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Piglets experience severe growth challenges and diarrhea after weaning due to nutritional, social, psychological, environmental,
and physiological changes. Among these changes, the nutritional factor plays a key role in postweaning health. Dietary protein,
fibre, starch, and electrolyte levels are highly associated with postweaning nutrition diarrhea (PWND). In this review, we mainly
discuss the high protein, fibre, resistant starch, and electrolyte imbalance in diets that induce PWND, with a focus on potential
mechanisms in weaned piglets.

1. Introduction

Weaning is sudden and stressful and one of the most
challenging periods in a pig’s life [1]. Newly weaned pigs
are usually stressed by nutritional, psychological, envi-
ronmental, physiological, and social factors [2, 3]. Because
of such stressors, piglets are often characterized with
reduced growth performance and an increased prevalence
of diarrhea after weaning [4, 5]. When undergoing the
transition from a milk-based diet to a weaned diet, the
piglets suffer a severe decrease in feed intake for a couple
of days after weaning [6]. Furthermore, in order to adapt
to the new environment, the composition of the gastro-
intestinal microbiota is also modified as a result of
changes in feeding behavior and diet composition [6].
,is period is often associated with a growth challenge
because of a high incidence of gastrointestinal disorders,
such as PWND [7].

Postweaning diarrhea is considered a major health
problem and causes substantial morbidity and mortality
in livestock [8, 9]. It is well established that postweaning

diarrhea is a multifactorial gastrointestinal disease, and
undernutrition has major etiological factors [10–12]. ,e
gastrointestinal tract is a complex, balanced ecosystem
[4, 13]. ,e dietary composition is a major factor influ-
encing the intestinal microbial ecosystem [14, 15]. Hence,
considering the balance between the intestinal microbial
ecosystem and the composition of the diet, postweaning
nutritional diarrhea (PWND) is a major problem during
the postweaning period [11, 16].

,e most efficient manner to alleviate the degree of
PWND is to regulate the nutritional composition of the diet
[15, 17]. Various nutritional approaches for improving the
weaning transition and alleviating enteric diseases have been
researched over the past several years [11, 18]. Evidence
suggests that specific dietary interventions, such as the control
of protein [19, 20], fibre [21], starch [22], electrolyte balance
[23], and other constituents in the daily diet, could reduce the
proliferation of certain PWND [11, 24, 25].,e purpose of the
present review is to summarize several common kinds of
PWND in order to better expound the role of nutrition in
causing and modulating PWND in pigs.
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2. High Protein Level Induces PWND

To decrease PWND, piglets are usually given antibiotics;
however, antibiotics have been banned for use in livestock
for human consumption. ,us, researchers have focused on
finding a replacement for antibiotics in piglet feeding. One of
the alternatives is the feeding of low-protein diets [26–28].

2.1. #e Effect of Dietary Protein on Growth Performance and
Digestibility of Nutrients of Weaned Piglets. ,e consump-
tion of a low crude protein (CP) diet, which has direct effects
on PWND, reduces the availability of substrates for bacterial
fermentation and improves fecal consistency [29–31]. Die-
tary CP and individual AAs (amino acids) both affect the
formation of metabolites during microbial fermentation
[32]. However, high dietary CP concentration for early-
weaned piglets could increase microbial fermentation of
undigested protein and increase the proliferation of path-
ogenic bacteria in the gastrointestinal tract [3]. An excessive
supply of dietary protein induces protein fermentation by
intestinal microbiota in piglets [33]. Volatile fatty acids
(VFAs) and potentially toxic compounds produced by
bacterial fermentation of undigested protein substances,
such as ammonia and amines, can reduce the growth per-
formance of piglets [34, 35]. ,e increased production of
amines has been found to increase the incidence of diarrhea
at weaning in pigs [36, 37].

2.2. #e Effect of Dietary Protein on the Gut Health of Weaned
Piglets. It is well known that both exogenous and endoge-
nous source proteins can be used by the gastrointestinal
microbiota as a fermentable substrate [38, 39] and can be
used for the production of diet proteins through degrada-
tion, including branched-chain fatty acids (BCFAs), am-
monia, amines, phenols, and indoles [35, 39]. Bacteria, such
as Bacteroides spp., Propionibacterium spp., Streptococcus,
and Clostridium species, are associated with the formation of
the substances listed above [20]. For example, BCFAs are
produced by Clostridia [40]. Furthermore, intestinal con-
centrations of BCFAs possibly are used as indicators for the
extent of protein fermentation [41].

Protein fermentation results in the production of me-
tabolites that are in direct contact with the colonic mucosa
and can directly interact with the mucosal cells. Undigested
dietary protein and proteins of endogenous origin transfer to
the large intestine for fermentation to toxic metabolites, such
as ammonia, biogenic amines, and hydrogen sulfide. Most of
these products can impair epithelial integrity and promote
inflammatory reactions [34, 42]. ,en, the metabolites or
bacterial toxins may reduce the ability for fluid reabsorption
and mask small intestinal hypersecretion [29]. An increased
concentration of ammonia was found in parts of the in-
testinal tract of piglets fed high-protein diets [3]. Infusion of
ammonium chloride from the isolated distal colon increased
the proliferation of epithelial cells in rats, which may con-
tribute to the development of gastrointestinal disorders [43].
Biogenic amine concentrations increased in the hindgut
when feeding on highly fermentable protein, and bacterial

putrescine played a role in the potential detrimental effects
on gut health by decreasing the energy supply to the
colonocytes [44]. Hydrogen sulfide impacts gut health by
breaking down the mucus layer and by increasing the
permeability of the mucus barrier [45]. According to several
studies, high protein fermentation is associated with an
increased risk of cancer [46].

2.3. #e Effect of Dietary Protein on the Incidence of PWND.
PWND is a gut disease induced by the stress of nutrition and
is characterized by an increase in the microbial fermentation
of supernumerary proteins [47]. Additionally, watery feces,
decreased growth performance, high morbidity, and mor-
tality have been noticed to occur with PWND [48]. However,
the mechanism between protein fermentation and the
gastrointestinal tract (GIT) is still unknown. Some studies
showed that a high-protein diet led to a higher incidence of
PWND [6, 35]. Interestingly, an increase in ammonia
concentration has a detrimental effect on the health of the
GIT and a negative effect on the growth and differentiation
of intestinal epithelial cells [49, 50]. Additionally, BCFAs
and ammonia are toxic metabolites for the intestinal mucosa
and most likely trigger PWND and the poor performance in
piglets [39, 51, 52]. More importantly, the upregulated ex-
pression of ammonia may induce a disorder of the intestinal
microbial balance during weaning [20]. Additionally, the
initially predominant lactobacilli decrease in number during
weaning, leading to the downregulation of the GIT im-
munity and the formation of short chain fatty acids (SCFAs)
[53]. More importantly, piglets fed a high-protein diet ex-
perience a high buffering capacity [54], an increase in the
small intestinal pH [26], and a decrease in the expression of
SCFAs, mainly butyrate, which probably permit a quick
recovery of the intestinal epithelium, reducing the incidence
and severity of PWND [55].

In summary, a high-protein diet increases the expression
of BCFAs and ammonia, which can promote the growth of
pathogenic bacteria, while a low-protein diet promises an
increase in the expression of SCFAs, which may result in the
establishment of beneficial microbes [56, 57]. ,erefore,
with a low-protein diet, beneficial bacteria rapidly proliferate
and occupy the binding sites on the intestinal mucosa that
could otherwise be occupied by pathogenic bacteria [58].
,ese differences between protein levels may reduce the
incidence and severity of PWND and improve the growth
performance of piglets [3]. ,us, it can be concluded that
choosing a low-protein diet to feed postweaned piglets may
be an effective way to decrease PWND incidence [3]
(Figure 1).

3. The Effect of Dietary Fibre on PWND

Fermentable carbohydrates constitute the major energy
source for microbial fermentation and therefore may act as a
link between the piglet and its enteric commensal microbiota
[59, 60]. Furthermore, dietary fibre may be beneficial for gut
health and decreases diarrhea incidence in pigs [61, 62]. And
significant effect on diarrhea incidence was observed in the
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pigs fed the fibre source diet compared with the pigs fed the
control diet [63, 64]. A difference in diarrhea incidence was
observed among the different sources of fibre diets [60].

3.1. #e Effect of Dietary Fibre on Growth Performance and
Digestibility of Nutrients of Weaned Piglets. Adding fibre in
the daily diet could improve the adaptation of the pigs
during the weaning period [64]. Depending on the kinds of
fibrous ingredients, the effects of feeding high-fibre diets on
the performance of the piglets differed [62, 63]. ,e impact
of dietary fibre on piglets’ nutrition might be determined by
the properties of fibre and/or fibre sources [65, 66]. For
example, the fibre in the wheat bran diet was adapted by
piglets and acted as prebiotics [60]. Wheat bran is a kind of
insoluble fibre and when added to the weaned piglets’ diet, it
appears that it is related to a higher feed intake and de-
velopment of the gastrointestinal tract [67, 68]. More re-
search is necessary to clarify the effects of the dietary fibre
composition on the growth performance of weaned piglets.

3.2. #e Effect of Dietary Fibre on the Gut Health of Weaned
Piglets. In consideration of intestinal bacteria, fibre diets
influenced the health of piglets around the time of weaning
[69, 70]. Previous studies showed that a lower villus height:
crypt depth ratio is associated with microbial challenges and
antigenic components of the feed [71, 72]. Moreover, a study
of intestinal mucosal morphology was used to evaluate the
surface area of the intestine undertaken formucosal integrity
[73, 74]. Adding wheat bran fibre to the daily feed elevated
the ileal mucosal integrity by improving the ileum villus
height and the villus height: crypt depth ratio, which is in

agreement with previous findings that showed that feeding
high-insoluble-fibre diets protected against pathogenic
bacteria by increasing the villus length [75, 76]. Further-
more, research has shown that piglets fed soluble and in-
soluble dietary fibre had more goblet cells in the ileum than
did fibre-free piglets [77, 78]. ,e goblet cells played an
important role in the intestine by synthesizing and secreting
several mediators, mainly found in the small and large in-
testine, that were resistant to proteolytic digestion and
stimulated the repair process, such as mucin and peptide
trefoil factors [24, 79]. Studies suggested that piglets fed a
fibre diet had a higher TGF-α concentration in their colons
than that of other fibre-free groups [80]. Altogether, a fibre
diet could improve the intestinal barrier function by in-
creasing the concentration of factors associated with in-
testinal barrier function. However, different dietary fibre
compositions induce different changes in the intestinal
bacteria [81, 82].

3.3. #e Effect of Dietary Fibre on the Incidence of PWND.
Dietary fibre has been reported to improve gut health and
decrease the diarrhea incidence in pigs [61, 83]. A wheat
bran diet has been shown to decrease the amount of
pathogenic E. coli in the feces and reduce the incidence of
PWND [61, 84]. It is reported that a pea fibre diet could
improve the intestinal health in animals by reducing the
adhesion and increasing the excretion of enterotoxigenic E.
coli, and such a diet could reduce the incidence of PWND as
well [85]. However, the effect of a fibre diet on the incidence
of diarrhea was not observed between the piglets fed fibre
diets and the control group. However, a difference in di-
arrhea incidence was observed among the fibre source diets
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Figure 1: ,e possible mechanism of high protein diets induced postweaning nutritional diarrhea. AQP: aquaporin.
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[64, 86]. ,e mechanism of the effects of the dietary fibre
source on the incidence of diarrhea in weaned piglets may
result from the inconsistent intestinal function in regulating
intestinal bacteria [87]. Previous studies have shown that
feeding weaned piglets high-insoluble-fibre diets might
better protect them against pathogenic bacteria by in-
creasing the villus length [85, 88]. ,e intestinal barrier
integrity reflects the paracellular space between epithelial
cells and may prevent the paracellular diffusion of intestinal
bacteria across the epithelium [89]. Additionally, tight
junction proteins play a key role in intestinal barrier in-
tegrity [90]. ,e probiotic Lactobacillus can increase
occludin gene mRNA levels of Caco-2 cells, and E. coli
decreases the levels of ZO-1, occludin, and claudin-1 tight
junction complex in the epithelial cells, proving that bacteria
affect the integrity of the intestinal barrier by regulating the
gene expression level of tight junction proteins [91, 92]. ,e
effect of fibre on tight junction proteins is associated with the
number of bifidobacteria and lactobacilli [93]. Fibre in the
diets has also promoted intestinal proinflammatory cytokine
(IL-1 and TNF-α) mRNA levels as interference factors of the
intestinal barrier [94, 95]. However, more research between
PWND and intestinal bacteria alterations mediated by fibre
in the diet must be done.

Complex fibre sources could affect the intestinal mucosal
barrier function and regulate intestinal bacteria in weaning
piglets. Additionally, fibre composition is considered to be
an important factor affecting the intestinal barrier function
in piglets and could induce the incidence of PWND
(Figure 2).

4. The Effect of Dietary Electrolyte
Balance on PWND

4.1. Dietary Electrolyte Absorption in the Intestine. ,e in-
testinal lumen accepts 8–10 L/day of fluid, containing
ingested food and biological secretions. ,e small intestine
absorbs the highest percentage of this fluid content, and the
last 1.5–1.9 L of the fluid is absorbed by the large intestine
[96]. Otherwise, <0.1–0.2 L/d of the fluid content is excreted
in the feces in an abnormal condition [97]. However, piglets
around the time of weaning suffer a significant reduction in
the colon absorptive capacity, leading to diarrhea [98, 99].

Electroneutral sodium chloride in the intestine is
absorbed by luminal Na+/H+ and Cl–/HCO– exchangers
[100, 101]. ,e remaining absorption of sodium chloride is
due to transcellular or paracellular absorption of Cl– [102].
Na+/H+ and Cl–/HCO– exchangers in luminal brush-border
membranes of the colonic epithelial cells are required to
absorb sodium chloride [103]. ,is process is driven by the
action of the Na+-K+-ATPase and is regulated by Na+ de-
pletion [104, 105].

,e Na+/H+ exchangers play a key role in Na+ and water
absorption and the maintenance of intracellular pH and cell
volume [106]. Eight types of Na+/H+ exchangers named
NHE have been defined in the intestinal epithelium. In the
intestine, NHE1 (SLC9A1), NHE2 (SLC9A2), NHE3
(SLC9A3), and NHE8 (SLC9A8) have been shown to be
present in the intestinal epithelium [105, 107]. NHE1

(SLC9A1) is expressed in the basolateral membrane of the
intestinal epithelial cells, is not affected by Na+ depletion,
and does not contribute to luminal ion and water absorption
[108, 109]. NHE2 (SLC9A2) and NHE3 (SLC9A3) are both
expressed in the intestinal epithelium, with a larger con-
tribution of NHE3 (SLC9A3) to Na+ absorption under
control conditions [110]. Otherwise, NHE3 (SLC9A3) is
reported as the main transporter for Na+ absorption in the
intestine [97, 111]. NHE3 (SLC9A3)-knockout mice had
reduced intestinal Na+ and water absorption and induced
diarrhea [112, 113]. Na+/H+ exchange occurs in both surface
and crypt epithelium and might be affected by CFTR Cl–

channels [114, 115]. However, the exact impact of CFTR Cl–

channels on the regulation of Na+/H+ exchange in the small
intestine is not clear.

In mammalian intestinal epithelial cells, two types of
SLC26 gene families, named DRA (SLC26A3) and PAT-1
(putative anion transporter, SLC26A6), have been identified
as representing apical Cl–/HCO3

– exchangers [116, 117].
DRA is predominantly expressed in the colon and duode-
num, whereas PAT-1 is mainly expressed in the jejunum and
ileum [118, 119]. DRA mutations have been found to induce
severe diarrhea, massive loss of Cl– in stools, and metabolic
alkalosis as well as serum electrolyte imbalance [120, 121].
PAT-1-knockout mice did not present this diarrhea phe-
notype [122]. In addition, similar to NHE3, a Cl–/HCO3

–

exchange is also controlled by CFTR in the colonic epi-
thelium [123, 124]. Taken together, the current studies in-
dicate a regulation of both Na+/H+ and Cl–/HCO3

–

exchangers by CFTR, which therefore play an important role
in the electroneutral absorption of sodium chloride and
regulation of cellular and mucosal pH in the animal gas-
trointestinal tract [117, 125, 126].

4.2. #e Effect of Dietary Electrolyte Balance on the Growth
Performance of Weaned Piglets. ,e animal industry is al-
ways concerned about minerals in feed, such as calcium
(limestone), phosphorus (calcium phosphate), and sodium
and chloride (salt and sodium bicarbonate) [127, 128].
Animal feed adds minerals not only to satisfy the mineral
requirements but also to modify the dietary electrolyte
balance (EB) [129]. ,e balance between cation (Na+) and
anions (K+/Cl–) and the acid or alkaline load from the diet
may strongly alter the acid-base status and growth perfor-
mance of weaned piglets [130, 131]. It is reported that an
excess of chloride ions induces a negative dietary EB and
reduces the growth performance of weaned piglets [132–
134]. In short, a dietary addition of minerals in postweaning
diets, such as calcium chloride and sodium bicarbonate,
could affect the EB and significantly alter the feeding be-
havior, apparent digestibility, and productive performance
of postweaned piglets. Additionally, piglets showed a bias
toward low-EB diets, which optimized their performance
more so than that for high-EB diets [130, 135].

4.3.#eEffect ofDietaryElectrolyteBalance on the Incidence of
PWND. Enteric pathogens have been proven to stimulate
intestinal secretion of electrolytes and water [136, 137]. In
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most species, dietary electrolyte balance may be expressed as
Na+/H+ and Cl–/HCO3

– and has been influenced by pro-
portions of monovalent mineral cations and anions
[138, 139]. Electrolyte balance plays a critical role in in-
testinal phenotype and function [140]. ,e disorder of daily
electrolyte balance after weaning makes a large contribution
to postweaning diarrhea, induces severe intestinal electrolyte
turbulence, and negatively affects the piglets’ growth per-
formance after weaning through excessive loss of salt and
water [130, 133]. ,e gastrointestinal tract exhibits seg-
mental heterogeneity in the various ion transporters and
channels in the postweaning period, which play a control
role in conjunction and determine the electrolyte content
and fluid volume in the lumen. In basic situation, the reason
of PWND is the imbalance between the absorption and
secretion of ions and solutes across the gut epithelium [141].
,is imbalance of electrolytes in the digestive tract of piglets
is induced by the presence of bacteria that could deliver
toxins into the gut and disturb the development of the
epithelium [142]. ,e enteric pathogens spread rapidly and
cause infection in the piglets’ intestines [143]. ,is situation
results in the formation of watery feces, or PWND, in
combination with reduced growth performance, morbidity,
and even mortality of postweaning piglets.

In principle, the processes that result in induced PWND
are proposed as follows. First, postweaning diets contain
unabsorbed solutes that exert an osmotic force pulling water
and electrolytes into the intestinal lumen [144, 145]. Second,
the syndromes result in villus atrophy and crypt hyper-
trophy, thereby adversely altering the balance of absorption
and secretion [146, 147]. Lastly, active secretion is stimulated
by unabsorbed dihydroxy bile acid and fatty acid [148]. ,e
altered bile acid and fatty acid transport themselves into the
lipid phase of the plasma membrane [149, 150]. ,en, the
excess fecal water from the decreased intestinal absorption
and the increased intestinal secretion is the reason for di-
arrhea [151, 152]. Generally, the electrolyte imbalance in
postweaning diets exhibited alterations in motility, changes
in paracellular permeability, loss of absorption surface, a
change in electrolyte fluxes in postweaning piglets and, fi-
nally, induced PWND [153–155] (Figure 3).

5. The Effect of Dietary Starch
Content on PWND

Starch is the main carbohydrate source of animal diets and
the main energy source required for both animals and
humans [156, 157]. It is composed of two types of a-glucan
polymers: amylose and amylopectin [158, 159]. Starch has
been proven to have a significant effect on the composition
and activity of the intestinal microflora, through an im-
provement of the growth of beneficial bacteria and a re-
duction in the development of pathogenic bacteria in the
intestines [160, 161]. Based on the digestible capacity,
starches could be classified into rapidly digestible starch
(RDS), slowly digestible starch (SDS), and resistant starch
(RS) [162, 163]. RS cannot be absorbed in the small intestine,
but it passes to the large bowel and beneficially modifies the
gut microbial populations [164, 165].

5.1. #e Effect of Resistant Starch Source on the Intestine
Digestive Ability and Function of Postweaning Piglets. To
ameliorate PWND and improve the gastrointestinal func-
tion of piglets, one useful alternative is to use a dietary
prebiotic material, such as RS [166, 167]. ,e properties of
prebiotics such as RS can act as indigestible carbohydrate
substrates for cecal and colonic microbiota that influence the
host gut health, as shown in animal and human studies
[161, 166]. Starch digestion begins in the mouth.,e enzyme
α-amylase begins to digest starch to oligosaccharides and
maltose. Starch does not digest in the stomach but is
transported to the small intestine and broken down to
glucose and maltose by pancreatic amylase [161, 168]. ,en,
the small intestine absorbs glucose by active transport, with
the residual part being passively diffused through the villi
[169, 170]. Starch digestion is influenced by many factors,
such as the presence of lipids, proteins, and minerals, the
amylose to amylopectin ratio, and digestion conditions
[171, 172]. RS starts to be fermented in the large bowel by
colonic microflora and then is digested into hydrogen,
methane, and short-chain fatty acids (SCFAs), such as acetic,
propionic, and butyric acid [173]. In addition, it is said that
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Figure 2: ,e possible mechanism of fibre diets regulated postweaning nutritional diarrhea. TGF-α: transforming growth factor-α.
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the concentration of SCFAs is significantly increased in the
large intestine after RS consumption [174, 175]. SCFAs play
a positive role in colonic muscles and the absorption of
calcium, magnesium, and water, and they also positively
stimulate the colonic microflora [176, 177]. According to
one experiment, a lower level of RS in the diet will decrease
the growth challenge seen in postweaning piglets [178]. It is
likely that piglets fed diets containing a higher level of RS
(14%) exhibited more undigested starch in the ileum
compared with that for piglets fed a diet without added RS
[179]. It is reported that RS could be hydrolyzed by several
Bifidobacterium strains, such as B. adolescentis, B. bifidum,
B. breve, B. infantis, B. lactis, and B. longum [180]. In short,
the beneficial effects of RS in the large bowel appear mainly
because of the appearance of SCFAs formed by the previ-
ously mentioned bacterial fermentation [181]. Colonic
bacteria ferment RS to SCFAs, mainly acetate, propionate,
and butyrate, and benefit the large bowel of the postweaning
piglet [166, 182].

5.2. #e Effect of Resistant Starch Source on the Incidence of
PWND. According to the existing research, a diet con-
taining 7% resistant potato starch reduced the PWND in-
cidence compared to that with a diet containing 14%
resistant potato starch [178]. In addition, a diet containing
0.5 or 1.0% of resistant potato starch reduced the incidence
of PWND and improved the growth performance in
weaning piglets [169]. As we mentioned before, the con-
centration of SCFAs significantly increases in the large in-
testine after RS consumption [183]. In contrast, the molar
proportion of BCFAs decreases. All of these results occurred
because of the greater amounts of substrates available for
carbohydrate-utilizing microbiota in the colons of pigs fed

diets containing RS [184]. BCFAs are a harmful fermentation
product and are a predisposing factor for PWND as well
[185]. In addition, RS diets in piglets have a sharp reduction
in ileal and cecal digesta pH [186]. According to what we
know, bacteria ferment organic matter in the large intestine,
including RS to SCFAs, and therefore reduce the pH in the
GIT. ,ere is a positive relationship between dietary intake
of resistant starch and fecal output [187, 188]. Simply put,
postweaning piglets fed a diet that includes a low level of RS
leads to increases in the concentration of SCFAs, such as
acetate, propionate, and butyrate, as well as the concen-
tration of other terminal products, such as lactate, ethanol,
succinate, carbon dioxide, hydrogen, and methane
[165, 189]. ,e increasing SCFA levels decrease the gut pH;
help raise gut motility; improve the absorption of nutrients,
such as calcium, magnesium, and iron; and provide energy
for the colonic epithelium and the host [190, 191]. Impor-
tantly, low-level RS diets decrease the concentrations of
BCFAs, which are a harmful fermentation product as well as
a predisposing factor for PWND [165, 192].

We learned that diets containing increased colonic
fermentation associated with substrates such as RS also have
striking effects on the composition of the gut microflora in
order to increase the bacteria populations that are helpful to
the bowel and decrease the bacteria populations that are
harmful for a healthy large intestine [193, 194]. According to
a previous study, lactobacilli and bifidobacteria are con-
sidered beneficial and were found to increase in abundance
in the cecum with RS diets [195]. Furthermore, a trial that
used a diet with lactobacilli strains added decreased the
duration and incidence of diarrhea [196]. In short, sup-
plementing weaned pigs’ diets with at least 0.5% RS in-
creased the populations of bacteria that are potentially good
for the large intestines, such as lactobacilli and bifidobacteria
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Figure 3: ,e possible mechanism of electrolyte imbalanced diets induced postweaning nutritional diarrhea. AQP: aquaporin.
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[197], which in turn decreased the amount of bacteria that
are harmful for a healthy bowel. Finally, the increase in good
bacteria populations and the decrease in harmful bacteria
populations resulted in a decreased incidence of diarrhea
[198, 199] (Figure 4).

6. Conclusion

Weaning is a grand challenge in the swine industry, which
frequently induces severe intestinal disorders and gut
diseases, raising serious economic and public health
concerns. In addition, the gut microbiota derangement
induced by changes in the diet of piglets around the time of
weaning is the most direct reason of PWND. Despite the
progress in modern pig farms during the last decade to
prevent infectious diseases and improve global animal
health, PWND is still an event that causes significant
economic losses in the pig industry. However, we have now
learned that the key component that leads to PWND is the
composition of the daily diets for postweaning piglets. As
described herein, the percentage of protein, fibre, and RS
in the diet as well as the electrolyte balance could influence
the fermentation products, thus altering the gastrointes-
tinal microbiota composition and, as a result, inducing the
incidence of PWND. Clearly, we require well-controlled
studies to better understand the impact of nutrition on the
growth of piglets around weaning. Controlling the nu-
trition in the diets is the most promising strategy for the
prevention of PWND. ,e interaction of nutrition along
the intestinal tract and the influence it has on the host still
must be defined further in order to formulate appropriate
“healthy” pig diets.
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