What is the Expected Return on the Market?

Ian Martin

London School of Economics

Returns on the stock market are predictable

$$
\text { return }_{t+1}=\frac{\text { price }_{t+1}+\text { dividend }_{t+1}}{\text { price }_{t}}=\underbrace{\frac{\text { price }_{t+1}}{\text { price }_{t}}}_{\text {capital gain }}+\underbrace{\frac{\text { dividend }_{t+1}}{\text { price }_{t}}}_{\text {dividend yield }}
$$

- Naive investor: If I buy when the dividend yield is high, I will have a high return on average
- 'Sophisticated' investor: No! The high dividend yield—that is, low price—is a sign that the market anticipates that future dividends will be disappointing. I therefore expect that a low capital gain will offset the high dividend yield
- Empirically, it appears that the naive investor is right

S\&P 500 Price / 10-Year Average of Earnings

The equity premium

Figure from John Campbell's Princeton Lecture in Finance
Equity Premium -- US

Motivation

- Find an asset price that forecasts expected returns
- without using accounting data
- without having to estimate any parameters
- imposing minimal theoretical structure
- and in real time

A lower bound on the equity premium

1 year horizon, in \%

A lower bound on the equity premium

1 month horizon, annualized, in \%

Outline

(1) A volatility index, SVIX, gives a lower bound on the equity premium
(2) SVIX and VIX
(3) SVIX as a predictor variable
(4) What is the probability of a 20% decline in the market?

Outline

(1) A volatility index, SVIX, gives a lower bound on the equity premium

3 SVIX as a predictor variable

44 What is the probability of a 20% decline in the market?

Notation

- S_{T} : level of S\&P 500 index at time T
- R_{T} : gross return on the S\&P 500 from time t to time T
- $R_{f, t}$: riskless rate from time t to time T
- M_{T} : SDF that prices time- T payoffs from the perspective of time t
- We can price any time- T payoff X_{T} either via the SDF or by computing expectations with risk-neutral probabilities:

$$
\text { time-t price of a claim to } X_{T}=\mathbb{E}_{t}\left(M_{T} X_{T}\right)=\frac{1}{R_{f, t}} \mathbb{E}_{t}^{*} X_{T}
$$

- Asterisks indicate risk-neutral quantities

Risk-neutral variance and the risk premium

- As an example, we can write conditional risk-neutral variance as

$$
\begin{equation*}
\operatorname{var}_{t}^{*} R_{T}=\mathbb{E}_{t}^{*} R_{T}^{2}-\left(\mathbb{E}_{t}^{*} R_{T}\right)^{2}=R_{f, t} \mathbb{E}_{t}\left(M_{T} R_{T}^{2}\right)-R_{f, t}^{2} \tag{1}
\end{equation*}
$$

- We can decompose the equity premium into two components:

$$
\begin{aligned}
\mathbb{E}_{t} R_{T}-R_{f, t} & =\left[\mathbb{E}_{t}\left(M_{T} R_{T}^{2}\right)-R_{f, t}\right]-\left[\mathbb{E}_{t}\left(M_{T} R_{T}^{2}\right)-\mathbb{E}_{t} R_{T}\right] \\
& =\frac{1}{R_{f, t}} \operatorname{var}_{t}^{*} R_{T}-\operatorname{cov}_{t}\left(M_{T} R_{T}, R_{T}\right)
\end{aligned}
$$

- The first line adds and subtracts $\mathbb{E}_{t}\left(M_{T} R_{T}^{2}\right)$
- The second exploits equation (1) and the fact that $\mathbb{E}_{t} M_{T} R_{T}=1$

Risk-neutral variance and the risk premium

$$
\mathbb{E}_{\mathrm{t}} R_{T}-R_{f, t}=\frac{1}{R_{f, t}} \operatorname{var}_{t}^{*} R_{T}-\underbrace{\operatorname{cov}_{t}\left(M_{T} R_{T}, R_{T}\right)}_{\leq 0, \text { under the NCC }}
$$

- The decomposition splits the risk premium into two pieces
- Risk-neutral variance can be computed from time-t asset prices
- The covariance term can be controlled: it is negative in theoretical models and in the data
- Formalize this key assumption as the negative correlation condition:

$$
\operatorname{cov}_{t}\left(M_{T} R_{T}, R_{T}\right) \leq 0
$$

The NCC holds. . .

(1) ... in lognormal models in which the market's conditional Sharpe ratio exceeds its conditional volatility (Campbell-Cochrane 1999, Bansal-Yaron 2004, and many others).

The NCC holds. . .

(1) in lognormal models in which the market's conditional Sharpe ratio exceeds its conditional volatility (Campbell-Cochrane 1999, Bansal-Yaron 2004, and many others).
(2) ... in a wide range of models with intertemporal investors, state variables, Epstein-Zin preferences, non-Normality, labor income.

The NCC holds. . .

(1) ... in lognormal models in which the market's conditional Sharpe ratio exceeds its conditional volatility (Campbell-Cochrane 1999, Bansal-Yaron 2004, and many others).
(2) ... in a wide range of models with intertemporal investors, state variables, Epstein-Zin preferences, non-Normality, labor income.
(3)... if there is a one-period investor who maximizes expected utility, who is fully invested in the market, and whose relative risk aversion $\gamma(C) \equiv-\frac{C u^{\prime \prime}(C)}{u^{\prime}(C)} \geq 1$ (not necessarily constant).

The NCC holds. . .

(1) ... in lognormal models in which the market's conditional Sharpe ratio exceeds its conditional volatility (Campbell-Cochrane 1999, Bansal-Yaron 2004, and many others).
(2) ... in a wide range of models with intertemporal investors, state variables, Epstein-Zin preferences, non-Normality, labor income.
(3)... if there is a one-period investor who maximizes expected utility, who is fully invested in the market, and whose relative risk aversion $\gamma(C) \equiv-\frac{C u^{\prime \prime}(C)}{u^{\prime}(C)} \geq 1$ (not necessarily constant).

- Proof. The given assumption implies that the SDF is proportional to $u^{\prime}\left(W_{t} R_{T}\right)$, so we must show that $\operatorname{cov}_{t}\left(R_{T} u^{\prime}\left(W_{t} R_{T}\right), R_{T}\right) \leq 0$.

The NCC holds. . .

(1) ... in lognormal models in which the market's conditional Sharpe ratio exceeds its conditional volatility (Campbell-Cochrane 1999, Bansal-Yaron 2004, and many others).
C . . . in a wide range of models with intertemporal investors, state variables, Epstein-Zin preferences, non-Normality, labor income.

- ... if there is a one-period investor who maximizes expected utility, who is fully invested in the market, and whose relative risk aversion $\gamma(C) \equiv-\frac{C u^{\prime \prime}(C)}{u^{\prime}(C)} \geq 1$ (not necessarily constant).
- Proof. The given assumption implies that the SDF is proportional to $u^{\prime}\left(W_{t} R_{T}\right)$, so we must show that $\operatorname{cov}_{t}\left(R_{T} u^{\prime}\left(W_{t} R_{T}\right), R_{T}\right) \leq 0$.
- This holds because $R_{T} u^{\prime}\left(W_{t} R_{T}\right)$ is decreasing in R_{T} : its derivative is $u^{\prime}\left(W_{t} R_{T}\right)+W_{t} R_{T} u^{\prime \prime}\left(W_{t} R_{T}\right)=-u^{\prime}\left(W_{t} R_{T}\right)\left[\gamma\left(W_{t} R_{T}\right)-1\right] \leq 0$.

Whose equity premium?

$$
\mathbb{E}_{t} R_{T}-R_{f, t} \geq \frac{1}{R_{f, t}} \operatorname{var}_{t}^{*} R_{T}
$$

- Does not require that everyone holds the market
- Does not assume that all economic wealth is invested in the market
- Simply ask: What is the equity premium perceived by a rational one-period investor who holds the market and whose risk aversion is at least 1 ?
- This question is a sensible benchmark even in the presence of constrained and/or irrational investors

Comparison to Merton (1980)

- Merton (1980) suggested estimating the equity premium from equity premium $=$ risk aversion \times return variance
- Holds if marginal investor has power utility and the market follows a geometric Brownian motion
- No distinction between risk-neutral and real-world variance in a diffusion-based model (Girsanov's theorem)
- The appropriate generalization relates the equity premium to risk-neutral variance
- Bonus: Risk-neutral variance is directly measurable from asset prices

Comparison to Hansen-Jagannathan (1991)

$$
\frac{1}{R_{f, t}} \operatorname{var}_{t}^{*} R_{T} \leq \mathbb{E}_{t} R_{T}-R_{f, t} \leq R_{f, t} \cdot \sigma_{t}\left(M_{T}\right) \cdot \sigma_{t}\left(R_{T}\right)
$$

- Left-hand inequality is the new result
- Good: relates unobservable equity premium to an observable quantity
- Bad: requires the negative correlation condition
- Right-hand inequality is the Hansen-Jagannathan bound
- Good: no assumptions
- Bad: neither side is observable

How to measure risk-neutral variance

- We want to measure $\frac{1}{R_{f, t}} \operatorname{var}_{t}^{*} R_{T}=\frac{1}{R_{f, t}} \mathbb{E}_{t}^{*} R_{T}^{2}-\frac{1}{R_{f, t}}\left(\mathbb{E}_{t}^{*} R_{T}\right)^{2}$
- Since $\mathbb{E}_{t}^{*} R_{T}=R_{f, t}$, this boils down to calculating $\frac{1}{R_{f, t}} \mathbb{E}_{t}^{*} S_{T}^{2}$
- That is: how can we price the 'squared contract' with payoff S_{T}^{2} ?

How to measure risk-neutral variance

- How can we price the 'squared contract' with payoff S_{T}^{2} ?
- Suppose you buy:
- 2 calls with strike $K=0.5$
- 2 calls with strike $K=1.5$
- 2 calls with strike $K=2.5$
- 2 calls with strike $K=3.5$
- etc...

How to measure risk-neutral variance

payoff

- So, $\frac{1}{R_{f, t}} \mathbb{E}_{t}^{*} S_{T}^{2} \approx 2 \sum_{K} \operatorname{call}_{t, T}(K)$
- In fact, $\frac{1}{R_{f, t}} \mathbb{E}_{t}^{*} S_{T}^{2}=2 \int_{0}^{\infty} \operatorname{call}_{t, T}(K) d K$

How to measure risk-neutral variance

option prices

- Using put-call parity, we end up with a simple formula:

$$
\frac{1}{R_{f, t}} \operatorname{var}_{t}^{*} R_{T}=\frac{2}{S_{t}^{2}}\left\{\int_{0}^{F_{t, T}} \operatorname{put}_{t, T}(K) d K+\int_{F_{t, T}}^{\infty} \operatorname{call}_{t, T}(K) d K\right\}
$$

- $F_{t, T}$ is the forward price of the underlying, which is known at time t

A lower bound on the equity premium

1mo horizon, annualized, 10-day moving avg. Mid prices in black, bid prices in red

A lower bound on the equity premium

3mo horizon, annualized, 10-day moving avg. Mid prices in black, bid prices in red

A lower bound on the equity premium

1yr horizon, annualized, 10-day moving avg. Mid prices in black, bid prices in red

Robustness

- Can't observe deep-OTM option prices
option prices

Robustness

- Even near-the-money, can't observe a continuum of strikes

Robustness

- Both these effects mean that the true lower bound is even higher
- By ignoring deep-OTM options, we underestimate the true area under the curve
- Discretization in strike also leads to underestimating the true area, because call $l_{t, T}(K)$ and $\operatorname{put}_{t, T}(K)$ are both convex in K
- Maybe option markets were totally illiquid in November 2008 ?
- If so, we should expect to see wide bid-ask spread
- Is lower bound much lower if bid prices are used for options, rather than mid prices? No. And volume was high

A lower bound on the equity premium

horizon	mean	s.d.	\min	1%	10%	25%	50%	75%	90%	99%	\max
1 mo	5.00	4.60	0.83	1.03	1.54	2.44	3.91	5.74	8.98	25.7	55.0
2 mo	5.00	3.99	1.01	1.20	1.65	2.61	4.11	5.91	8.54	23.5	46.1
3 mo	4.96	3.60	1.07	1.29	1.75	2.69	4.24	5.95	8.17	21.4	39.1
6 mo	4.89	2.97	1.30	1.53	1.95	2.88	4.39	6.00	7.69	16.9	29.0
1 yr	4.64	2.43	1.47	1.64	2.07	2.81	4.35	5.72	7.19	13.9	21.5

Table: Mean, standard deviation, and quantiles of EP bound (in \%)

- The time series average of the lower bound is about 5%
- It is volatile and right-skewed, particularly at short horizons

Outline

(1) A volatility index, SVIX, gives a lower bound on the equity premium
(2) SVIX and VIX

3 SVIX as a predictor variable
4. What is the probability of a 20% decline in the market?

SVIX and VIX

- By analogy with VIX, define

$$
\mathrm{SVIX}_{t}^{2}=\frac{2 R_{f, t}}{(T-t) \cdot F_{t, T}^{2}}\left\{\int_{0}^{F_{t, T}} \mathrm{put}_{t, T}(K) d K+\int_{F_{t, T}}^{\infty} \operatorname{call}_{t, T}(K) d K\right\}
$$

- In this notation, equity premium $\geq R_{f, t} \cdot \mathrm{SVIX}_{t}^{2}$
- Compare SVIX with

$$
\mathrm{VIX}_{t}^{2}=\frac{2 R_{f, t}}{T-t}\left\{\int_{0}^{F_{t, T}} \frac{1}{K^{2}} \operatorname{put}_{t, T}(K) d K+\int_{F_{t, T}}^{\infty} \frac{1}{K^{2}} \operatorname{call}_{t, T}(K) d K\right\}
$$

- These are definitions, not statements about pricing

SVIX and VIX

- VIX is similar to SVIX, but is more sensitive to left tail events
- SVIX measures risk-neutral variance, SVIX $^{2}=\operatorname{var}_{t}^{*}\left(R_{T} / R_{f, t}\right)$
- VIX measures risk-neutral entropy,
$\mathrm{VIX}^{2}=\log \mathbb{E}_{t}^{*}\left(R_{T} / R_{f, t}\right)-\mathbb{E}_{t}^{*} \log \left(R_{T} / R_{f, t}\right)$
- What VIX does not measure: VIX ${ }^{2} \neq \frac{1}{T-t} \mathbb{E}_{t}^{*}\left[\int_{t}^{T} \sigma_{\tau}^{2} d \tau\right]$

VIX and SVIX

Figure: VIX (dotted) and SVIX (solid). Jan 4, 1996-Jan 31, 2012
Figure shows 10 -day moving average. $T=1$ month

VIX minus SVIX

Figure: VIX minus SVIX. Jan 4, 1996-Jan 31, 2012
Figure shows 10 -day moving average. $T=1$ month

No conditionally lognormal model fits option prices

- If returns and the SDF are conditionally lognormal with return volatility $\sigma_{R, t}$ then we can calculate VIX and SVIX in closed form:

$$
\begin{aligned}
\operatorname{SVIX}_{t}^{2} & =\frac{1}{T-t}\left(e^{\sigma_{R, t}^{2}(T-t)}-1\right) \\
\mathrm{VIX}_{t}^{2} & =\sigma_{R, t}^{2}
\end{aligned}
$$

- VIX would be lower than SVIX—which it never is in my sample
- No conditionally lognormal model is consistent with option prices

Outline

(1) A volatility index, SVIX, gives a lower bound on the equity premium
(2) SVIX and VIX
(3) SVIX as a predictor variable

4 What is the probability of a 20% decline in the market?

Might the lower bound hold with equality?

- Time-series average of lower bound in recent data is around 5%
- Fama and French (2002) estimate unconditional equity premium of 3.83% (from dividend growth) or 4.78% (from earnings growth)
- Fama interviewed by Roll: "I always think of the number, the equity premium, as five per cent."
- Estimates of $\operatorname{cov}\left(M_{T} R_{T}, R_{T}\right)$ in linear factor models are statistically and economically close to zero

$\widehat{\operatorname{cov}}\left(M_{T} R_{T}, R_{T}\right)$ is negative and close to zero

	constant	$R_{M}-R_{f}$	$S M B$	$H M L$	$M O M$	$\widehat{\operatorname{cov}}\left(M_{T} R_{T}, R_{T}\right)$
Full sample	1.072	-2.375	-0.648	-5.489	-5.572	-0.0018
	(0.020)	(0.746)	(1.011)	(1.131)	(1.033)	(0.0020)
Jan '27-Dec '62	1.071	-2.355	-0.587	-3.882	-5.552	-0.0021
	(0.029)	(1.034)	(1.747)	(2.163)	(1.565)	(0.0041)
Jan '63-Dec '13	1.092	-3.922	-2.400	-9.020	-5.152	-0.0020
	(0.029)	(1.272)	(1.475)	(1.795)	(1.427)	(0.0022)
Jan '96-Dec '13	1.047	-3.231	-2.327	-5.789	-2.548	-0.0017
	(0.034)	(1.981)	(2.224)	(2.491)	(1.637)	(0.0036)

Table: Estimates of coefficients in the 4-factor model, and of $\operatorname{cov}\left(M_{T} R_{T}, R_{T}\right)$.

- Test assets: market, riskless asset, 5×5 portfolios sorted on size and $B / M, 10$ momentum portfolios; monthly data from Ken French's website
- Estimate M and $\operatorname{cov}\left(M_{T} R_{T}, R_{T}\right)$ by GMM

Forecasting returns with risk-neutral variance

- We want to test the null hypothesis that $\mathbb{E}_{t} R_{T}-R_{f, t}=R_{f, t} \cdot \operatorname{SVIX}_{t}^{2}$
- Run regressions

$$
R_{T}-R_{f, t}=\alpha+\beta \times R_{f, t} \cdot \mathrm{SVIX}_{t}^{2}+\varepsilon_{T}
$$

- Sample period: January 1996-January 2012
- Robust Hansen-Hodrick standard errors account for heteroskedasticity and overlapping observations

Forecasting returns with risk-neutral variance

horizon	$\widehat{\alpha}$	s.e.	$\widehat{\beta}$	s.e.	R^{2}
1 mo	0.012	$[0.064]$	0.779	$[1.386]$	0.34%
2 mo	-0.002	$[0.068]$	0.993	$[1.458]$	0.86%
3 mo	-0.003	$[0.075]$	1.013	$[1.631]$	1.10%
6 mo	-0.056	$[0.058]$	2.104	$[0.855]$	5.72%
1 yr	-0.029	$[0.093]$	1.665	$[1.263]$	4.20%

Table: Coefficient estimates for the forecasting regression.

- Cannot reject the null at any horizon

Forecasting returns with risk-neutral variance

horizon	$\widehat{\alpha}$	s.e.	$\widehat{\beta}$	s.e.	R^{2}
1 mo	-0.095	$[0.061]$	3.705	$[1.258]$	3.36%
2 mo	-0.081	$[0.062]$	3.279	$[1.181]$	4.83%
3 mo	-0.076	$[0.067]$	3.147	$[1.258]$	5.98%
6 mo	-0.043	$[0.072]$	2.319	$[1.276]$	4.94%
1 yr	0.045	$[0.088]$	0.473	$[1.731]$	0.27%

Table: Coefficient estimates excluding Aug '08-Jul '09

- Predictability is not driven by the crisis

Realized variance doesn't predict reliably

horizon	$\widehat{\alpha}$	s.e.	$\widehat{\beta}$	s.e.	R^{2}
1 mo	0.049	$[0.045]$	-0.462	$[0.784]$	0.27%
2 mo	0.044	$[0.043]$	-0.341	$[0.586]$	0.26%
3 mo	0.035	$[0.046]$	-0.173	$[0.722]$	0.09%
6 mo	-0.025	$[0.050]$	1.182	$[0.430]$	5.45%
1 yr	-0.042	$[0.068]$	1.293	$[0.499]$	8.13%

Table: Regression $R_{T}-R_{f, t}=\alpha+\beta \times S V A R_{t}+\varepsilon_{T}$, full sample.

Realized variance doesn't predict reliably

horizon	$\widehat{\alpha}$	s.e.	$\widehat{\beta}$	s.e.	R^{2}
1 mo	-0.007	$[0.049]$	1.478	$[1.125]$	0.71%
2 mo	-0.006	$[0.050]$	1.429	$[1.272]$	1.13%
3 mo	-0.004	$[0.049]$	1.342	$[1.265]$	1.32%
6 mo	0.028	$[0.049]$	0.299	$[1.424]$	0.09%
1 yr	0.034	$[0.064]$	-0.348	$[2.469]$	0.15%

Table: Regression $R_{T}-R_{f, t}=\alpha+\beta \times S V A R_{t}+\varepsilon_{T}$, excluding Aug '08-Jul '09.

Forecasting returns with valuation ratios

- Goyal-Welch (2008): Conventional predictor variables fail out-of-sample
- Campbell-Thompson (2008) response: Gordon growth model suggests a forecast

$$
\mathbb{E}_{t} R_{T}=D / P_{t}+G
$$

- Important: coefficient on D / P_{t} is not estimated but fixed a priori
- A good comparison for the risk-neutral variance approach

R^{2} from Campbell and Thompson (2008)

	Sample: 1927-1956			Sample: 1956-1980			Sample: 1980-2005		
	Unconstrained	Pos. Intercept, Bounded Slope	Fixed Coefs	Unconstrained	Pos. Intercept, Bounded Slope	Fixed Coefs	Unconstrained	Pos. Intercept, Bounded Slope	Fixed Coefs
	A: Monthly Returns								
Dividend/price	-0.86\%	0.21\%	0.63\%	0.88\%	0.57\%	0.67\%	-1.30\%	-0.21\%	-0.54\%
Earnings/price	0.16	0.28	1.04	0.56	0.45	0.30	-0.53	-0.09	0.07
Smooth carnings/price	0.56	0.53	1.33	0.80	0.48	0.51	-1.06	-0.06	0.01
Dividend/price + growth	-0.15	0.18	0.78	0.18	0.18	0.59	0.11	0.11	0.14
Earnings/price + growth	-0.06	0.12	0.73	-0.12	-0.12	0.33	0.05	0.05	0.16
Smooth earnings/price + growth	0.19	0.25	0.93	0.19	0.19	0.47	0.06	0.06	0.16
Book-to-market + growth				-0.62	-0.73	0.73	-0.12	-0.02	0.00
Dividend/price + growth - real rate	-0.01	0.30	0.45	-0.24	-0.24	0.76	0.11	0.11	-0.08
Earnings/price + growth - real rate	0.06	0.20	0.41	-0.34	-0.34	0.66	0.06	0.06	0.03
Smooth earnings/price + growth - real rate	0.27	0.39	0.60	-0.28	-0.28	0.74	0.04	0.04	0.02
Book-to-market + growth - real rate				-0.82	-0.91	0.89	-0.14	-0.02	-0.27
Dividend/price	9.95	4.53	3.67	9.46	5.99	6.88	-16.19	-1.38	-7.98
Earnings/price	7.45	5.34	7.58	5.08	3.25	2.56	-6.06	0.88	1.47
Smooth eamings/price	12.51	8.22	10.49	4.93	3.71	3.71	-8.86	1.33	1.33
Dividend/price + growth	2.77	3.05	4.83	1.76	1.74	6.61	1.87	1.82	0.28
Eamings/price + growth	2.21	2.38	4.37	-0.85	-0.85	3.97	1.63	1.63	1.60
Smooth earningsiprice + growth	3.73	3.87	6.38	1.27	1.19	4.65	2.30	2.23	1.81
Book-to-market + growth				-7.09	-5.16	10.34	-0.24	0.14	-2.43
Dividend/price + growth - real rate	4.40	4.51	1.67	-3.57	-3.56	8.28	2.19	2.19	-2.95
Eamings/price + growth - real rate	3.44	3.49	1.25	-4.68	-4.68	7.16	1.88	1.88	-0.64
Smooth earnings/price + growth - real rate	5.34	5.37	3.19	-4.91	-4.84	7.32 11.85	2.36	2.36	-0.47
Book-to-market + growth - real rate				-3.36	-4.22	11.85	-0.25	0.35	-6.20

Out-of-sample R^{2}

Fixed coefficients $\alpha=0, \beta=1$

horizon	$R_{O S}^{2}$
1 mo	0.42%
2 mo	1.11%
3 mo	1.49%
6 mo	4.86%
1 yr	4.73%

Table: R^{2} using SVIX $_{t}^{2}$ as predictor variable with $\alpha=0, \beta=1$

Are the R^{2} too low?

No. Small $R^{2} \longrightarrow$ high Sharpe ratios

- We can use the predictor in a market-timing strategy
- On day t, invest α_{t} in the S\&P 500 index and $1-\alpha_{t}$ in cash
- Choose α_{t} proportional to 1-mo SVIX ${ }_{t}^{2}$
- Earns a daily Sharpe ratio of 1.97% in sample
- For comparison, the daily Sharpe ratio of the index is 1.35%
- The point is not that Sharpe ratios are necessarily the right metric, but that apparently small R^{2} can make a big difference

The value of a dollar invested

In cash (yellow), in the S\&P 500 (red), and in the market-timing strategy (blue)

- Mean: 35\% S\&P 500, 65\% cash. Median: 27\% S\&P 500, 73\% cash.

Risk-neutral variance vs. valuation ratios

Blue: earnings yield (Campbell and Thompson (2008)). Red: risk-neutral variance

Black Monday, 1987

- It is interesting to identify points at which my claims contrast most starkly with the conventional view based on valuation ratios
- In particular: what happened to the equity premium during and immediately after Black Monday in 1987, which was by far the worst day in stock market history?
- Valuation ratios: it moved from about 5\% to about 6\%
- Suppose $D / P=2 \%$ and then market halves in value. D / P only increases to 4\%
- Options: it exploded
- Implied risk premium about twice as high as in the recent crisis

Risk-neutral variance exploded on Black Monday

1mo horizon, annualized and using VXO as a proxy for true measure

Risk-neutral variance vs. valuation ratios

- Campbell-Shiller: $d_{t}-p_{t}=k+\mathbb{E}_{t} \sum_{j=0}^{\infty} \rho^{j}\left(r_{t+1+j}-\Delta d_{t+1+j}\right)$
- If dividend growth is unforecastable,

$$
d_{t}-p_{t}=k+\sum_{j=0}^{\infty} \rho^{j} \mathbb{E}_{t} r_{t+1+j}
$$

- Dividend yield measures expected returns over the very long run
- Difference between SVIX $_{t}^{2}$ and $d_{t}-p_{t} \approx$ gap between short-run expected returns and long-run expected returns
- Consider the late 1990s: 1-year expected returns $\left(\mathrm{SVIX}_{t}^{2}\right)$ were high, very long-run expected returns (D / P) were low

The term structure of the equity premium

$-6 \mathrm{mo} \rightarrow 12 \mathrm{mo}$
$-3 \mathrm{mo} \rightarrow 6 \mathrm{mo}$
$-2 \mathrm{mo} \rightarrow 3 \mathrm{mo}$
$-1 \mathrm{mo} \rightarrow 2 \mathrm{mo}$
$-0 \mathrm{mo} \rightarrow 1 \mathrm{mo}$

- In bad times, high equity premia can mostly be attributed to very high short-run premia

What's the equity premium right now?

 Delayed: 10:11AM CST INDEXCBOE deta delayed by 15 mins - Disciaimer
Compare: Enler tickerhere Add

Compare: Enter bickerhere Add

 \qquad \therefore 0n 04, 20.5 - Fct 01, $2016+2.56(14.66 \% \%$

- Annualized 1-month equity premium $\approx 20.77 \%^{2}=4.3 \%$

Outline

(1) A volatility index, SVIX, gives a lower bound on the equity premium
(2) SVIX and VIX

3 SVIX as a predictor variable
4) What is the probability of a 20% decline in the market?

What is the probability of a 20% decline?

- Take the perspective of an investor with log utility whose portfolio is fully invested in the market
- Expectations of such an investor obey the following relationship:

$$
\widetilde{\mathbb{E}}_{t} X_{T}=\frac{1}{R_{f, t}} \mathbb{E}_{t}^{*}\left[X_{T} R_{T}\right]
$$

- So if we can price a claim to $X_{T} R_{T}$ then we know the log investor's expectation of X_{T}
- Interpretation: "What a log investor would have to believe about X_{T} to make him or her happy to hold the market"

What is the probability of a 20% decline?

What is the probability of a 20% decline?

$T=1 \mathrm{mo}$

What is the probability of a 20% decline?

$T=2 \mathrm{mo}$

What is the probability of a 20% decline?

$T=3 \mathrm{mo}$

What is the probability of a 20% decline?

$T=6 \mathrm{mo}$

What is the probability of a 20% decline?

$T=1 \mathrm{yr}$

New directions

- What is the expected return on an individual stock? (joint work with Christian Wagner, Copenhagen Business School)
- Our approach outperforms conventional predictors

Conclusions

- Have shown how to measure the equity premium in real time
- The results point to a new view of the equity premium
- Extremely volatile, at faster-than-business-cycle frequency
- Right-skewed, with occasional opportunities to earn exceptionally high expected excess returns in the short run
- Black Monday, October 19, 1987, provides the starkest illustration
- D / P : annual equity premium moved from 4% to 5%
- SVIX: equity premium was $\sim 8 \%$ over the next one month

