = cov∗
t

(
Ri,t+1

R f ,t+1

,
Rg,t+1

R f ,t+1

)
for all stocks i. (2)
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Thus an asset’s risk premium is determined by its risk-neutral covariance with

the growth-optimal return.

We start by projecting stock returns onto the growth-optimal portfolio under

the risk-neutral measure. That is, for every stock i we decompose

Ri,t+1

R f ,t+1

= α∗
i,t + β∗

i,t

Rg,t+1

R f ,t+1

+ ǫi,t+1, (3)

where

β∗
i,t =

cov∗
t

(
Ri,t+1

R f ,t+1
,

Rg,t+1

R f ,t+1

)

var∗
t

Rg,t+1

R f ,t+1

(4)

E
∗
t ǫi,t+1 = 0 (5)

cov∗
t (ǫi,t+1, Rg,t+1) = 0. (6)

Equations (3) to (5) define ǫi,t+1, β∗
i,t, and α∗

i,t, and equation (6) follows as

a consequence of equations (3) to (5). Thus the only assumption embodied

in equations (3) to (6) is that the appropriate risk-neutral moments exist

and are finite, and that var∗
t Rg,t+1/R f ,t+1 is nonzero. (This last assumption

is needed for (4) to be well defined. It rules out the theoretically interest-

ing, but empirically implausible, possibility that the risk-neutral and true

probability measures coincide, as in that case the growth-optimal portfolio is

riskless.)

It may be helpful to compare this approach to that of Hansen and Richard

(1987), who also projected arbitrary returns onto a “distinguished” return—in

their case, the minimum-second-moment return, R∗,t+1, which is proportional

to an SDF. This return has the key property that Et(R∗,t+1 Ri,t+1) = Et(R
2
∗,t+1)

for all tradable returns Ri,t+1, and hence that

Et

Ri,t+1

R f ,t+1

− 1 = −
R f ,t+1

Et R∗,t+1

covt

(
Ri,t+1

R f ,t+1

,
R∗,t+1

R f ,t+1

)
for all stocks i. (2′)

This equation says that risk premia are determined by true covariances with a

tradable return. It can be rewritten3 as

Et

Ri,t+1

R f ,t+1

− 1 = −
(
1 + S2

t

)
covt

(
Ri,t+1

R f ,t+1

,
R∗,t+1

R f ,t+1

)
,

where St is the maximal conditional Sharpe ratio at time t.

3 The results of Hansen and Jagannathan (1991) show that R f ,t+1/Et R∗,t+1 =

Et(R
2
∗,t+1)/(Et R∗,t+1)2 = 1 + S2

t . The first equality follows from the key property of R∗,t+1.

The second holds because R∗,t+1 lies, by definition, at the tangency point of an origin-centered

circle to the lower edge of the minimum variance frontier in a mean–standard-deviation

diagram.
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Equation (2′) motivates the decomposition

Ri,t+1

R f ,t+1

= αi,t + βi,t

R∗,t+1

R f ,t+1

+ ui,t+1, (3′)

where

βi,t =
covt

(
Ri,t+1

R f ,t+1
,

R∗,t+1

R f ,t+1

)

vart
R∗,t+1

R f ,t+1

(4′)

Etui,t+1 = 0 (5′)

covt(ui,t+1, R∗,t+1) = 0. (6′)

We spell this out explicitly to emphasize the analogy between the two ap-

proaches. As before, equations (3′) to (5′) define ui,t+1, βi,t, and αi,t, and equation

(6′) follows as a consequence of equations (3′) to (5′).4 Equations (2′) to (6′) can

be viewed as the theoretical foundation of the factor pricing literature.

But forward-looking real-world covariances are not directly observable, so

they must be estimated from time-series data. Such estimates will only approx-

imate the true forward-looking covariances if the econometric environment is

sufficiently stable (ergodic, stationary) in a statistical sense. Thus to make

these equations empirically useful, one needs to make further assumptions

about the factors that must be included to provide a tolerable approximation

to the true minimum-second-moment return, about the stochastic properties of

ui,t+1 across assets and over time, and about the stability of conditional betas

over appropriate time horizons.

Broadly speaking, our approach may have a particular advantage at times

when beliefs adjust suddenly, whether because of the arrival of information—

firm-specific or macroeconomic news, a terrorist attack, natural or unnatu-

ral disaster, or something else—or because of a shift in market sentiment or

risk aversion. Backward-looking historical covariances will adjust sluggishly at

such times, which may be of particular interest to investors, decision makers in-

side firms, and policy makers who must respond rapidly to changing conditions.

By contrast option prices, and hence our formulas, will react almost instantly.

That said, we also need to make assumptions to make our approach imple-

mentable in practice. Equations (2) and (4) together imply that

Et

Ri,t+1

R f ,t+1

− 1 = β∗
i,tvar∗

t

Rg,t+1

R f ,t+1

. (7)

4 By taking risk-neutral expectations of equation (3), we see that α∗
i,t = 1 − β∗

i,t. Similarly, by

taking real-world expectations of equation (3′) and using equation (2′) together with the properties

of R∗,t+1 mentioned in footnote 3, we find that αi,t = 1 − βi,t.
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We also have, from equations (3) and (6), that

var∗
t

Ri,t+1

R f ,t+1

= β∗2
i,t var∗

t

Rg,t+1

R f ,t+1

+ var∗
t ǫi,t+1. (8)

What we would like to measure is the right-hand side of (7). What we can

measure is the left-hand side of (8) (as we will show in the next section). To

connect the two, we make two assumptions.5

First, we approximate β∗2
i,t in equation (8) by linearizing β∗2

i,t ≈ 2β∗
i,t − k, where

k is a constant. This approximation is reasonable if β∗
i,t is not too far from one

for a typical stock.6 In Internet Appendix Section I, we derive the residual that

the approximation neglects, and we argue that it is small for most stocks in

our sample. We therefore replace (8) with

var∗
t

Ri,t+1

R f ,t+1

= (2β∗
i,t − k)var∗

t

Rg,t+1

R f ,t+1

+ var∗
t ǫi,t+1. (9)

Using (7) and (9) to eliminate the dependence on β∗
i,t, we have

Et

Ri,t+1

R f ,t+1

− 1 =
1

2
var∗

t

Ri,t+1

R f ,t+1

+
k

2
var∗

t

Rg,t+1

R f ,t+1

−
1

2
var∗

t ǫi,t+1. (10)

To make further progress, let wi,t be the market-capitalization weight of stock

i in the index. Value-weighting the above equation, we find that

Et

Rm,t+1

R f ,t+1

− 1 =
1

2

∑

j

w j,tvar∗
t

Rj,t+1

R f ,t+1

+
k

2
var∗

t

Rg,t+1

R f ,t+1

−
1

2

∑

j

w j,tvar∗
t ǫ j,t+1. (11)

5 One might have expected that the risk-neutral covariance that appears in equations (2) and

(7) should be observable directly from asset prices without any further assumptions. But Martin

(2018) shows that it is in general hard to measure risk-neutral expectations of functions—here,

products—of multiple asset returns using asset prices that are observable in practice. (For an

exception to this rule, see Kremens and Martin (2019), who exploit quanto contracts to infer risk-

neutral covariances between the S&P 500 index and currencies.) In our setting, we could have

followed an alternative approach if outperformance options written on Ri,t+1 − Rm,t+1 (as a proxy

for the theoretical ideal, namely, outperformance options on Ri,t+1 − Rg,t+1) were observable and

liquid; unfortunately they are not.
6 If k = 1, this linearization is the tangent to β∗2

i,t at β∗
i,t = 1. Alternatively, if, say, the cross

section of betas has mean one and standard deviation σ , then one could set k = 1 − σ 2 to minimize

the mean squared approximation error. As we will see shortly, the precise value of k turns out

not to be important. The choice to linearize around β∗
i,t = 1 is not critical, though we think it is

natural: if the equal-weighted portfolio of stocks is approximately growth optimal, then β∗
i,t is close

to one on average, while if the market is approximately growth optimal, then β∗
i,t is close to one

on value-weighted average. More generally, we could linearize β∗2
i,t ≈ cβ∗

i,t + d for appropriately

chosen c and d. For example, the tangent to β∗2
i,t at β∗

i,t = β0, some constant, corresponds to c = 2β0

and d = −β2
0 , or one might want to choose c and d to achieve some other goal (e.g., to minimize

the mean squared error for a given distribution of β∗
i,t). If one takes this approach, equations (14)

and (15) are unchanged except that 1/2 is replaced by 1/c; in particular, the value of d drops out.

(See Internet Appendix Section I.) Our empirical results suggest that it is reasonable to linearize

around one, that is, to set c = 2.
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Subtracting (11) from (10), we have

Et

Ri,t+1 − Rm,t+1

R f ,t+1

=
1

2

⎛
⎝var∗

t

Ri,t+1

R f ,t+1

−
∑

j

w j,tvar∗
t

Rj,t+1

R f ,t+1

⎞
⎠

−
1

2

⎛
⎝var∗

t ǫi,t+1 −
∑

j

w j,tvar∗
t ǫ j,t+1

⎞
⎠. (12)

Our second assumption is that the final term on the right-hand side of (12),

which is zero on value-weighted average, can be captured by a time-invariant

stock fixed effect αi. This fixed-effects formulation, which is econometrically

convenient, would follow immediately if, for example, the risk-neutral vari-

ances of residuals decompose separably, var∗
t ǫi,t+1 = φi + ψt, and value weights

are constant over time.

It will be convenient to define three different measures of risk-neutral

variance:

SVIX2
t = var∗

t

(
Rm,t+1/R f ,t+1

)

SVIX2
i,t = var∗

t

(
Ri,t+1/R f ,t+1

)
(13)

SVIX
2

t =
∑

i

wi,tSVIX2
i,t.

These measures can be computed directly from option prices, as we show in

the next section. The SVIXt index was introduced by Martin (2017)—the name

echoes the related VIX index—but the definitions of stock-level SVIXi,t and of

SVIXt, which measures average stock volatility, are new to this paper. Introduc-

ing these definitions into (12), we arrive at our first, purely relative, prediction

about the cross section of expected returns in excess of the market (hereafter

excess-of-market returns, for short):

Et Ri,t+1 − Rm,t+1

R f ,t+1

= αi +
1

2

(
SVIX2

i,t − SVIX
2

t

)
. (14)

We test this prediction by running a panel regression of excess-of-market re-

turns of individual stocks i onto stock fixed effects and excess stock variance

SVIX2
i,t − SVIX

2

t .

To answer the question posed in the title of the paper, we must also take a

view on the expected return on the market itself. To do so, we exploit a result

of Martin (2017), who argues that the SVIX index can be used as a forecast

of the equity premium and, specifically, that Et Rm,t+1 − R f ,t+1 = R f ,t+1SVIX2
t .

Substituting this into equation (12), we have

Et Ri,t+1 − R f ,t+1

R f ,t+1

= αi + SVIX2
t +

1

2

(
SVIX2

i,t − SVIX
2

t

)
. (15)
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We test (15) by running a panel regression of realized excess returns on indi-

vidual stocks i onto stock fixed effects, risk-neutral variance SVIX2
t , and excess

stock variance SVIX2
i,t − SVIX

2

t .

As noted above, the fixed effects in (14) and (15) should be zero on value-

weighted average. We test this prediction in two ways. First, we consider

the weaker prediction
∑

i wiαi = 0 (where wi = 1
Ti

∑
t wi,t is the average value

weight of stock i and Ti the number of time-series observations for stock i).

We also test the stronger assumption that αi = 0 for all i, which will hold if

risk-neutral residual variance is constant across stocks though not necessarily

over time. In this form, we are imposing a tight relationship between a stock’s

risk-neutral variance and its risk-neutral beta: by (8), stocks with high vari-

ances must also have high risk-neutral betas. Making this assumption in (14),

for example, we have7

Et Ri,t+1 − Rm,t+1

R f ,t+1

=
1

2

(
SVIX2

i,t − SVIX
2

t

)
. (16)

Correspondingly, if we assume that the fixed effects are constant across i in

(15), we end up with a formula for the expected return on a stock that has no

free parameters:

Et Ri,t+1 − R f ,t+1

R f ,t+1

= SVIX2
t +

1

2

(
SVIX2

i,t − SVIX
2

t

)
. (17)

In Section V, we exploit the fact that (16) and (17) require no parameter

estimation—only observation of contemporaneous prices—to conduct out-of-

sample analysis, and we show that the formulas outperform a range of plausi-

ble competitors.

Before we turn to the data, it is worth reiterating our two key assumptions.

First, we assume that for stocks in our universe, risk-neutral betas β∗
i,t are

sufficiently close to one to justify our linearization (9). Second, we assume that

the risk-neutral variances of residuals—the second term on the right-hand side

of equation (12)—can be captured by a fixed-effects formulation.

We emphasize that these assumptions are not appropriate for all assets.

Suppose, for example, that asset j is genuinely idiosyncratic—and hence has

zero risk premium—but has extremely high, and perhaps wildly time-varying,

variance SVIX2
j,t. Then equation (15) cannot possibly hold for asset j. Our

assumptions reflect a judgment that such cases are not typical within the

universe of stocks that we study (namely, members of the S&P 100 or S&P

7 At first sight, equation (16) appears to lead to an inconsistency: if we “set i = m,” this seems to

imply that SVIX2
t = SVIX

2

t , which is not true (as we discuss in Section II below). The correct way

to “set i = m” here is to replace SVIX2
i,t not with SVIX2

t but with its value-weighted sum, SVIX2
t . By

contrast, it is legitimate to “set i = m” in linear factor models in which risk premia are expressed

in terms of covariances of returns with factors.
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500 indices).8 This is an empirically testable judgment, and we put it to the

test below.

II. Three Measures of Risk-Neutral Variance

The risk-neutral variance terms that appear in our formulas can be cal-

culated from option prices using the approach of Breeden and Litzenberger

(1978). Our measure of market risk-neutral variance, SVIX2
t , is determined by

the prices of index options:

SVIX2
t =

2

R f ,t+1S2
m,t

[∫ Fm,t

0

putm,t(K) dK +

∫ ∞

Fm,t

callm,t(K) dK

]
,

where Sm,t and Fm,t denote the spot and forward (to time t + 1) prices of the

market, and putm,t(K) and callm,t(K) denote the time t prices of European puts

and calls on the market that expire at time t + 1 with strike K. The length of

the period from time t to time t + 1 varies according to the horizon of interest.

We will therefore forecast 1-month returns using the prices of 1-month options,

3-month returns using the prices of 3-month options, and so on. Throughout the

paper, we annualize returns and volatility indices by scaling by horizon length

measured in years. The SVIX index (squared) thus represents the price of a

portfolio of out-of-the-money puts and calls equally weighted by strike. This

definition is closely related to that of the VIX index, the key difference being

that VIX weights option prices in inverse-square proportion to their strike.

The corresponding index at the individual stock level is defined in terms of

individual stock option prices:

SVIX2
i,t =

2

R f ,t+1S2
i,t

[∫ Fi,t

0

puti,t(K) dK +

∫ ∞

Fi,t

calli,t(K) dK

]
,

where the subscripts i indicate that the reference asset is stock i rather than

the market.

Finally, using SVIX2
i,t for all firms available at time t, we calculate the risk-

neutral average stock variance index as SVIX
2

t =
∑

i wi,tSVIX2
i,t.

We pause to highlight two facts about these volatility indices. First, av-

erage stock volatility must exceed market volatility, that is, SVIXt > SVIXt.

Given the definitions above, this is an illustration of the slogan that a portfo-

lio of options is more valuable than an option on a portfolio. More formally,

it is a consequence of the fact that
∑

i wi,tvar∗
t Ri,t+1 > var∗

t

∑
i wi,t Ri,t+1 or,

8 There is an analogy with an earlier debate on the testability of the arbitrage pricing theory

(APT). Shanken (1982) shows, under the premise of the APT that asset returns are generated by

a linear factor model, that it is possible to construct portfolios that violate the APT prediction

that assets’ expected returns are linear in the factor loadings. Dybvig and Ross (1985) endorse the

mathematical content of Shanken’s results but dispute their interpretation, arguing that the APT

can be applied to certain types of assets (e.g., stocks) but not to arbitrary portfolios of assets.
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equivalently, that E
∗
t

∑
i wi,t R

2
i,t+1 > E

∗
t [(

∑
i wi,t Ri,t+1)2], which follows from

Jensen’s inequality.

Second, as a rule of thumb, risk-neutral variance is increasing in the time-

to-maturity of the underlying options (equivalently, in the length of the period

from t to t + 1). Formally, assume that the underlying asset does not pay divi-

dends and use put-call parity to write

SVIX2
i,t = var∗

t

(
Ri,t+1/R f ,t+1

)
=

2

R f ,t+1S2
t

∫ ∞

0

calli,t(K)︸ ︷︷ ︸
↑ in maturity

dK − 1.

As is well known, if the underlying asset does not pay dividends—a tolerable

approximation to reality for the stocks and horizons we consider—a European

call and an American call have the same value and hence call prices are in-

creasing in time-to-maturity. Assuming this is not offset by the countervailing

effect of increased interest rates R f ,t+1 over longer horizons, SVIXi,t should be

expected to be monotonic in horizon length. We have found nonmonotonicity to

be a useful flag for detecting a small number of extreme outliers in our data,

as we discuss further below.

In our empirical work, we start with daily data from OptionMetrics for equity

index options on the S&P 100 and on the S&P 500, which provide us with time

series of implied volatility surfaces from January 1996 to October 2014. We

obtain daily equity index price and return data from CRSP and information

on the index constituents from Compustat. We also obtain data on the firms’

number of shares outstanding and their book equity to compute their market

capitalizations and book-to-market ratios. Using the lists of index constituents,

we search the OptionMetrics database for all firms that were included in the

S&P 100 or S&P 500 during our sample period, and obtain volatility surface

data for these individual firms, where available.

We face the issue that S&P 100 index options and individual stock options

are American style rather than European style. The distinction is likely to be

relatively minor at the horizons we consider, as the options whose prices we

require are out of the money. In any case, the volatility surfaces reported by

OptionMetrics address this issue via binomial tree calculations that aim to

account for early exercise premia. We take the resulting volatility surfaces as

our measures of European implied volatility, following Carr and Wu (2009),

among others.

We compute the three measures of risk-neutral variance given in equation

(13) for horizons (i.e., option maturities) of 1, 3, 6, 12, and 24 months. We then

omit a small number of extreme outliers in our data that violate the mono-

tonicity property of SVIXi,t across horizons described above.9 As summarized

in Panel A of Table I, we end up with more than two million firm-day observa-

tions for each of the five horizons, covering a total of 869 firms over our sample

9 In the daily data, we end up with 2,106,711 firm-day observations after removing 9,648 obser-

vations based on nonmonotonicity. In our monthly data for S&P 500 firms, we end up with 102,198

firm-month observations after removing 401 observations based on nonmonotonicity.
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Table I

Sample Data

This table summarizes the data used in the empirical analysis. We search the OptionMetrics

database for all firms that have been included in the S&P 100 or S&P 500 during the sample

period from January 1996 to October 2014 and obtain all available volatility surface data. We

use these data to compute firms’ risk-neutral variances (SVIX2
i,t) for horizons of 1, 3, 6, 12, and

24 months. Panel A summarizes the number of total observations, the number of unique days

and unique firms in our sample, as well as the average number of firms for which options data

are available per day. For some econometric analysis, we also compile data subsets at a monthly

frequency for firms included in the S&P 100 (summarized in Panel B) and the S&P 500 (Panel C).

Panel A: Daily data

Horizon 30 days 91 days 182 days 365 days 730 days

Observations 2,106,711 2,106,711 2,106,711 2,106,711 2,106,711

Sample days 4,674 4,674 4,674 4,674 4,674

Sample firms 869 869 869 869 869

Average firms/day 451 451 451 451 451

Panel B: Monthly data for S&P 100 firms

Observations 21,205 20,820 20,247 19,100 16,896

Sample months 224 222 219 213 201

Sample firms 177 176 176 171 167

Average firms/month 95 94 92 90 84

Panel C: Monthly data for S&P 500 firms

Observations 102,198 100,252 97,340 91,585 80,631

Sample months 224 222 219 213 201

Sample firms 877 869 863 832 770

Average firms/month 456 452 444 430 401

period from January 1996 to October 2014. Across horizons, we have data on

451 firms on average per day, meaning that we cover slightly more than 90% of

the firms included in the S&P 500 index. From the daily data, we also compile

data subsets at a monthly frequency for firms included in the S&P 100 (Panel B)

and the S&P 500 (Panel C).

Figure 2 plots the time series of risk-neutral market variance (SVIX2
t ) and

average risk-neutral stock variance (SVIX
2

t ) for the S&P 500; the correspond-

ing time series for the S&P 100 are shown in Figure IA.1 in the Internet

Appendix. The dynamics of SVIX2
t and SVIX

2

t are similar for both indices and

across horizons. All of the time series spike dramatically during the financial

crisis of 2008. While the average levels of the (annualized) SVIX measures are

similar across horizons, their volatility is higher at short than at long horizons.

Similarly, the peaks in SVIX2
t and SVIX

2

t during the crisis and other periods of

heightened volatility are most pronounced in short-maturity options.10

10 In Appendix A, we show that the ratio of market variance to average stock variance,

SVIX2
t /SVIX

2

t , can be interpreted as a measure of average risk-neutral correlation between stocks.
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Figure 2. Option-implied equity variance of S&P 500 firms. This figure plots the time series

of the risk-neutral variance of the market (SVIX2
t ) and of stocks’ average risk-neutral variance

(SVIX
2

t ). We compute SVIX2
t from equity index options on the S&P 500. SVIX

2

t is the value-

weighted sum of S&P 500 stocks’ risk-neutral variance computed from individual firm equity

options. Panels A through D present the variance series implied by equity options with maturities

of 1, 3, 6, 12, and 24 months. The data are daily from January 1996 to October 2014. (Color figure

can be viewed at wileyonlinelibrary.com)

Figures 3 and 4 show the relationships between risk-neutral stock vari-

ances and various firm characteristics, on average and in the time series,

Figure IA.2 in the Internet Appendix plots the time series of SVIX2
t /SVIX

2

t at 1-month and 1-year

horizons for the S&P 100 and S&P 500. Average stock variance was unusually high relative to

market variance over the period from 2000 to 2002, indicating that the correlation between stocks

was unusually low at that time.
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Figure 3. Beta, size, value, momentum, and option-implied equity variance. This figure

reports (equally weighted) averages of risk-neutral stock variance (SVIX2
i,t, computed from indi-

vidual firm equity options) of S&P 500 stocks, conditional on firm beta, size, book-to-market, and

momentum. At each date t, we assign stocks to decile portfolios based on their characteristics and

report the time-series averages of SVIX2
i,t across deciles at a horizon of 1 year (Panels A to D).

(Color figure can be viewed at wileyonlinelibrary.com)

respectively. To construct the figures, we sort S&P 500 stocks into portfolios

based on their CAPM beta, size, book-to-market ratio, or momentum, and com-

pute the (equally weighted) average SVIX2
i,t for each portfolio at the 12-month

horizon.11 We find that SVIX2
i,t is positively related to CAPM beta and in-

versely related to firm size, both on average and throughout our sample period.

In contrast, there is a U-shaped relationship between SVIX2
i,t and book-to-

market that reflects an interesting time-series relationship between the two.

Growth and value stocks had similar levels of volatility during periods of low

index volatility, but value stocks were more volatile than growth stocks during

the recent financial crisis and less volatile from 2000 to 2002. We also find a

11 We measure momentum by the return over the past 12 months, skipping the most recent

month’s return (see, e.g., Jegadeesh and Titman, 1993). Our estimation of conditional CAPM

betas based on past returns follows Frazzini and Pedersen (2014): we estimate volatilities by

1-year rolling standard deviations of daily returns and correlations from 5-year rolling windows of

overlapping 3-day returns.
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Figure 4. Beta, size, value, momentum, and option-implied equity variance. This figure

plots the time series of risk-neutral stock variance (SVIX2
i,t) of S&P 500 stocks, conditional on firm

beta, size, book-to-market, and momentum. The horizon is 1 year. At each date t, we classify firms

as small, medium, or big when their market capitalization is in the bottom, middle, or top tertile of

the time t distribution across all firms in our sample, and compute the (equally weighted) average

SVIX2
i,t. Similarly, we classify firms by their other characteristics at time t. (Color figure can be

viewed at wileyonlinelibrary.com)

nonmonotonic relationship between momentum and SVIX2
i,t. Interestingly,

loser stocks exhibited particularly high SVIX2
i,t from late 2008 until the mo-

mentum crash in early 2009.12

III. Testing the Model

In this section, we use SVIX2
t , SVIX2

i,t, and SVIX
2

t to test the predictions of

our model using full-sample information. But before turning to formal tests,

we conduct a preliminary exploratory exercise. Specifically, we ask whether, on

time-series average, stocks’ excess-of-market returns line up with their excess

stock variances in the manner predicted by equation (16). To do so, we temporar-

ily restrict attention to firms that were included in the S&P 500 throughout our

sample period. For each such firm, we compute time-averaged excess-of-market

12 We find similar results at the 1-month horizon. See Figures IA.3 and IA.4 in the Internet

Appendix. Figure IA.5 plots (equally weighted) average SVIXi at the 12-month horizon for portfolios

double-sorted on size and value.
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returns and risk-neutral excess stock variance, SVIX2
i − SVIX

2
. Equation (16)

implies that for each percentage point difference in SVIX2
i − SVIX

2
, we should

see half a percentage point difference in excess returns.

The results of this exercise are shown in Figure 5, which is analogous to the

security market line of the CAPM. The return horizon matches the maturity

of the options used to compute the SVIX indices. We regress average excess-of-

market returns on 0.5 × (SVIX2
i − SVIX

2
). Our theory predicts zero intercept

and a slope coefficient of one; we find intercepts close to zero and slope coeffi-

cients of 0.60, 0.79, 1.00, 1.10, and 1.01 at forecasting horizons of 1, 3, 6, 12, and

24 months, with R2 ranging from 0.09 to 0.18. Using the same subset of firms,

the figures also show decile portfolios sorted by SVIXi,t (indicated by diamonds)

and 3 × 3 portfolios sorted by size and book-to-market (indicated by triangles).

We repeat this exercise for portfolios sorted on firms’ risk-neutral variance

SVIXi,t, using all available firms (lifting the requirement of full-sample-period

coverage). Figure 6 shows that average portfolio returns in excess of the market

are broadly increasing in portfolios’ average volatility relative to aggregate

stock volatility, and that SVIX2
i − SVIX

2
captures a sizeable fraction of the

cross-sectional variation in returns.

To test the model formally, we start by estimating the pooled panel regression

Ri,t+1 − Rm,t+1

R f ,t+1

= α + γ

(
SVIX2

i,t − SVIX
2

t

)
+ ǫi,t+1. (18)

Based on the formula (16), we would ideally hope to find that α = 0 and γ =

1/2. At a given point in time t, our sample includes all firms that are time

t constituents of the index. We compute Rm,t+1 as the return on the value-

weighted portfolio of all index constituent firms included in our sample at

time t.

We run the regression using monthly data for the S&P 100 and S&P

500 indices, at return horizons (and hence also option maturities) of 1,

3, 6, 12, and 24 months. Throughout the paper, we calculate standard

errors and p-values using a block bootstrap procedure that accounts for

time-series and cross-sectional dependencies in the data. Appendix B pro-

vides further details about the bootstrap procedure and presents Monte

Carlo simulation evidence on the reliability of the procedure in finite

samples.

The regression results are shown in Table II. The headline result is that

when we conduct a Wald test of the joint hypothesis that α = 0 and γ = 0.5,

we do not reject our model at any horizon, with p-values ranging from

0.44 to 0.84 for S&P 100 firms (Panel A) and from 0.49 to 0.63 for S&P

500 firms (Panel B). By contrast, we can reject the hypothesis that γ = 0

with some confidence in most cases (with p-values of 0.079, 0.020, 0.015,

and 0.007 for S&P 100 firms at 3-, 6-, 12-, and 24-month horizons, and p-

values of 0.072, 0.068, and 0.077 for S&P 500 firms at 6-, 12-, and 24-month

horizons).
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Figure 5. Average equity returns in excess of the market. This figure presents results on

the relation between a firm’s equity returns in excess of the market and its risk-neutral variance

measured relative to average risk-neutral stock variance. For firms that were constituents of the

S&P 500 index throughout our sample period, we compute time-series averages of their returns in

excess of the market and their stock volatility relative to stocks’ average volatility (SVIX2
i − SVIX

2
).

We multiply the stock variance estimate by 0.5 and plot the pairwise combinations (blue crosses)

for horizons of 1, 3, 6, 12, and 24 months (Panels A to E). The black line represents the regression

fit to the individual firm observations with slope coefficient and R2 reported in the plot legend.

Our theory implies that the slope coefficient of this regression should be one and that the intercept

should be zero. The red diamonds represent decile portfolios of firms sorted by SVIX2
i,t. Similarly,

the triangles in orange represent portfolios of stocks formed according to firms’ size and book-to-

market. (Color figure can be viewed at wileyonlinelibrary.com)
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Figure 6. Portfolios sorted by stock risk-neutral variance. This figure reports results on

the relationship between equity portfolio returns in excess of the market and risk-neutral stock

variance measured relative to stocks’ average risk-neutral variance. The horizon is 1 year. At

the end of each month, we group all available firms into 10, 25, 50, or 100 portfolios (Panels A

to D) based on their individual variance relative to average variance, SVIX2
i,t − SVIX

2

t . For each

portfolio, we compute the time-series average return in excess of the market and plot the pairwise

combinations with the corresponding stock variance estimate multiplied by 0.5. Our theory implies

that the slope coefficient of this regression should be one. The black line represents the regression

fit to the portfolio observations with slope coefficient and R2 reported in the plot legend. The sample

period is January 1996 to October 2014. (Color figure can be viewed at wileyonlinelibrary.com)

We test prediction (14) by running a panel regression with firm fixed effects,

Ri,t+1 − Rm,t+1

R f ,t+1

= αi + γ

(
SVIX2

i,t − SVIX
2

t

)
+ ǫi,t+1, (19)

and testing the hypothesis that γ = 1/2 and
∑

i wiαi = 0.

The results are in Table III. Now γ is significantly different from zero even

at the shorter horizons, and in most cases is not significantly different from

0.5. We also find, however, that the value-weighted sum of firm fixed effects is
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Table II

Expected Returns in Excess of the Market: Pooled Panel Regressions

This table presents results from regressing stock returns in excess of the market onto stock-level

risk-neutral variance measured relative to stocks’ average risk-neutral variance (SVIX2
i,t − SVIX

2

t )

for S&P 100 firms (Panel A) and S&P 500 firms (Panel B). The data are monthly from January

1996 to October 2014. The column labels indicate the return horizons ranging from 1 month to 2

years. The return horizons match the maturities of the options used to compute SVIX2
i,t and SVIX

2

t .

We report estimates of the pooled panel regression specified in equation (18),
Ri,t+1 − Rm,t+1

R f ,t+1
=

α + γ (SVIX2
i,t − SVIX

2

t ) + ǫi,t+1. Values in parentheses are standard errors obtained from the block

bootstrap procedure described in Appendix Section B. In each panel, we report the regressions’

adjusted R2 and p-values of Wald tests that test whether the regression coefficients take the values

predicted by our theory (joint test of zero intercept and γ = 0.5), whether γ = 0.5, and whether

γ = 0. The rows labelled “theory adj-R2 (%)” report the adjusted R2 obtained when the coefficients

are fixed at the values predicted by our theory.

Horizon 30 days 91 days 182 days 365 days 730 days

Panel A: S&P 100 firms

α 0.008 0.008 0.005 0.007 0.010

(0.015) (0.014) (0.015) (0.016) (0.016)

γ 0.541 0.551 0.761 0.819 0.723

(0.345) (0.313) (0.328) (0.337) (0.270)

Adjusted R2 (%) 0.473 1.185 3.527 6.070 6.665

H0 : α = 0, γ = 0.5 0.841 0.832 0.609 0.437 0.439

H0 : γ = 0.5 0.906 0.871 0.427 0.344 0.409

H0 : γ = 0 0.118 0.079 0.020 0.015 0.007

Theory adj-R2 (%) 0.463 1.151 3.054 5.005 5.712

Panel B: S&P 500 firms

α 0.016 0.016 0.013 0.014 0.019

(0.015) (0.015) (0.016) (0.019) (0.019)

γ 0.301 0.414 0.551 0.553 0.354

(0.285) (0.273) (0.306) (0.302) (0.200)

Adjusted R2 (%) 0.135 0.617 1.755 2.892 1.901

H0 : α = 0, γ = 0.5 0.489 0.560 0.630 0.600 0.596

H0 : γ = 0.5 0.486 0.752 0.869 0.862 0.467

H0 : γ = 0 0.291 0.129 0.072 0.068 0.077

Theory adj-R2 (%) 0.068 0.547 1.648 2.667 1.235

statistically different from zero, though we note that the estimates are fairly

small in economic terms (and, consistent with the pooled panel results, we will

see below that the model performs well when we drop firm fixed effects entirely,

as we do in our out-of-sample analysis).13

13 Moreover, the fixed effects are not statistically significant if we use portfolios sorted on SVIX2
i,t

as test assets. See Tables IA.I, IA.II, IA.III, and IA.IV in the Internet Appendix.
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Table III

Expected Returns in Excess of the Market: Panel Regressions with

Fixed Effects

This table presents results from regressing stock returns in excess of the market onto stock-level

risk-neutral variance measured relative to stocks’ average risk-neutral variance (SVIX2
i,t − SVIX

2

t )

for S&P 100 firms (Panel A) and for S&P 500 firms (Panel B). The data are monthly from January

1996 to October 2014. The column labels indicate the return horizons ranging from 1 month

to 2 years. The return horizons match the maturities of the options used to compute SVIX2
i,t and

SVIX
2

t . We report estimates of the panel regression with firm fixed effects specified in equation (19),
Ri,t+1 − Rm,t+1

R f ,t+1
= αi + γ (SVIX2

i,t − SVIX
2

t ) + ǫi,t+1, where
∑

i wiαi reports the time-series average

of the value-weighted sum of firm fixed effects. Values in parentheses are standard errors obtained

from the block bootstrap procedure described in Appendix Section B. In each panel, we report the

regressions’ adjusted R2 and p-values of Wald tests that test whether the regression coefficients

take the values predicted by our theory (joint test of zero intercept and γ = 0.5), whether γ = 0.5,

and whether γ = 0.

Horizon 30 days 91 days 182 days 365 days 730 days

Panel A: S&P 100 firms

∑
i wiαi 0.026 0.024 0.023 0.022 0.020

(0.010) (0.009) (0.009) (0.009) (0.009)

γ 0.780 0.833 1.120 1.156 1.018

(0.385) (0.360) (0.348) (0.313) (0.286)

Adjusted R2 (%) 1.097 4.013 9.896 16.866 24.071

H0 :
∑

i wiαi = 0, γ = 0.5 0.026 0.012 0.006 0.002 0.013

H0 : γ = 0.5 0.468 0.355 0.074 0.036 0.070

H0 : γ = 0 0.043 0.021 0.001 0.000 0.000

Panel B: S&P 500 firms

∑
i wiαi 0.036 0.034 0.033 0.033 0.033

(0.008) (0.007) (0.008) (0.008) (0.008)

γ 0.560 0.730 0.949 0.917 0.637

(0.313) (0.313) (0.319) (0.291) (0.199)

Adjusted R2 (%) 0.398 3.015 7.320 12.637 17.479

H0 :
∑

i wiαi = 0, γ = 0.5 0.000 0.000 0.000 0.000 0.000

H0 : γ = 0.5 0.848 0.461 0.160 0.152 0.491

H0 : γ = 0 0.073 0.019 0.003 0.002 0.001

Turning to excess returns (as opposed to excess-of-market returns), we test

the prediction of equation (17) by running the regression

Ri,t+1 − R f ,t+1

R f ,t+1

= α + βSVIX2
t + γ

(
SVIX2

i,t − SVIX
2

t

)
+ ǫi,t+1, (20)

and the prediction of equation (15) by running a regression with stock fixed

effects,

Ri,t+1 − R f ,t+1

R f ,t+1

= αi + βSVIX2
t + γ

(
SVIX2

i,t − SVIX
2

t

)
+ ǫi,t+1. (21)
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Our model predicts that α = 0, β = 1, and γ = 1/2 in equation (20), and that

β = 1, γ = 1/2, and
∑

i wiαi = 0 in equation (21).

The pooled panel regression results are shown in Table IV. For S&P

100 firms (Panel A), the headline result is again that we do not re-

ject our model at any horizon: p-values of the joint hypothesis test that

α = 0, β = 1, and γ = 0.5 range from 0.55 to 0.69. By contrast, we can reject

the joint hypothesis that β = 0 and γ = 0 with moderate confidence for 6-, 12-,

and 24-month returns (with p-values of 0.064, 0.045, and 0.012, respectively).

Notice that as the estimated coefficient γ exploits cross-sectional information,

it is estimated more precisely than is β. Our results are therefore consistently

stronger, in a statistical sense, than those of Martin (2017).

The corresponding results for S&P 500 firms are reported in Panel B. We do

not reject the joint hypothesis that α = 0, β = 1, and γ = 0.5 at horizons of 1,

3, 6, and 12 months (with p-values between 0.169 and 0.267). We do, however,

reject the model at the 24-month horizon: the estimated β is even higher than

the theory predicts. We can cautiously reject the joint null that β = 0 and

γ = 0 at horizons of 6, 12, and 24 months (with p-values of 0.071, 0.092, and

0.036).

The coefficient estimates remain fairly stable, and we draw similar conclu-

sions, when we allow for firm fixed effects in Table V. For S&P 100 firms

(Panel A), a Wald test of the joint null hypothesis that
∑

i wiαi = 0, β = 1, and

γ = 0.5 does not reject the model (with p-values between 0.11 and 0.36), and

we can strongly reject the joint null that β = γ = 0 for horizons of 6, 12, and

24 months (with p-values below 0.01). The β estimates are little changed com-

pared to the pooled panel regressions, while the γ estimates are somewhat

higher. The statistical results are more clear-cut for S&P 500 firms when we

include firm fixed effects (Panel B). We do not reject the joint null hypothe-

sis implied by our model at horizons up to and including 12 months, and can

strongly reject the null that β = γ = 0 at horizons of 6, 12, and 24 months (with

p-values of 0.019, 0.008, and 0.002).

We also run these regressions on subsamples of the data. Figure 7 plots

the estimated coefficients β and γ using successive yearly and three-yearly

subsamples, and shows that our results are not driven by any one subperiod.

The figure also helps emphasize the point that the cross-sectional coefficient γ ,

which exploits the information in the entire cross section of stocks, is esti-

mated more precisely than the “market” coefficient β, which relies on a single

time series.

IV. Risk Premia and Stock Characteristics

The results of the previous section show that the model performs well in

forecasting stock returns. Nonetheless, we would like to know whether there

is return-relevant information in other firm characteristics—notably, CAPM

beta, (log) size, book-to-market, and past returns—that is not captured by

our predictor variables (see, e.g., Fama and French (1993), Carhart (1997),

Lewellen (2015)).
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Table IV

Expected Excess Returns: Pooled Panel Regressions

This table presents results from regressing excess returns of S&P 100 firms (Panel A) and S&P 500

firms (Panel B) onto the risk-neutral variance of the market (SVIX2
t ) and stock-level risk-neutral

variance measured relative to stocks’ average risk-neutral variance (SVIX2
i,t − SVIX

2

t ). The data

are monthly from January 1996 to October 2014. The column labels indicate the return horizons

ranging from 1 month to 2 years. The return horizons match the maturities of the options used to

compute SVIX2
t , SVIX2

i,t, and SVIX
2

t . We report estimates of the pooled panel regression specified in

equation (20),
Ri,t+1 − R f ,t+1

R f ,t+1
= α + βSVIX2

t + γ (SVIX2
i,t − SVIX

2

t ) + ǫi,t+1. Values in parentheses

are standard errors obtained from the block bootstrap procedure described in Appendix Section B.

In each panel, we report the regressions’ adjusted R2 and p-values of Wald tests that test whether

the regression coefficients take the values predicted by our theory (zero intercept, β = 1, and

γ = 0.5), whether β = 0 and γ = 0, whether γ = 0.5, and whether γ = 0. The rows labelled “theory

adj-R2 (%)” report the adjusted R2 obtained when the coefficients are fixed at the values predicted

by our theory.

Horizon 30 days 91 days 182 days 365 days 730 days

Panel A: S&P 100 firms

α 0.073 0.035 −0.009 0.001 −0.006

(0.064) (0.074) (0.054) (0.067) (0.068)

β −0.001 1.070 2.244 1.956 1.990

(2.032) (2.263) (1.465) (1.404) (1.517)

γ 0.469 0.489 0.729 0.834 0.736

(0.346) (0.332) (0.340) (0.343) (0.267)

Adjusted R2 (%) 0.274 0.942 3.809 6.387 7.396

H0 : α = 0, β = 1, γ = 0.5 0.550 0.687 0.660 0.566 0.608

H0 : β = γ = 0 0.356 0.335 0.064 0.045 0.012

H0 : γ = 0.5 0.929 0.974 0.500 0.330 0.376

H0 : γ = 0 0.175 0.140 0.032 0.015 0.006

Theory adj-R2 (%) 0.099 0.625 2.509 3.896 4.830

Panel B: S&P 500 firms

α 0.057 0.019 −0.038 −0.021 −0.054

(0.074) (0.079) (0.059) (0.071) (0.076)

β 0.743 1.882 3.483 3.032 3.933

(2.311) (2.410) (1.569) (1.608) (1.792)

γ 0.214 0.305 0.463 0.512 0.324

(0.296) (0.287) (0.320) (0.318) (0.200)

Adjusted R2 (%) 0.096 0.767 3.218 4.423 5.989

H0 : α = 0, β = 1, γ = 0.5 0.267 0.242 0.169 0.184 0.015

H0 : β = γ = 0 0.770 0.553 0.071 0.092 0.036

H0 : γ = 0.5 0.333 0.497 0.908 0.971 0.377

H0 : γ = 0 0.470 0.287 0.148 0.108 0.105

Theory adj-R2 (%) −0.107 0.227 1.491 1.979 1.660
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Table V

Expected Excess Returns: Panel Regressions with Fixed Effects

This table presents results from regressing excess returns of S&P 100 firms (Panel A) and S&P

500 firms (Panel B) onto the risk-neutral variance of the market (SVIX2
t ) and stock-level risk-

neutral variance measured relative to stocks’ average risk-neutral variance (SVIX2
i,t − SVIX

2

t ).

The data are monthly from January 1996 to October 2014. The column labels indicate the return

horizons ranging from 1 month to 2 years. The return horizons match the maturities of the options

used to compute SVIX2
t , SVIX2

i,t, and SVIX
2

t . We report estimates of the panel regression with

firm fixed effects specified in equation (21),
Ri,t+1 − R f ,t+1

R f ,t+1
= αi + βSVIX2

t + γ (SVIX2
i,t − SVIX

2

t ) +

ǫi,t+1, where
∑

i wiαi reports the time-series average of the value-weighted sum of firm fixed effects.

Values in parentheses are standard errors obtained from the block bootstrap procedure described

in Appendix Section B. In each panel, we report the regressions’ adjusted R2 and p-values of Wald

tests that test whether the regression coefficients take the values predicted by our theory (zero

intercept, β = 1, and γ = 0.5), whether β = 0 and γ = 0, whether γ = 0.5, and whether γ = 0.

Horizon 30 days 91 days 182 days 365 days 730 days

Panel A: S&P 100 firms

∑
wiαi 0.089 0.051 0.010 0.018 0.003

(0.062) (0.071) (0.051) (0.064) (0.066)

β −0.085 0.947 2.091 1.793 1.876

(2.041) (2.277) (1.423) (1.325) (1.391)

γ 0.734 0.801 1.126 1.225 1.083

(0.392) (0.387) (0.370) (0.314) (0.273)

Adjusted R2 (%) 1.211 4.771 11.861 20.003 27.455

H0 :
∑

i wiαi = 0, β = 1, γ = 0.5 0.233 0.363 0.274 0.111 0.184

H0 : β = γ = 0 0.128 0.103 0.008 0.000 0.000

H0 : γ = 0.5 0.551 0.436 0.091 0.021 0.033

H0 : γ = 0 0.061 0.038 0.002 0.000 0.000

Panel B: S&P 500 firms

∑
wiαi 0.080 0.042 −0.008 0.012 −0.026

(0.072) (0.075) (0.055) (0.070) (0.079)

β 0.603 1.694 3.161 2.612 3.478

(2.298) (2.392) (1.475) (1.493) (1.681)

γ 0.491 0.634 0.892 0.938 0.665

(0.325) (0.331) (0.336) (0.308) (0.205)

Adjusted R2 (%) 0.650 4.048 10.356 17.129 24.266

H0 :
∑

i wiαi = 0, β = 1, γ = 0.5 0.231 0.224 0.164 0.133 0.060

H0 : β = γ = 0 0.265 0.119 0.019 0.008 0.002

H0 : γ = 0.5 0.978 0.686 0.243 0.155 0.420

H0 : γ = 0 0.131 0.056 0.008 0.002 0.001

As a preliminary check, Figure 8 shows that average realized excess returns

line up fairly well with our cross-sectional excess return predictor, 0.5(SVIX2
i,t −

SVIX
2

t ), for characteristic-sorted portfolios. The return predictor for a portfolio

is calculated by averaging over its constituent stocks. Unless otherwise noted,

we work with S&P 500 stocks and at an annual horizon throughout this section.
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Figure 7. Regression estimates in subsamples. This figure summarizes results from re-

gressing realized excess returns of S&P 500 firms onto the risk-neutral variance of the market,

SVIX2
t , and risk-neutral stock variance measured relative to average risk-neutral stock variance,

SVIX2
i,t − SVIX

2

t . The data are monthly from January 1996 to October 2014. We present results

for yearly subsamples in Panel A and for 3-year subsamples in Panel B. The return horizon is 1

year, matching the maturity of the options used to compute SVIX2
t , SVIX2

i,t, and SVIX
2

t . We report

estimates for the pooled panel regressions (18) and (20). The dashed line in each panel indicates

the coefficient value predicted by our theory, that is, β = 1 and γ = 0.5. (Color figure can be viewed

at wileyonlinelibrary.com)

We test formally whether our framework is able to explain differences in

risk premia associated with the various characteristics in two ways: we run

regressions of individual stock excess returns onto our predictor variables and

the characteristics, and we rerun the regressions of the previous section using

portfolios double-sorted on characteristics and on SVIX2
i,t as test assets.

Consider, first, the regressions on characteristics and our predictors.

Table VI reports the results for returns in excess of the market. The first column

shows the estimated coefficients in a regression of realized excess-of-market

returns onto characteristics. We do not find a statistically significant relation-

ship between the characteristics and realized returns in excess of the market

(consistent with the findings of Nagel (2005), who documents limited cross-

sectional variation in returns on S&P 500 stocks sorted on book-to-market, for

example), and we cannot reject the joint hypothesis that the coefficients on all
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Figure 8. Portfolios sorted by beta, size, book-to-market, and momentum. This figure

reports results on the relationship between equity portfolio returns in excess of the market and

risk-neutral stock variance measured relative to average firm-level risk-neutral variance. At the

end of each month, we form 25 portfolios based on firms’ beta, size, book-to-market, or momentum

(Panels A to D) and on a 5×5 conditional double-sort on size and book-to-market (Panel E). For

each portfolio, we compute the time-series average return in excess of the market and plot the

pairwise combinations with the corresponding stock variance estimate multiplied by 0.5. The

black line represents the regression fit to the portfolio observations with slope coefficient and

R2 reported in the plot legend. Our theory implies that the slope coefficient of this regression

should be one. The sample period is January 1996 to October 2014. (Color figure can be viewed at

wileyonlinelibrary.com)
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Table VI

The Relationship between Realized, Expected, and Unexpected

Excess-of-Market Returns and Characteristics

This table presents results from regressing realized, expected, or unexpected equity returns in

excess of the market (yi,t+1) onto CAPM beta, log size, book-to-market, past return, and risk-

neutral stock variance measured relative to stocks’ average risk-neutral variance, SVIX2
i,t −

SVIX
2

t : yi,t+1 = a + b1Betai,t + b2 log(Sizei,t) + b3B/Mi,t + b4Ret(12,1)
i,t + c(SVIX2

i,t − SVIX
2

t ) + ǫi,t+1.

The data are monthly and cover S&P 500 firms from January 1996 to October 2014. The first two

columns present results for realized returns, the middle two columns for expected returns, and the

last two columns for unexpected returns. In columns labelled “theory,” we set the parameter values

of our model forecast to the values implied by equation (16); in columns labelled “estimated,” we

use parameter estimates of a pooled panel regression (i.e., we use the estimates obtained from

the regression specified in equation (18) and reported in Panel B of Table II). The return horizon

is 1 year. Values in parentheses are standard errors obtained from the block bootstrap procedure

described in Appendix Section B. The last four rows report the regression’s adjusted R2 and the

p-values of Wald tests on joint parameter significance, testing (i) whether all bi estimates are zero,

(ii) whether all bi estimates are zero and c = 0.5, and (iii) whether all nonconstant coefficients are

jointly zero.

Expected returns Unexpected returns

Realized returns Estimated Theory Estimated Theory

const 0.429 0.277 0.131 0.107 0.298 0.321

(0.371) (0.377) (0.073) (0.027) (0.365) (0.359)

Betai,t 0.016 −0.131 0.113 0.105 −0.097 −0.088

(0.075) (0.062) (0.066) (0.016) (0.046) (0.078)

log(Sizei,t) −0.018 −0.006 −0.009 −0.009 −0.009 −0.010

(0.014) (0.015) (0.006) (0.002) (0.015) (0.013)

B/Mi,t 0.032 0.031 0.001 0.001 0.032 0.032

(0.025) (0.027) (0.006) (0.005) (0.026) (0.026)

Ret(12,1)
i,t −0.051 −0.029 −0.017 −0.015 −0.034 −0.035

(0.041) (0.041) (0.018) (0.010) (0.039) (0.040)

SVIX2
i,t − SVIX

2

t 0.705

(0.308)

Adjusted R2 (%) 1.031 3.969 37.766 37.766 1.051 0.974

H0 : bi = 0 0.347 0.153 0.435 0.000 0.157 0.619

H0 : bi = 0, c = 0.5 0.234

H0 : bi = 0, c = 0 0.018

characteristics are zero. In the second column, we add our predictor SVIX2
i,t −

SVIX
2

t . We find that its estimate is statistically significant individually, and we

do not reject the joint hypothesis that it enters with a coefficient of 0.5 while

the coefficients on all characteristics are zero; adjusted R2 increases from 1.0%

to 4.0% when we add our predictor variable.

Table VII reports the corresponding results for excess returns. In the absence

of our predictor variables, we find that size and book-to-market characteristics

are individually statistically significant, and we can reject the joint hypothesis

that the coefficients on all characteristics are zero. But once we add SVIX2
t and
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Table VII

The Relationship between Realized, Expected, and Unexpected

Returns and Characteristics

This table presents results from regressing realized, expected, and unexpected equity excess re-

turns (yi,t+1) onto CAPM beta, log size, book-to-market, past return, risk-neutral market variance

(SVIXt), and risk-neutral stock variance measured relative to stocks’ average risk-neutral vari-

ance (SVIX2
i,t − SVIX

2

t ): yi,t+1 = a + b1Betai,t + b2log(Sizei,t) + b3B/Mi,t + b4Ret(12,1)
i,t + c0SVIX2

t +

c1(SVIX2
i,t − SVIX

2

t ) + ǫi,t+1. The data are monthly and cover S&P 500 firms from January 1996 to

October 2014. The first two columns present results for realized returns, the middle two columns

for expected returns, and the last two columns for unexpected returns. In columns labelled “the-

ory,” we set the parameter values of our model forecast to the values implied by theory (i.e., we

use equation (17)); in columns labelled “estimated,” we use parameter estimates of a pooled panel

regression (i.e., we use the estimates obtained from the regression specified in equation (20) and

reported in Panel B of Table IV). The return horizon is 1 year. Values in parentheses are standard

errors obtained from the block bootstrap procedure described in Appendix Section B. The last four

rows report adjusted R2 and the p-values of Wald tests of joint parameter significance, testing (i)

whether all bi estimates are zero, (ii) whether all bi estimates are zero, c0 = 1, and c1 = 0.5, and

(iii) whether all nonconstant coefficients are jointly zero.

Expected returns Unexpected returns

Realized returns Estimated Theory Estimated Theory

const 0.721 0.452 0.259 0.164 0.462 0.557

(0.341) (0.320) (0.133) (0.035) (0.332) (0.331)

Betai,t 0.038 −0.048 0.082 0.097 −0.044 −0.059

(0.068) (0.068) (0.064) (0.018) (0.046) (0.072)

log(Sizei,t) −0.030 −0.019 −0.010 −0.009 −0.019 −0.021

(0.014) (0.013) (0.007) (0.002) (0.013) (0.013)

B/Mi,t 0.071 0.068 0.003 0.001 0.068 0.069

(0.034) (0.038) (0.010) (0.006) (0.038) (0.037)

Ret(12,1)
i,t −0.049 −0.005 −0.046 −0.026 −0.003 −0.023

(0.063) (0.054) (0.042) (0.015) (0.050) (0.058)

SVIX2
t 2.792

(1.472)

SVIX2
i,t − SVIX

2

t 0.511

(0.357)

Adjusted R2 (%) 1.924 5.265 17.277 30.482 0.973 1.197

H0 : bi = 0 0.003 0.201 0.702 0.000 0.187 0.092

H0 : bi = 0, c0 = 1, c1 = 0.5 0.143

H0 : bi = 0, c0 = 0, c1 = 0 0.001

SVIX2
i,t − SVIX

2

t , we do not reject the joint hypothesis that the coefficients on

the characteristics are all zero while those on the volatility measures are equal

to their theoretical values of 1 and 0.5. Moreover, adjusted R2 increases from

1.9% to 5.3% when our predictor variables are added.

The next columns of Tables VI and VII address the relationships between

expected excess returns and characteristics, with expected excess returns cal-

culated in two ways, namely, using the coefficients estimated in regressions

(18) or (20), and using the theory-implied coefficients given in equations (17)
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or (16). (We do so for interest: our theory makes no predictions about these

regressions.) The characteristics capture a sizeable fraction of the variation

in theory-implied expected returns in excess of the market (R2 = 37.8%) and

theory-implied expected excess returns (R2 = 30.5%). In both cases, there is

a significantly positive relationship between expected returns and beta and

a significantly negative relationship between expected returns and size, but

the other characteristics do not exhibit a statistically significant relation-

ship to expected returns. When we calculate expected returns using the es-

timated coefficients from (18) and (20) rather than the theoretical values, the

point estimates of the regression coefficients for the characteristics are sim-

ilar but are estimated less precisely, so are not significantly different from

zero.

The last two columns of the tables show that there is little evidence of a sys-

tematic relationship between unexpected (i.e., realized minus expected) returns

and characteristics.

For our second test, we sort stocks into quintiles based on their beta, size,

book-to-market, or momentum, and then within each characteristic portfolio

we sort firms into quintile portfolios based on SVIX2
i,t. We generate forecasts of

portfolio-level expected returns by equally weighting the forecasts of the port-

folio’s constituent stocks’ expected returns, and run regressions corresponding

to (18) and (19) using the 5×5 portfolios as test assets. The results are shown

in Table VIII. Our model is never rejected. In the specification that is least

favorable to our theory—the fixed-effects regression with size-sorted

portfolios—we find a p-value of 0.07 for the joint hypothesis test; all other

p-values are above 0.2, and the estimates of γ are close to 0.5. The correspond-

ing results for excess returns are in Internet Appendix Table IA.V. We find

similar results when we conduct the double sort in the opposite direction, first

sorting on SVIX2
i,t and then on the other characteristic: see Tables IA.VI and

IA.VII.

V. Out-of-Sample Analysis

Formulas (16) and (17) have no free parameters, so it is reasonable to hope

that they may be well suited to out-of-sample forecasting. In this section, we

show that they are. This fact is particularly striking given the substantial

variability of the forecasts both in the time series and in the cross section. The

former point is consistent with Martin (2017). The latter is new to this paper,

and is illustrated in Figure 9, which plots the evolution of the cross-sectional

differences in 1-year expected excess returns generated by our model.

We compare the performance of formulas (16) and (17) to various competitor

forecasting benchmarks using an out-of-sample R2 along the lines of Goyal and

Welch (2008). Specifically, we define

R2
OS = 1 −

∑
i

∑
t FE2

M,it∑
i

∑
t FE2

B,it

,
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Table VIII

Excess-of-Market Returns of Characteristics/SVIXi,t

Double-Sorted Portfolios

This table presents results from regressing excess-of-market returns of portfolios double-sorted

on characteristics and risk-neutral variance onto portfolio-level risk-neutral variance (SVIX2
i,t −

SVIX
2

t , where SVIX2
i,t is calculated by equally weighting the portfolio’s constituent stocks’ risk-

neutral variances). The data are monthly from January 1996 to October 2014 and the 1-year

horizon of the portfolio returns matches the maturity of the options used to compute SVIX2
i,t

and SVIX
2

t . Panel A reports estimates of the pooled panel regression specified in equation

(18),
Ri,t+1 − Rm,t+1

R f ,t+1
= α + γ (SVIX2

i,t − SVIX
2

t ) + ǫi,t+1. Panel B reports estimates of the panel re-

gression with portfolio fixed effects specified in equation (19),
Ri,t+1 − Rm,t+1

R f ,t+1
= αi + γ (SVIX2

i,t −

SVIX
2

t ) + ǫi,t+1, where
∑

i wiαi reports the time-series average of the value-weighted sum of port-

folio fixed effects. Values in parentheses are standard errors obtained from the block bootstrap

procedure described in Appendix Section B. In each panel, we report the regressions’ adjusted R2

and p-values of Wald tests that test whether the regression coefficients take the values predicted

by our theory (zero intercept and γ = 0.5) and whether γ = 0. For the pooled panel regressions, the

row labelled “theory adj-R2 (%)” reports the adjusted R2 obtained when the coefficients are fixed

at the values predicted by our theory.

Beta Size B/M Mom

Panel A: Pooled panel regressions

α 0.015 0.013 0.015 0.014

(0.019) (0.020) (0.020) (0.019)

γ 0.495 0.572 0.502 0.559

(0.311) (0.323) (0.327) (0.319)

Adjusted R2 (%) 8.391 9.908 8.098 10.245

H0 : α = 0, γ = 0.5 0.635 0.593 0.635 0.613

H0 : γ = 0.5 0.987 0.823 0.996 0.890

H0 : γ = 0 0.112 0.076 0.125 0.088

Theory adj-R2 (%) 7.598 8.995 7.232 8.555

Panel B: Panel regressions with portfolio fixed effects

∑
i wiαi 0.015 0.008 0.014 0.019

(0.017) (0.005) (0.016) (0.017)

γ 0.794 0.941 0.711 0.864

(0.490) (0.529) (0.507) (0.491)

Adjusted R2 (%) 13.010 16.419 12.679 15.020

H0 :
∑

i wiαi = 0, γ = 0.5 0.439 0.070 0.479 0.212

H0 : γ = 0.5 0.549 0.405 0.677 0.459

H0 : γ = 0 0.106 0.075 0.161 0.079

where FEM,it and FEB,it denote the forecast errors for stock i at time t based on

our model and on a benchmark prediction, respectively. Our model outperforms

a given benchmark if the corresponding R2
OS is positive.

What are the natural competitor benchmarks? One possibility is to give up

on trying to make differential predictions across stocks, and simply to use a
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Figure 9. Cross-sectional variation in expected returns. This figure plots time series of

cross-sectional differences in 1-year expected excess returns generated by our model and by CAPM

forecasts. The CAPM forecasts use conditional betas (estimated from historical returns) and a

constant 6% per annum equity premium. The plots show the difference in the 75% and 25%

quantiles of expected returns (on the left) and the difference in the 90% and 10% quantiles of

expected returns (on the right) for S&P 100 stocks (Panel A) and S&P 500 stocks (Panel B). The

data are monthly and cover S&P 500 stocks from January 1996 to October 2014. (Color figure can

be viewed at wileyonlinelibrary.com)

forecast of the expected return on the market as a forecast for each individual

stock. We consider various ways of doing so. We use the market’s historical

average excess return as an equity premium forecast, following Goyal and

Welch (2008) and Campbell and Thompson (2008), and we use the S&P 500

(S&P 500t) and the CRSP value-weighted index (CRSPt) as proxies for the

market. We also use the risk-neutral variance of the market, SVIX2
t , to proxy

for the equity premium, as suggested by Martin (2017). Lastly, we consider a

constant excess return forecast of 6% per annum, corresponding to long-run

estimates of the equity premium used in previous research.

More ambitious competitor models would seek to provide differential fore-

casts of individual firm stock returns, as we do. Again, we consider several al-

ternatives. One natural thought is to use the historical average of firms’ stock

excess returns (RXi,t). Another is to estimate firms’ conditional CAPM betas
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Table IX

Out-of-Sample Forecast Accuracy

This table presents results on the out-of-sample accuracy of our model relative to benchmark

predictions. To compare the forecast accuracy of the model to that of the benchmarks, we compute

an out-of-sample R2, defined as R2
OS

= 1 −

∑
i

∑
t FE2

M∑
i

∑
t FE2

B

, where FEM and FEB denoted the forecast

errors from our model and a benchmark prediction, respectively. Panel A evaluates forecasts of

expected equity excess returns, as given in equation (17), and Panel B evaluates forecasts of

expected equity returns in excess of the market return, as given in equation (16). The data are

monthly and cover S&P 500 stocks from January 1996 to October 2014. The column labels indicate

the return horizons ranging from 1 month to 2 years. The return horizons match the maturities

of the options used to compute SVIX2
t , SVIX2

i,t, and SVIX
2

t . For Panel A, the benchmark forecasts

are the risk-neutral market variance (SVIX2
t ), the time-t historical average excess returns of the

S&P 500 (S&P 500t) and the CRSP value-weighted index (CRSPt), a constant prediction of 6% per

annum, the stock’s risk-neutral variance (SVIX2
i,t), the time t historical average of the firms’ stock

excess returns (RXi,t), and conditional CAPM implied predictions, where we estimate the CAPM

betas from historical return data. For Panel B, we use SVIX2
i,t, a random walk (i.e., zero return

forecast), and the conditional CAPM as benchmarks.

Horizon 30 days 91 days 182 days 365 days 730 days

Panel A: Expected excess returns

SVIX2
t 0.09 0.57 1.77 3.08 2.77

S&P 500t 0.09 0.79 2.56 3.82 4.46

CRSPt −0.09 0.24 1.43 1.70 0.88

6% p.a. −0.01 0.46 1.84 2.54 2.06

SVIX2
i,t 0.95 1.87 1.55 2.17 7.64

RXi,t 1.40 4.97 11.79 27.10 56.67

β̂i,t × S&P 500t 0.09 0.79 2.54 3.76 4.72

β̂i,t × CRSPt −0.06 0.28 1.46 1.68 1.61

β̂i,t × SVIX2
t 0.04 0.46 1.58 2.87 2.91

β̂i,t × 6% p.a. 0.00 0.47 1.84 2.48 2.58

Panel B: Expected returns in excess of the market

Random walk 0.16 0.76 1.92 3.07 1.99

(̂βi,t − 1) × S&P 500t 0.18 0.80 1.98 3.10 2.17

(̂βi,t − 1) × CRSPt 0.21 0.89 2.14 3.35 2.83

(̂βi,t − 1) × SVIX2
t 0.11 0.62 1.68 2.80 2.01

(̂βi,t − 1) × 6% p.a. 0.19 0.83 2.04 3.19 2.49

from historical return data and combine the beta estimates with the aforemen-

tioned market premium predictions. We also consider firm-level risk-neutral

variance (SVIX2
i,t) as a competitor forecasting variable, motivated by Kadan

and Tang (2018), who show that under certain conditions SVIX2
i,t provides a

lower bound on stock i’s risk premium.

The results for expected excess returns are shown in Panel A of Table IX.

Our formula (17) outperforms all of the above competitors at the 3-, 6-, 12-,

and 24-month horizons, and its relative performance (as measured by R2
OS)

almost invariably increases with forecast horizon, at least up to the 1-year
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Table X

Model Out-of-Sample Forecasts versus In-Sample

Benchmark Predictions

This table presents results on the out-of-sample accuracy of our model relative to benchmark

predictions that also include in-sample information on returns and/or firm characteristics. To

compare the forecast accuracy of the model to that of the benchmarks, we compute an out-of-

sample R2, defined as R2
OS

= 1 −

∑
i

∑
t FE2

M∑
i

∑
t FE2

B

, where FEM and FEB denoted the forecast errors

from our model and a benchmark prediction, respectively. Panel A evaluates forecasts of expected

equity excess returns, as given in equation (17), and Panel B evaluates forecasts of expected

equity returns in excess of the market return, as given in equation (16). The data are monthly

and cover S&P 500 stocks from January 1996 to October 2014. The column labels indicate the

return horizons ranging from 1 month to 2 years. The return horizons match the maturities of

the options used to compute SVIX2
t , SVIX2

i,t, and SVIX
2

t . For Panel A, the benchmark forecasts are

the in-sample average market excess return, a conditional CAPM forecast that uses the in-sample

average market excess return as an estimate of the equity premium, the in-sample average return

across all stocks, and the fitted values of predictive in-sample regressions of stock returns in excess

of the market on CAPM betas, log market capitalization, book-to-market ratios, stock momentum,

and all four firm characteristics. For Panel B, we use analogous predictions based on returns in

excess of the market.

Horizon 30 days 91 days 182 days 365 days 730 days

Panel A: Expected excess returns

In-sample avg mkt −0.05 0.31 1.52 1.90 1.42

In-sample avg all stocks −0.09 0.17 1.26 1.42 0.56

β̂i,t × in-sample avg mkt −0.03 0.34 1.54 1.87 2.04

Betai,t −0.09 0.16 1.22 1.30 0.56

log(Sizei,t) −0.19 −0.17 0.62 0.21 −1.34

B/Mi,t −0.18 −0.03 0.89 0.77 0.00

Ret(12,1)
i,t −0.10 0.15 1.09 1.05 −0.76

All −0.25 −0.30 0.26 −0.53 −2.71

Panel B: Expected returns in excess of the market

In-sample avg all stocks 0.11 0.58 1.60 2.48 0.95

(̂βi,t − 1) × in-sample avg mkt 0.20 0.86 2.11 3.29 2.63

Betai,t 0.11 0.58 1.60 2.45 0.95

log(Sizei,t) 0.05 0.39 1.27 1.90 0.12

B/Mi,t 0.07 0.50 1.47 2.31 0.88

Ret(12,1)
i,t 0.10 0.56 1.47 2.05 0.03

All 0.03 0.34 1.11 1.46 −0.64

horizon.14 At the 1-year horizon, R2
OS ranges from 1.68% to 3.82% depending

on the competitor benchmark, with the exception of the historical average stock

return, RXi,t, which the formula outperforms by a much wider margin, with

an R2
OS above 27%. This dramatic outperformance reflects an advantage of our

approach: it does not rely on historical data. This is particularly important

14 The R2
OS

results are based on expected excess returns defined as Et Ri,t+1 − R f ,t+1, that is, we

multiply the left and the right sides of equations (16) and (17) by R f ,t+1.
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for stocks with short return histories that may not be representative of future

returns. For example, at the peak of the dot-com bubble young tech firms

had extremely high historical average returns over their short histories. In

such cases, employing the historical average as a predictor may lead to large

forecast errors for subsequent returns.

The results for expected returns in excess of the market, which focus on the

purely cross-sectional dimension of stock returns, are shown in Panel B and

are, if anything, even stronger. We adjust the conditional CAPM predictions

appropriately (by multiplying the equity premium by beta minus one), and

we add a “random walk” forecast of zero. Formula (16) outperforms all of the

competitors at every horizon, with the outperformance increasing in forecast

horizon up to 1 year. At the 1-year horizon, R2
OS is around 3% relative to each

of the benchmarks.

More surprisingly, our model is competitive with—and at horizons of

6 months or more, typically outperforms—a range of predictions based on in-

sample information. The first three lines of Table X, Panel A, compare the

performance of the excess-return formula (17) to the in-sample average eq-

uity premium and to the in-sample average excess return on a stock (each of

which makes the same forecast for every stock’s return), and also to estimated

beta multiplied by the in-sample equity premium (which differentiates across

stocks). In each case, R2
OS is increasing with forecast horizon up to 1 year and

is positive at horizons of 3, 6, 12, and 24 months.

The next five lines compare the model forecasts to in-sample predictions

based on firm characteristics. We calculate in-sample predictions as the fitted

values from pooled univariate regressions (with intercepts) of excess returns

onto conditional betas, log size, book-to-market ratios, or past returns, and from

a pooled multivariate regression onto all four characteristics. The formula out-

performs each of the individual characteristics at horizons of 6 and 12 months,

and is competitive with the multivariate model.

The corresponding results for returns in excess of the market are shown in

Panel B of Table X. Formula (16) outperforms the univariate characteristics-

based competitors at all horizons; remarkably, it even beats the in-sample

multivariate model at horizons from 1 month to 1 year.

VI. Conclusion

We conclude by highlighting some distinctive features of our approach to the

cross section of expected stock returns.

First, our theory identifies, ex ante, specific variables that should forecast

stock returns. A comparison can be made with the CAPM, which identifies

market betas as the relevant quantities. But market betas must be estimated if

this prediction is to be tested. At times, when markets are turbulent, historical

betas may not accurately reflect the idealized forward-looking betas called for

by the CAPM, or by factor models more generally; and if the goal is to forecast

returns over, say, a 1-year horizon, one cannot respond to this critique by taking

refuge in the last 5 minutes of high-frequency data. In contrast, our predictive
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variables, which are based on option prices, are observable in real time and

inherently forward-looking.

Second, the theory makes quantitative predictions about the signs and sizes

of the coefficients on these predictive variables in forecasting regressions. By

contrast, the factor model approach to the cross section has both the advantage

and the disadvantage of imposing almost no structure, and therefore says ex

ante little about the anticipated signs, and nothing about the sizes, of coefficient

estimates. (The CAPM does predict that the slope of the security market line

should equal the market risk premium, but it is silent on the size of the market

risk premium.)

Our approach performs well in and out of sample, particularly over 6-, 12-,

and 24-month horizons. The model does a good job of accounting for real-

ized returns on portfolios sorted on characteristics known to be problematic

for previous generations of asset pricing models. When we run stock-level

panel regressions of realized returns onto characteristics and our volatil-

ity predictor variables, our volatility variables drive out the characteristics

and are themselves statistically significant, and we do not reject the hy-

pothesis that the associated coefficients take the values predicted by our

theory.

As the coefficients in the formula for the expected return on a stock are

theoretically motivated, we need only observe the market prices of certain op-

tions to implement the formula. No estimation is required, so we avoid the

critique of Goyal and Welch (2008). We show, moreover, that the formula out-

performs a range of competitor predictors out of sample—even competitors

with knowledge of the in-sample relationship between expected returns and

characteristics.

Our real-time measure of the expected return on a stock has many poten-

tial applications in asset pricing and corporate finance. For example, we are

currently exploring the reaction of expected stock returns to macroeconomic

and firm-specific news announcements. As expected (or “required”) rates of

return are a key determinant of investment decisions, our results also have

important implications for macroeconomics more generally—notably because

our approach generates considerably more variation in expected returns, both

over time and across stocks, than does, say, the CAPM. This points toward a

quantitatively and qualitatively new view of risk premia.
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Appendix A: A Measure of Correlation

In this section, we show that the ratio SVIX2
t /SVIX

2

t can be interpreted as

an approximate measure of average risk-neutral correlation between stocks.

Note first that

var∗
t Rm,t+1 −

∑

i

w2
i,tvar∗

t Ri,t+1

=
∑

i 
= j

wi,tw j,tcorr∗
t (Ri,t+1, Rj,t+1)

√
var∗

t Ri,t+1var∗
t Rj,t+1,

so we can define a measure of average correlation, ρt, as

ρt =
var∗

t Rm,t+1 −
∑

i w2
i,tvar∗

t Ri,t+1∑
i 
= j wi,tw j,t

√
var∗

t Ri,t+1var∗
t Rj,t+1

.

Now, we have

ρt ≈
var∗

t Rm,t+1∑
i w2

i,tvar∗
t Ri,t+1 +

∑
i 
= j wi,tw j,t

√
var∗

t Ri,t+1var∗
t Rj,t+1

=
var∗

t Rm,t+1(∑
i wi,t

√
var∗

t Ri,t+1

)2
.

This last expression features the square of average stock volatility, rather

than average stock variance, in the denominator, but we can approxi-

mate (
∑

i wi,t

√
var∗

t Ri,t+1)2 ≈
∑

i wi,tvar∗
t Ri,t+1. (The approximation neglects a

Jensen’s inequality term: the left-hand side is strictly smaller than the right-

hand side.) This leads us to the correlation measure

ρt ≈
var∗

t Rm,t+1∑
i wi,tvar∗

t Ri,t+1

=
SVIX2

t

SVIX
2

t

. (A1)

Appendix B: Bootstrap Procedure

Our empirical analysis uses a large set of panel data in which residuals may

be correlated across firms and over time. Petersen (2009) provides an extensive

discussion of how such cross-sectional and time-series dependencies in panel

data may bias standard errors in OLS regressions and suggests using two-way

clustered standard errors. In further analysis, he finds that standard errors

obtained from a bootstrap procedure based on firm clusters are identical to

the two-way-clustered standard errors in his panel data. We choose to work

with bootstrap standard errors because this is the more conservative approach

in our setup for two reasons. First, our monthly data generate overlapping

observations at return horizons exceeding 1 month. Second, our data are char-

acterized by high but less than perfect coverage of the cross section of index

constituent firms, due to limited availability of option data.

To alleviate biases in standard errors that arise from applying asymptotic

theory to finite samples, we use a nonparametric bootstrap procedure based
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on resampling. More specifically, because our data are characterized by time-

series dependence, we use an overlapping block resampling scheme (originally

proposed by Kuensch, 1989) to handle serial correlation and heteroskedastic-

ity. The block bootstrap procedure also takes cross-sectional dependencies into

account. Using a large number of bootstrap samples, we estimate the bootstrap

covariance matrix and estimate Wald statistics, as we describe in more detail in

Appendix Section B1 below. In Section B2 of the Appendix, we provide simula-

tion evidence on the finite-sample properties of the block bootstrap procedure.

Detailed results are in the Internet Appendix.

B.1. Implementation of the Block Bootstrap Procedure

We first describe details of the block bootstrap procedure that we apply for

pooled panel regressions of returns in excess of the market. Next, we dis-

cuss adjustments to the procedure in regressions of excess returns (instead of

excess-of-market returns) and adjustments to the procedure when using firm

fixed-effects regressions (instead of pooled panel regressions). We then discuss

adjustments for portfolio regressions (compared to regressions at the individual

firm level).

Pooled Panel Regressions of Returns in Excess of the Market: We use a block

bootstrap approach to generate b = 1, . . . , B bootstrap samples by resam-

pling from the actual panel data, as suggested by Kuensch (1989). From the

actual data, we need dates, firm identifiers, firms’ stock returns in excess of

the risk-free rate, firms’ risk-neutral variances (SVIX2
i,t), and firms’ market

capitalizations.

(1) We generate B = 1,000 bootstrap samples of panel data, where the num-

ber of time periods in each sample matches the number of time periods

in the actual data. More specifically, we generate a bootstrap sample b as

follows:

(a) Start the resampling procedure by randomly drawing a block of time-

length T , which corresponds to the return prediction horizon and the

maturity of the options used to compute the SVIX quantities.15 From

the block drawn, randomly select a subset of firms.16

15 In time-series bootstraps, it is possible to implement automated procedures that determine

the block length based on the properties of the time series (e.g., Politis and White (2004) and

Patton, Politis, and White (2009)). These procedures are not implementable in our panel data

setup as different firm time series may suggest different block lengths but we need to choose a

single block length across all firms to account for the cross-sectional dependencies in the data

over time. For instance, for T = 12 months, we find that applying such a procedure for different

firm time series of SVIX2
i,t − SVIX

2

t would suggest block lengths between approximately 8 and

24 months. We repeat our bootstrap procedure with these block lengths of 8 and 24 months,

instead of 12 months, and find that our conclusions remain unchanged. We therefore set the block

length equal to return horizon T to account for overlapping observations and follow the suggestion

of Lahiri (1999) of keeping the block length fixed to allow for overlaps in the blocks.
16 The idea is to account for the empirical reality that options data may not be available for all

firms. For the large number of bootstrap samples B = 1,000 that we use, the results of randomly
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(b) Draw further (overlapping) blocks, with replacement, until the boot-

strap sample has the same number of time periods as the actual

data.

(c) For every point in time in the bootstrap sample b, determine the firms’

market weights and compute the value-weighted average of individ-

ual stocks’ risk-neutral variance, that is, SVIX
2

t =
∑

i wi,tSVIX2
i,t, the

market return as the return on the value-weighted portfolio, and the

stocks’ returns in excess of the market.

(2) For each bootstrap sample, run the pooled panel regression of returns in

excess of the market onto risk-neutral excess stock variance,

Ri,t+1 − Rm,t+1

R f ,t+1

= α + γ

(
SVIX2

i,t − SVIX
2

t

)
+ ǫi,t+1,

and collect the B = 1,000 bootstrap estimates of α and γ .

(3) Using the B = 1,000 bootstrap estimates of α and γ , compute the boot-

strap covariance matrix of α and γ . Using this bootstrap covariance

matrix, we compute Wald statistics for hypothesis tests.17 Building on

the asymptotic refinement achieved from bootstrapping the covariance

matrix, we use the Wald tests’ asymptotic distribution to compute the

p-values. We explore the finite-sample properties of this bootstrap pro-

cedure in Section B2 of the Appendix; our simulation evidence suggests

that the approach works well.

Pooled Panel Regressions of Excess Returns: The bootstrap procedure for pooled

panel regressions of excess returns is essentially the same as the one described

for returns in excess of the market above. The only modifications are:

� In Step 1, we also include the risk-neutral market variance (SVIX2
t ) in the

resampling procedure.
� In Step 2, we run the regression of excess returns on SVIX2

t and SVIX2
i,t −

SVIX
2

t , and collect the B = 1,000 bootstrap estimates of α, β, and γ .
� In Step 3, we compute the bootstrap covariance matrix for α, β, and γ and

use it to compute standard errors and to conduct hypothesis tests.

selecting a subset of firms or including all firms that are available in a drawn block leads to identical

results. Conceptually, our approach is similar to the bootstrap using firm clusters described by

Petersen (2009) in his footnote 12.
17 We prefer to compute the Wald statistic based on the bootstrap covariance matrix rather than

to bootstrap the Wald statistic because our approach explicitly takes cross-sectional dependencies

as well as overlapping observations and other time-dependencies into account. Qualitatively, our

results are very similar when we bootstrap Wald statistics that are computed using a double-

clustered covariance matrix as suggested by Petersen (2009). The quantitative bootstrap results of

the Wald tests can be quite different when using a nonclustered covariance matrix, but we would

still not reject the model. As a further check, we also verified that the p-values of bootstrapped

likelihood ratio test statistics are identical to those of the bootstrapped Wald statistics computed

from nonclustered covariance matrices.
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Regressions with Firm Fixed Effects: For the bootstraps of the firm fixed-effects

regressions, we adjust the procedure for the pooled panel regressions described

above as follows:

� In Step 2, we run the regression with firm fixed effects αi (instead of the

intercept α) and
� we compute the value-weighted sum of firm fixed effects at every date

in every bootstrap sample, that is, αt =
∑

i wi,tαi
� in each bootstrap sample, we compute α as the time-series average of αt
� we collect the B = 1,000 estimates of α (instead of intercept α)

� In Step 3, we compute the bootstrap covariance matrix with α (instead of

intercept α) and use it to compute standard errors and to conduct hypoth-

esis tests.

Portfolio Regressions: The bootstraps for pooled panel and fixed-effects regres-

sions using excess returns and excess-of-market returns of portfolios follow

the corresponding firm-level procedures described above. The only difference

is that in Step 1(a) we use all portfolios rather than resampling in the cross

section, as we have a balanced panel of portfolio data.

B.2. Finite-Sample Properties of the Block Bootstrap Procedure

To provide evidence for the reliability of our bootstrap procedure in finite

samples, we conduct a simulation study. We simulate S samples on which we

impose the null hypothesis and within each sample we repeat the bootstrap

procedure from Section B1 above with B iterations. We then compare the em-

pirical quantiles of the Wald statistic in the simulated data to the quantiles of

the χ2 distribution, that is, the Wald statistic’s asymptotic distribution. These

results suggest that our procedure, using the bootstrap covariance matrix to

compute the Wald statistic and then using the asymptotic distribution to infer

its p-value, is reasonable. Next, we compare the rejection frequency for the null

hypothesis in the simulated data (on which we imposed the null hypothesis)

to the nominal size of the test. These results provide further support for our

empirical approach.

Given the enormous computational demand of this exercise with an addi-

tional S × B bootstrap samples to be generated and evaluated, we focus on the

pooled panel regressions of S&P 100 firms’ returns in excess of the market.

We simulate data under the null hypothesis by imposing α = 0 and γ = 0.5 and

drawing blocks of innovations from the regression residuals (from the specifica-

tion in Panel A of Table II). The block resampling scheme follows the approach

described above in Section B1 and again serves to account for cross-sectional

and time-series dependencies. We start by setting the number of simulations to

S = 200 and the number of bootstrap iterations to B = 99, following the choice

of Piatti and Trojani (2014) in a similar double-bootstrap exercise. We show

that the results are similar when we increase the number of simulations to

S = 400 and the number of bootstrap iterations to B = 198. The subsequent
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discussion is based on the results for the 1-year horizon. We then show that

our conclusions are very similar for other horizons.

Empirical and Asymptotic Quantiles of the Wald Statistic: Panel A in

Figure IA.6 compares the empirical quantiles of the Wald statistic in the sim-

ulated data to the quantiles of the Wald statistic’s asymptotic χ2 distribution.

With vertical lines marking the 90%, 95%, and 99% quantiles, the plot shows

that the empirical quantiles are virtually identical to the quantiles of the χ2

distribution beyond the 95% quantile; only in the very far tails of the distribu-

tion do the critical values from the empirical distribution exceed those from the

χ2 distribution. These results suggest that our approach of using the bootstrap

covariance matrix to compute the Wald statistic, and then using the asymptotic

distribution to infer the p-value of the Wald statistic, should work well.

Nominal Size and Empirical Rejection Frequencies: Panel B in Figure IA.6

compares the empirical rejection frequencies of our bootstrap approach when

applied to simulated data (on which we impose the null hypothesis) to the cor-

responding nominal size of the test. That is, we compute the fraction of samples

in which the bootstrap procedure leads to a rejection of the hypothesis when

using the nominal size given on the x-axis. Similar to Panel A, the dotted and

dashed lines plot the 90%/10%, 95%/5%, and 99%/1% quantiles to mark the

economically interesting regions, where we care about rejections. We find that

empirical rejection frequencies are well aligned with nominal size, particularly

within the economically interesting regions, and that differences in empirical

rejection frequencies and nominal size are too small to lead to incorrect infer-

ence in our empirical analysis. To illustrate this, the large symbol in the plot

indicates the p-value of the Wald statistic that we obtain from our empirical

test of the model in the data; this p-value is 0.437 as reported in Panel A of

Table II. These results suggest that our empirical approach performs well.

Figure IA.7 shows that the empirical quantiles of the Wald statistic in the

simulated data also line up well with quantiles of the Wald statistic’s asymp-

totic χ2 distribution at horizons of 3 and 6 months. At the shortest (longest)

horizon of one (24) month(s), the empirical quantiles appear somewhat too low

(high) compared to the asymptotic quantiles. Nonetheless, the comparison of

empirical rejection frequencies in the simulated data to the nominal sizes used

in the tests in Figure IA.8 suggests that our approach performs well at all hori-

zons. All results are very similar when increasing the number of simulations

and bootstrap iterations to S = 400 and B = 198 as we show in Figure IA.9.

Overall, the alignment of empirical rejection frequencies in the simulated data

with nominal sizes used in the tests improves slightly when increasing S to

400 and B to 198.
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