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What is the General Form of the 
Explicit Equations of Motion for 
Constrained Mechanical Systems?
This paper presents the general form of the explicit equations of motion for 
mechanical systems. The systems may have holonomic and/or nonholonomic 
constraints, and the constraint forces may or may not satisfy D’Alembert’s 
principle at each instant of time. The explicit equations lead to new fundamental 
principles of analytical mechanics.
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Introduction

Since its inception more than 200 years ago, analytical mech
ics has been continually drawn to the determination of the eq
tions of motion for constrained mechanical systems. Follow
the fundamental work of Lagrange@1# who bequeathed to us th
so-called Lagrange multipliers in the process of determining th
equations, numerous scientists and mathematicians have
tempted this central problem of analytical dynamics. A comp
hensive reference list would run into several hundreds; hence
shall provide here, by way of a thumbnail historical review of t
subject, only some of the significant milestones and discove
In 1829, Gauss@2# introduced a general principle for handlin
constrained motion, which is commonly referred to today
Gauss’s Principle; Gibbs@3# and Appell @4# independently ob-
tained the so-called Gibbs-Appell equations of motion using
concept of~felicitously chosen! quasi-coordinates; Poincare@5#,
using group theoretic methods, generalized Lagrange’s equa
to include general quasi-coordinates; and Dirac@6#, in a series of
papers provided an algorithm to give the Lagrange multipliers
constrained, singular Hamiltonian systems. Udwadia and Ka
@7# gave the explicit equations of motion for constrained mecha
cal systems using generalized inverses of matrices, a concep
was independently discovered by Moore@8# and Penrose@9#. The
use of this powerful concept, which was further developed fr
the late 1950s to the 1980s, allows the generalized-inverse e
tions ~Udwadia and Kalaba@7#! to go beyond, in a sense, thos
provided earlier; for, they are valid for sets of constraints t
could be nonlinear in the generalized velocities, and that could
functionally dependent. Thus the problem of obtaining the eq
tions of motion for constrained mechanical systems has a his
that is indeed as long as that of analytical dynamics itself.

Yet, all these efforts have been solely targeted towards obt
ing the equations of motion for holonomically and nonholonom
cally constrained systems thatall obey D’Alembert’s principle of
virtual work at each instant of time. This principle, though intr
duced by D’Alembert, was precisely stated for the first time
Lagrange. The principle in effect makesan assumptionabout the
nature of the forces of constraint that act on a mechanical sys
It assumes that at each instant of time,t, during the motion of the
mechanical system, the constraint forces dono work under virtual
displacements.
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This seeminglysweeping assumption is indeed atribute to the
genius of Lagrange, because:~1! it gives exactly the right amoun
of additional information regarding the nature of the constra
forces in a general constrained mechanical system so that
equations of motion areuniquelydetermined, and are thus in con
formity with practical observation;~2! in the mathematical mod-
eling of a mechanical system, it obviates the need for the mec
nician to investigate each specific mechanical system at hand
to determine the nature of the constraint forces prevalent; and~3!
it yields equations of motion for constrained systems that seem
work well ~or at least sufficiently well! in numerous practical
situations.

However, there are many mechanical systems that are comm
place in Nature where D’Alembert’s principle is not valid, such
when sliding friction becomes important. Such situations have
far been considered to lie beyond the compass of the Lagran
formulation of mechanics. As stated by Goldstein@10#, ‘‘This @to-
tal work done by forces of constraint under virtual displaceme
equal to zero#is no longer true if sliding friction is present, an
we must exclude such systems from our@Lagrangian#formula-
tion.’’ And Pars@11# ~p. 14! in his treatise on analytical dynamic
writes, ‘‘There are in fact systems for which the principle enun
ated @D’Alembert’s Principle# . . . does not hold. But such sys
tems will not be considered in this book.’’

Constraint forces thatdo work under virtual displacements ar
called nonideal constraint forces, and such constraints themse
are often referred to as being nonideal. While it is possible
times, to handle problems with holonomic, nonideal constra
~like sliding friction! by using a Newtonian approach, to date w
do not have a general formulation for obtaining the equations
motion for systems where we have nonholonomic, nonideal c
straints, i.e., nonholonomic constraints where the constraint fo
do work under virtual displacements. The aim of this paper is
include such systems within the Lagrangian formulation of m
chanics, and further to develop the general form of the expl
equations of motion for constrained systems that may or may
obey D’Alembert’s principle at each instant of time. The approa
we follow here is based on linear algebra, and it is different fro
that of Refs.@12#, @13#, and@14#. It leads us to the general struc
ture of the equation of motion for constrained systems, and
minates in the statement of two fundamental principles of anal
cal dynamics.

Formulation of the Problem of Constrained Motion
Consider an ‘‘unconstrained’’ mechanical system described

the Lagrange equations
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M ~q,t !q̈5Q~q,q̇,t !, q~0!5q0 , q̇~0!5q̇0 (1)

where q(t) is the n-vector ~i.e., n by 1 vector!of generalized
coordinates,M is ann by n symmetric, positive-definite matrix,Q
is the ‘‘known’’ n-vector of impressed~also, called ‘‘given’’!
forces, and the dots refer to differentiation with respect to tim
By unconstrained, we mean that the components of then-vector
q̇0 can be arbitrarily specified. By ‘‘known,’’ we mean that th
n-vectorQ is a known function of its arguments. The acceleratio
a, of the unconstrained system at any timet is then given by the
relationa(q,q̇,t)5M21(q,t)Q(q,q̇,t).

We next subject the system to a set ofm5h1s consistent,
equality constraints of the form

w~q,t !50 (2)

and

c~q,q̇,t !50, (3)

wherew is anh-vector andc an s-vector. Furthermore, we sha
assume that the initial conditionsq0 and q̇0 satisfy these con-
straint equations at timet50, i.e., w(q0,0)50, ẇ(q0 ,q̇0,0)50,
andc(q0 ,q̇0,0)50.

Assuming that Eqs.~2! and ~3! are sufficiently smooth,1 we
differentiate Eq.~2! twice with respect to time, and Eq.~3! once
with respect to time, to obtain an equation of the form

A~q,q̇,t !q̈5b~q,q̇,t !, (4)

where the matrixA is m by n, andb is the m-vector that results
from carrying out the differentiations. We place no restrictions
the rank of the matrixA.

This set of constraint equations includes, among others,
usual holonomic, nonholonomic, scleronomic, rheonomic, ca
static, and acatastatic varieties of constraints; combination
such constraints may also be permitted in Eq.~4!. Furthermore,
the functions in~3! could be nonlinear inq̇, and them constraint
equations need not be independent of one another.

It is important to note that Eq.~4!, together with the initial
conditions, is equivalent to Eqs.~2! and ~3!.

The equation of motion of the constrained mechanical sys
can then be expressed as

M ~q,t !q̈5Q~q,q̇,t !1Qc~q,q̇,t !, q~0!5q0 , q̇~0!5q̇0
(5)

where the additional ‘‘constraint force’’n-vector, Qc(q,q̇,t),
arises by virtue of the constraints that are imposed on the un
strained system, which we have described by Eq.~1!. Since the
n-vectorQ is known, our aim is to determine ageneralexplicit
form for Qc at any timet.

We shall see below that in any constrained mechanical sys
the total constraint forcen-vector,Qc, at each instant of timet,
can be thought of as made up of two components:Qc5Qi

c

1Qni
c . The first component corresponds to the force of constra

Qi
c , that would act were all the constraints ideal at that instant

time; the second component,Qni
c , arises because of the nonide

nature of the constraints. This latter component issituation spe-
cific and needs to be specified by the mechanician entrusted
modeling the mechanical system. However, we shall show
this component too must always occur in the explicit equation
motion in a specific form.

In what follows, for brevity, we shall suppress the arguments
the various quantities, unless necessary for purposes of clari
tion.

1We assume throughout this paper that the presence of constraints does not c
the rank of the matrixM This is almost always true in mechanical systems
2
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The General Form of the Explicit Equation of Motion
for any Constrained Mechanical Systems

We begin by stating our general result in the following thre
part statement.

~1! The general ‘‘explicit’’ equation of motion at timet for any
constrained mechanical system,whether or not the constrain
forces satisfy D’Alembert’s Principle at that time t, is given by

Mq̈5Q1Qc5Q1Qi
c1Qni

c

5Q1M1/2B1~b2AM21Q!1M1/2~ I 2B1B!z

(6)

where the matrixB5AM21/2, B1 is the generalized inverse2 of
the matrixB, andz(q(t),q̇(t),t) is some suitablen-vector.~When
z is C1, Eq. ~6! yields a unique solution.! The matrixA is defined
in relation ~4!, as is the m-vectorb. The n-vector Q is the im-
pressed force. By ‘‘explicit’’ we mean here that the accelerat
n-vector,q̈, on the left-hand side of Eq.~6! is explicitly expressed
in terms of quantities that are functions ofq, q̇, and t on the
right-hand side.

Alternately stated, the total constraint forcen-vector,Qc, at any
instant of timet is made up of the sum of two componentsQi

c and
Qni

c that can be explicitly written as

Qi
c5M1/2B1~b2AM21Q!, (7)

and,

Qni
c 5M1/2~ I 2B1B!z. (8)

~2! To mathematically model agiven constrained mechanica
system adequately, the mechanician mustspecify the vector
z(q,q̇,t) in the third member on the right-hand side of Eq.~6! at
each instant of time. This may be done by inspection of the s
cific system at hand, by analogy with other systems that
mechanician may have dealt with in the past, by experimenta
with the specific system or similar systems, or otherwise.

~3! However, no matter how the mechanician comes up with
prescription of then-vector z for adequately modeling agiven
constrained mechanical system under consideration, specifica
of this n-vector at each timet uniquely determinesQni

c , and hence
the accelerationn-vector,q̈(t), of the constrained system. Such
prescription ofz(t) is equivalentto prescribing the work done by
all the constraint forces under virtual displacements at that timt,
in the following sense.
~a! When the vectorz(t) is prescribed, it can always be express
as

z~ t !5M 21/2~q,t !C~q,q̇,t ! (9)

since, M is a positive definite matrix. The total work done,W
ªvTQc, by all the forces of constraint under~nonzero!virtual
displacementsv at time t, is then given by

W~ t !ªv~ t !TQc5v~ t !TC~q,q̇,t !. (10)

~b! When, for a given specific constrained mechanical system,
work done,W, at timet by the forces of constraint under virtua
displacementsv is prescribed through specification of then-vector
C(q,q̇,t) such that

W~ t !5v~ t !TC~q,q̇,t !, (11)

this determines the equation of motion of the constrained sys
uniquelyat time t. This equation of motion is obtained by settin
z(t)5M21/2(q,t)C(q,q̇,t), in Eq. ~6!. The work done,W(t),
may be positive, zero, or negative, at the instant of timet. h

hange
2Some of the basic properties of the Moore-Penrose generalized inverse th

used throughout this paper may be found in Chapter 2 of Ref@15#
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We note from Eq.~9! above, that prescribingz to be the zero
n-vector at any timet, is equivalent to specifyingC50 at that
specific timet, and then by~10!, the constraint forces dono work
under virtual displacements and therefore they sat
D’Alembert’s principle at that instant of timet. In what follows
we shall also show that when the constraints do no work un
virtual displacements at timet, because of Eq.~10!, then-vectorC
must belong to the range space ofAT; the third member on the
right in Eq.~6! then becomes zero at that time. Further, if throug
out the motion of the constrained system the work done by
constraint forces under virtual displacements is zero, then the t
member on the right-hand side in Eq.~6! disappears for all time.
The equation of motion~6! then becomes

Mq̈5Q1Qc5Q1Qi
c5Q1M1/2B1~b2AM21Q!, (12)

which is identical to that obtained by Udwadia and Kalaba@7# for
systems that obey D’Alembert’s principle. Equation~12! is
equivalent to the Gibbs-Appell equations~see Ref.@15#!. We then
see that the componentQi

c in Eq. ~7! therefore gives the constrain
force at timet that would be generated were all the constrain
ideal at that time. AndQni

c explicitly gives the contribution to the
total constraint force,Qc, made by the nonideal nature of th
constraints.

Were the acceleration,a5M 21Q, of the unconstrained system
at time t to be inserted into the equation of constraint~4!, this
equation would not, in general, be satisfied at that time. The ex
to which the constraint~Eq. ~4!! would not be satisfied by this
acceleration,a, of the unconstrained system at timet would then
be given by

e5b2Aa5b2AM21Q. (13)

The force of constraint can now be rewritten as

Qc5Qi
c1Qni

c 5M1/2B1e1M1/2~ I 2B1B!z. (14)

Also, the effect of this constraint force in altering the accelerat
of the unconstrained system can be explicitly determined. For,
deviation, Dq̈, at time t of the acceleration of the constraine
system from that of the unconstrained system becomes, by
~6!,

Dq̈5q̈2a5M 21/2B1e1M 21/2~ I 2B1B!z. (15)

Equations~14! and~15! lead us to a new fundamental princip
of Lagrangian mechanics which we now state in two equival
forms.

1 A constrained mechanical system evolves in such a w
that, at each instant of time, the deviation,Dq̈, of its accel-
eration from what it would have been at that instant h
there been no constraints on it, is given by a sum of t
components: the first component is proportional to the
tent, e, to which the unconstrained acceleration does
satisfy the constraints at that instant of time, the matrix
proportionality being the matrixM21/2B1; the second is
proportional to ann-vectorz that needs, in general, to b
specified at each instant of time, the matrix of proportio
ality being M 21/2(I 2B1B), where B5AM21/2. The
specification ofz at any time,t, is dependent on the natur
of the forces of constraint that are generated. Its specifi
tion for a given system at hand is tantamount to the sp
fication of the total work done under virtual displacemen
by all the forces of constraint at that time. Such a spec
cation of the work done at each instant of time unique
determines the equation of motion of the constrained s
tem.

2 At each instant of timet, the force of constraint acting on
constrained mechanical system is made up of two com
nents: the first component is proportional to the extent,e, to
which the unconstrained acceleration of the system does
satisfy the constraints at that instant of time, and the ma
3
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of proportionality isM1/2B1; the second is proportional to
an n-vector z that, in general, needs specification at ea
instant of time, the matrix of proportionality beingM 1/2(I
2B1B), whereB5AM21/2. This vectorz is specific to a
given mechanical system and needs to be prescribed by
mechanician who is modeling the system. Whether or
the constraints are ideal, the first component is alwa
present and constitutes the constraint force at the instan
time t that would have been generated were all the c
straints ideal at that time. The second component depe
on the nature of the constraint forces generated in the s
cific mechanical system that is being modeled; it preva
only when the total work done by the constraint forces u
der virtual displacements differs from zero.

Proof of the General Form of the Equations of Motion
for Constrained Systems

We begin by considering the ‘‘scaled accelerations’’ defined
the relations

q̈s5M1/2q̈; (16)

as5M 21/2Q5M1/2a; (17)

and,

q̈s
c5M 21/2Qc5M1/2q̈c. (18)

By Eq. ~5!, we then have

q̈s5as1q̈s
c . (19)

Furthermore, Eq.~4! can be expressed as

Bq̈s5b, (20)

where

B5AM21/2. (21)

Consider the matricesT5B1B and N5(I 2B1B), where the
matrix B1 is the Moore-Penrose~MP! inverse of the matrixB.
The matrixT is an orthogonal projection operator since (B1B)T

5B1B, and T25(B1B)(B1B)5B1B5T. Also, N is an or-
thogonal projection operator since (I 2B1B)T5I 2(B1B)T5I
2B1B, and N25N. SinceRn5R(BT) % N(B), any n-vectorw
has a unique orthogonal decompositionw5B1Bw1(I
2B1B)w; and so also ourn-vectorq̈s . This yields the identity

q̈s5B1Bq̈s1~ I 2B1B!q̈s . (22)

Using relation~20! in the first member on the right, and relatio
~19! in the second member, we obtain

q̈s5as1B1~b2Bas!1~ I 2B1B!q̈s
c . (23)

Comparison of Eq.~19! with Eq. ~23! then yields

B1Bq̈s
c5B1~b2Bas! (24)

which can be solved forq̈s
c to yield

q̈s
c5B1BB1~b2Bas!1$I 2~B1B!1~B1B!%z

5B1~b2Bas!1~ I 2B1B!z (25)

for somen-vectorz.
Equation~18!, then gives

Qc5M1/2B1~b2Aa!1M1/2~ I 2B1B!z (26)

and the general equation of motion of the constrained system
Eq. ~5!, becomes

Mq̈5Q1Qc5Q1M1/2B1~b2Aa!1M1/2~ I 2B1B!z (27)

wherez is somen-vector. q.e.d.
To obtain the unique equation of motion for aspecificmechani-

cal system, the mechanician needs to prescribe the ve
z(q(t),q̇(t),t) at each instant of time. Specification of the vect
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z(t) yields explicitly and uniquely the componentQni
c of the con-

straint force,Qc, at each instant of timet. In fact, given an
n-vector z at a specific timet, we can form then-vector C
5M1/2z at timet. The vectorC cannow be interpretedas provid-
ing the work done,W5vTC, by the constraint forcen-vectorQc

under virtual displacementsv at time t.
We now show thatQni

c can also be uniquely determined at ea
instant of timet by specifying the work done by the constrai
force n-vector, Qc, under virtual displacements at that tim
Proof: A virtual displacement is any nonzeron-vector v such
that Av50 ~see Ref.@15#!. Using Eq.~21! this relation can also
be written asAv5(AM21/2)M1/2v5B(M1/2v)5Bm50, where
we have denoted then-vectorM1/2v by m. Thus a virtual displace-
ment can also be considered as any~nonzero!n-vectorm such that
Bm50. Using Eq.~27!, the work done by the force of constrai
under all virtual displacementsv is then given by

WªvTQc5vT~Qi
c1Qni

c !

5vTM1/2B1~b2Aa!1vTM1/2~ I 2B1B!z

5mTB1~b2Aa!1mT~ I 2B1B!z. (28)

The first member in the last expression on the right of equa
~28! is zero sinceBm50 impliesmTB150. Hence the componen
Qi

c of the total force of constraint, Qc, does no work under virtua
displacements. Equation~28! then becomes

WªvTQc5vTQni
c 5mTz5vT~M1/2z!. (29)

Let W(t) to be prescribed at timet by the mechanician through
a specification of then-vector C(q,q̇,t) so that WªvTQc

5vTC. Then by Eq.~29!, we have

vT~M1/2z!5vTC. (30)

Sincev is such thatAv50, this requires that

z5M 21/2~C1ATw!5M 21/2C1BTw (31)

wherew is any arbitrarym-vector. Using this expression forz in
Eq. ~27! we obtain theunique equation of motion of the con
strained system to be

Mq̈5Q1Qc5Q1Qi
c1Qni

c 5Q1M1/2B1~b2Aa!

1M1/2~ I 2B1B!M 21/2C, (32)

since (I 2B1B)BT5$B(I 2B1B)%T50.
We now see that Eq.~6! is identical to Eq. ~32! with z

5M21/2C! The component ofz in the range space ofBT—the
second member on the right in Eq.~31!—does not affectQni

c , and
therefore the equation of motion of the constrained system.

Though then-vectorC(t) specifies the work done,WªvTQc

5vTQni
c 5vTC, by the constraint force under all virtual displac

mentsv at time t, Eq. ~32! states that, in general,Qni
c ÞC. At

instants of time t when W5(vTM1/2)(M 21/2C(q,q̇,t))50,
M 21/2C belongs to the range space ofBT, and hence by Eq.~32!,
Qni

c 50 since (I 2B1B)BT50. If further,W50 for all time, then
the force of constraint satisfies D’Alembert’s principle, a
Qni

c (t)[0; the equation of motion for the constrained system th
reduces to that given in~12!. At instants of timet whenM 21/2C
belongs to the null space ofB, Qni

c 5C. In general, then-vector
M 21/2C can have components in both the null space ofB and the
range space ofBT. We note that at each instant of time, it is on
the component ofM 21/2C in the null space ofB that contributes to
Qni

c , and hence to the equation of motion of the constrained s
tem.

Conclusions
The equations of motion for constrained systems obtained

date have all been based upon D’Alembert’s principle of virt
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work. So far, no general equations of motion have been disc
ered within the Lagrangian formalism in situations where this c
tral principle of analytical dynamics is not applicable.

This paper provides the general explicit form of the equation
motion for any holonomically and/or nonholonomically con
strained mechanical system. The equation is

Mq̈5Q1M1/2B1~b2AM21Q!1M1/2~ I 2B1B!z. (33)

The n-vectorQ is the given force, them by n matrix A and the
m-vectorb are defined in Eq.~4!, B5AM21/2, and B1 is the
generalized inverse ofB. The equation applies to all constraine
mechanical systems whether or not they satisfy D’Alembert’s p
ciple. The second member on the right in Eq.~33! explicitly gives
the force of constraint,Qi

c thatwould have beengenerated at time
t were all the constraint forces ideal, and thus sati
D’Alembert’s principle. The third member on the right in Eq.~33!
explicitly gives the contribution,Qni

c , to the total force of con-
straint because of the presence of nonideal constraints.

To obtain the equation of motion for a given, specific, mecha
cal system, the mechanician needs to provide then-vector
z(q,q̇,t) suitably at each instant of time, thereby uniquely spe
fying the third member on the right in Eq.~33!. The provision of
this vectorz(t) depends on the judgement and discernment of
mechanician and may be determined by experiment, experie
intuition, inspection, or otherwise. However, no matter how t
vector is arrived at, the total work done,W(t)ªvT(t)Qc(t), by
the force of constraint under virtual displacementsv(t) at any
instant of timet is always given byvT(t)C(t), where then-vector
C(t)5M1/2(q,t)z(q,q̇,t). This work, W(t), may, in general, be
positive, zero, or negative.

We show that to model agivenconstrained mechanical syste
adequately one needs, in general, to providemore thanjust the
equations of constraint~Eqs. ~2! and ~3!!, be they holonomic or
nonholonomic. While at each instant of time the componentQi

c of
the total constraint forcen-vector,Qc, is determined solely from
the kinematical description of the constraints~Eqs.~2! and~3!!, to
determine the componentQni

c one always needs to rely on the
mechanician’s discernment and judgement. However, as show
the equation above, this component~see also Eq.~8!! mustappear
in a specific formin the explicit equation of motion of the con
strained system. When the mechanical system satis
D’Alembert’s principle at every instant of time,Qni

c (t)[0, and
the third member on the right in~33! becomes zero. Then ou
general equation yields the known equation of motion~@15#! for
constrained systems that satisfy D’Alembert’s principle.

It is perhaps noteworthy that though the equations of motion
even very simple mechanical systems are often highly nonlin
the general form of the equation of motion obtained here relies
techniques from linear algebra. The fundamental principles
analytical dynamics obtained in this paper may have been imp
sible to state in such a simple form without the concept of
generalized inverse of a matrix, a concept first invented by P
rose@9#.

The equation of motion obtained in this paper appears to be
simplest and most general so far discovered for mechanical
tems within the framework of classical mechanics.
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