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Abstract

This paper presents a syntax-driven ap-
proach to question answering, specifically
the answer-sentence selection problem for
short-answer questions. Rather than us-
ing syntactic features to augment exist-
ing statistical classifiers (as in previous
work), we build on the idea that ques-
tions and their (correct) answers relate to
each other via loose but predictable syntac-
tic transformations. We propose a prob-
abilistic quasi-synchronous grammar, in-
spired by one proposed for machine trans-
lation (D. Smith and Eisner, 2006), and pa-
rameterized by mixtures of a robust non-
lexical syntax/alignment model with a(n
optional) lexical-semantics-driven log-linear
model. Our model learns soft alignments as
a hidden variable in discriminative training.
Experimental results using the TREC dataset
are shown to significantly outperform strong
state-of-the-art baselines.

1 Introduction and Motivation

Open-domain question answering (QA) is a widely-
studied and fast-growing research problem. State-
of-the-art QA systems are extremely complex. They
usually take the form of a pipeline architecture,
chaining together modules that perform tasks such
as answer type analysis (identifying whether the
correct answer will be a person, location, date,
etc.), document retrieval, answer candidate extrac-
tion, and answer reranking. This architecture is so
predominant that each task listed above has evolved

into its own sub-field and is often studied and evalu-
ated independently (Shima et al., 2006).

At a high level, the QA task boils down to only
two essential steps (Echihabi and Marcu, 2003). The
first step, retrieval, narrows down the search space
from a corpus of millions of documents to a fo-
cused set of maybe a few hundred using an IR en-
gine, where efficiency and recall are the main fo-
cus. The second step, selection, assesses each can-
didate answer string proposed by the first step, and
finds the one that is most likely to be an answer
to the given question. The granularity of the tar-
get answer string varies depending on the type of
the question. For example, answers to factoid ques-
tions (e.g., Who, When, Where) are usually single
words or short phrases, while definitional questions
and other more complex question types (e.g., How,
Why) look for sentences or short passages. In this
work, we fix the granularity of an answer to a single
sentence.

Earlier work on answer selection relies only on
the surface-level text information. Two approaches
are most common: surface pattern matching, and
similarity measures on the question and answer, rep-
resented as bags of words. In the former, pat-
terns for a certain answer type are either crafted
manually (Soubbotin and Soubbotin, 2001) or ac-
quired from training examples automatically (Itty-
cheriah et al., 2001; Ravichandran et al., 2003;
Licuanan and Weischedel, 2003). In the latter,
measures like cosine-similarity are applied to (usu-
ally) bag-of-words representations of the question
and answer. Although many of these systems have
achieved very good results in TREC-style evalua-
tions, shallow methods using the bag-of-word repre-
sentation clearly have their limitations. Examples of



cases where the bag-of-words approach fails abound
in QA literature; here we borrow an example used by
Echihabi and Marcu (2003). The question is “Who
is the leader of France?”, and the sentence “Henri
Hadjenberg, who is the leader of France ’s Jewish
community, endorsed ...” (note tokenization), which
is not the correct answer, matches all keywords in
the question in exactly the same order. (The cor-
rect answer is found in “Bush later met with French
President Jacques Chirac.”)

This example illustrates two types of variation
that need to be recognized in order to connect this
question-answer pair. The first variation is the
change of the word “leader” to its semantically re-
lated term “president”. The second variation is the
syntactic shift from “leader of France” to “French
president.” It is also important to recognize that
“France” in the first sentence is modifying “com-
munity”, and therefore “Henri Hadjenberg” is the
“leader of ... community” rather than the “leader of
France.” These syntactic and semantic variations oc-
cur in almost every question-answer pair, and typi-
cally they cannot be easily captured using shallow
representations. It is also worth noting that such
syntactic and semantic variations are not unique to
QA; they can be found in many other closely related
NLP tasks, motivating extensive community efforts
in syntactic and semantic processing.

Indeed, in this work, we imagine a generative
story for QA in which the question is generated
from the answer sentence through a series of syn-
tactic and semantic transformations. The same story
has been told for machine translation (Yamada and
Knight, 2001, inter alia), in which a target language
sentence (the desired output) has undergone seman-
tic transformation (word to word translation) and
syntactic transformation (syntax divergence across
languages) to generate the source language sen-
tence (noisy-channel model). Similar stories can
also be found in paraphrasing (Quirk et al., 2004;
Wu, 2005) and textual entailment (Harabagiu and
Hickl, 2006; Wu, 2005).

Our story makes use of a weighted formalism
known as quasi-synchronous grammar (hereafter,
QG), originally developed by D. Smith and Eisner
(2006) for machine translation. Unlike most syn-
chronous formalisms, QG does not posit a strict iso-
morphism between the two trees, and it provides

an elegant description for the set of local configura-
tions. In Section 2 we situate our contribution in the
context of earlier work, and we give a brief discus-
sion of quasi-synchronous grammars in Section 3.
Our version of QG, called the Jeopardy model, and
our parameter estimation method are described in
Section 4. Experimental results comparing our ap-
proach to two state-of-the-art baselines are presented
in Section 5. We discuss portability to cross-lingual
QA and other applied semantic processing tasks in
Section 6.

2 Related Work

To model the syntactic transformation process, re-
searchers in these fields—especially in machine
translation—have developed powerful grammatical
formalisms and statistical models for representing
and learning these tree-to-tree relations (Wu and
Wong, 1998; Eisner, 2003; Gildea, 2003; Melamed,
2004; Ding and Palmer, 2005; Quirk et al., 2005;
Galley et al., 2006; Smith and Eisner, 2006, in-
ter alia). We can also observe a trend in recent work
in textual entailment that more emphasis is put on
explicit learning of the syntactic graph mapping be-
tween the entailed and entailed-by sentences (Mac-
Cartney et al., 2006).

However, relatively fewer attempts have been
made in the QA community. As pointed out by
Katz and Lin (2003), most early experiments in
QA that tried to bring in syntactic or semantic
features showed little or no improvement, and it
was often the case that performance actually de-
graded (Litkowski, 1999; Attardi et al., 2001). More
recent attempts have tried to augment the bag-of-
words representation—which, after all, is simply a
real-valued feature vector—with syntactic features.
The usual similarity measures can then be used on
the new feature representation. For example, Pun-
yakanok et al. (2004) used approximate tree match-
ing and tree-edit-distance to compute a similarity
score between the question and answer parse trees.
Similarly, Shen et al. (2005) experimented with de-
pendency tree kernels to compute similarity between
parse trees. Cui et al. (2005) measured sentence
similarity based on similarity measures between de-
pendency paths among aligned words. They used
heuristic functions similar to mutual information to



assign scores to matched pairs of dependency links.
Shen and Klakow (2006) extend the idea further
through the use of log-linear models to learn a scor-
ing function for relation pairs.

Echihabi and Marcu (2003) presented a noisy-
channel approach in which they adapted the IBM
model 4 from statistical machine translation (Brown
et al., 1990; Brown et al., 1993) and applied it to QA.
Similarly, Murdock and Croft (2005) adopted a sim-
ple translation model from IBM model 1 (Brown et
al., 1990; Brown et al., 1993) and applied it to QA.
Porting the translation model to QA is not straight-
forward; it involves parse-tree pruning heuristics
(the first two deterministic steps in Echihabi and
Marcu, 2003) and also replacing the lexical trans-
lation table with a monolingual “dictionary” which
simply encodes the identity relation. This brings us
to the question that drives this work: is there a statis-
tical translation-like model that is natural and accu-
rate for question answering? We propose Smith and
Eisner’s (2006) quasi-synchronous grammar (Sec-
tion 3) as a general solution and the Jeopardy model
(Section 4) as a specific instance.

3 Quasi-Synchronous Grammar

For a formal description of QG, we recommend
Smith and Eisner (2006). We briefly review the cen-
tral idea here. QG arose out of the empirical obser-
vation that translated sentences often have some iso-
morphic syntactic structure, but not usually in en-
tirety, and the strictness of the isomorphism may
vary across words or syntactic rules. The idea is that,
rather than a synchronous structure over the source
and target sentences, a tree over the target sentence
is modeled by a source-sentence-specific grammar
that is inspired by the source sentence’s tree.1 This
is implemented by a “sense”—really just a subset
of nodes in the source tree—attached to each gram-
mar node in the target tree. The senses define an
alignment between the trees. Because it only loosely
links the two sentences’ syntactic structure, QG is
particularly well-suited for QA insofar as QA is like
“free” translation.

A concrete example that is easy to understand
is a binary quasi-synchronous context-free grammar

1Smith and Eisner also show how QG formalisms generalize
synchronous grammar formalisms.

(denoted QCFG). Let VS be the set of constituent to-
kens in the source tree. QCFG rules would take the
augmented form

〈X, S1〉 → 〈Y, S2〉〈Z, S3〉
〈X, S1〉 → w

where X, Y, and Z are ordinary CFG nonterminals,
each Si ∈ 2VS (subsets of nodes in the source tree
to which the nonterminals align), and w is a target-
language word. QG can be made more or less “lib-
eral” by constraining the cardinality of the Si (we
force all |Si| = 1), and by constraining the relation-
ships among the Si mentioned in a single rule. These
are called permissible “configurations.” An example
of a strict configuration is that a target parent-child
pair must align (respectively) to a source parent-
child pair. Configurations are shown in Table 1.

Here, following Smith and Eisner (2006), we use
a weighted, quasi-synchronous dependency gram-
mar. Apart from the obvious difference in appli-
cation task, there are a few important differences
with their model. First, we are not interested in the
alignments per se; we will sum them out as a hid-
den variable when scoring a question-answer pair.
Second, our probability model includes an optional
mixture component that permits arbitrary features—
we experiment with a small set of WordNet lexical-
semantics features (see Section 4.4). Third, we ap-
ply a more discriminative training method (condi-
tional maximum likelihood estimation, Section 4.5).

4 The Jeopardy Model

Our model, informally speaking, aims to follow the
process a player of the television game show Jeop-
ardy! might follow. The player knows the answer
(or at least thinks he knows the answer) and must
quickly turn it into a question.2 The question-answer
pairs used on Jeopardy! are not precisely what we
have in mind for the real task (the questions are not
specific enough), but the syntactic transformation in-
spires our model. In this section we formally define

2A round of Jeopardy! involves a somewhat involved and
specific “answer” presented to the competitors, and the first
competitor to hit a buzzer proposes the “question” that leads to
the answer. For example, an answer might be, This Eastern Eu-
ropean capital is famous for defenestrations. In Jeopardy! the
players must respond with a queston: What is Prague?



this probability model and present the necessary al-
gorithms for parameter estimation.

4.1 Probabilistic Model
The Jeopardy model is a QG designed for QA. Let
q = 〈q1, ..., qn〉 be a question sentence (each qi is a
word), and let a = 〈a1, ..., am〉 be a candidate an-
swer sentence. (We will use w to denote an abstract
sequence that could be a question or an answer.) In
practice, these sequences may include other infor-
mation, such as POS, but for clarity we assume just
words in the exposition. Let A be the set of can-
didate answers under consideration. Our aim is to
choose:

â = argmax
a∈A

p(a | q) (1)

At a high level, we make three adjustments. The
first is to apply Bayes’ rule, p(a | q) ∝ p(q |
a) · p(a). Because A is known and is assumed to
be generated by an external extraction system, we
could use that extraction system to assign scores
(and hence, probabilities p(a)) to the candidate an-
swers. Other scores could also be used, such as
reputability of the document the answer came from,
grammaticality, etc. Here, aiming for simplicity, we
do not aim to use such information. Hence we treat
p(a) as uniform over A.3

The second adjustment adds a labeled, directed
dependency tree to the question and the answer.
The tree is produced by a state-of-the-art depen-
dency parser (McDonald et al., 2005) trained on
the Wall Street Journal Penn Treebank (Marcus et
al., 1993). A dependency tree on a sequence w =
〈w1, ..., wk〉 is a mapping of indices of words to in-
dices of their syntactic parents and a label for the
syntactic relation, τ : {1, ..., k} → {0, ..., k} × L.
Each word wi has a single parent, denoted wτ(i).par .
Cycles are not permitted. w0 is taken to be the invis-
ible “wall” symbol at the left edge of the sentence; it
has a single child (|{i : τ(i) = 0}| = 1). The label
for wi is denoted τ(i).lab.

The third adjustment involves a hidden variable
X , the alignment between question and answer

3The main motivation for modeling p(q | a) is that it is eas-
ier to model deletion of information (such as the part of the sen-
tence that answers the question) than insertion. Our QG does
not model the real-world knowledge required to fill in an an-
swer; its job is to know what answers are likely to look like,
syntactically.

words. In our model, each question-word maps to
exactly one answer-word. Let x : {1, ..., n} →
{1, ...,m} be a mapping from indices of words in q
to indices of words in a. (It is for computational rea-
sons that we assume |x(i)| = 1; in general x could
range over subsets of {1, ...,m}.) Because we de-
fine the correspondence in this direction, note that it
is possible for multple question words to map to the
same answer word.

Why do we treat the alignment X as a hidden vari-
able? In prior work, the alignment is assumed to be
known given the sentences, but we aim to discover
it from data. Our guide in this learning is the struc-
ture inherent in the QG: the configurations between
parent-child pairs in the question and their corre-
sponding, aligned words in the answer. The hidden
variable treatment lets us avoid commitment to any
one x mapping, making the method more robust to
noisy parses (after all, the parser is not 100% ac-
curate) and any wrong assumptions imposed by the
model (that |x(i)| = 1, for example, or that syntactic
transformations can explain the connection between
q and a at all).4

Our model, then, defines

p(q, τq | a, τa) =
∑

x

p(q, τq, x | a, τa) (2)

where τq and τa are the question tree and answer
tree, respectively. The stochastic process defined by
our model factors cleanly into recursive steps that
derive the question from the top down. The QG de-
fines a grammar for this derivation; the grammar de-
pends on the specific answer.

Let τ i
w refer to the subtree of τw rooted at wi. The

model is defined by:

p(τ i
q | qi, τq(i), x(i), τa) = (3)

p#kids(|{j : τq(j) = i, j < i}| | qi, left)
×p#kids(|{j : τq(j) = i, j > i}| | qi, right)

×
∏

j:τq(j)=i

m∑
x(j)=0

pkid (qj , τq(j).lab | qi, τq(i), x(i), x(j), τa)
×p(τ j

q | qj , τq(j), x(j), τa)
4If parsing performance is a concern, we might also treat the

question and/or answer parse trees as hidden variables, though
that makes training and testing more computationally expen-
sive.



Note the recursion in the last line. While the above
may be daunting, in practice it boils down only to
defining the conditional distribution pkid , since the
number of left and right children of each node need
not be modeled (the trees are assumed known)—
p#kids is included above for completeness, but in the
model applied here we do not condition it on qi and
therefore do not need to estimate it (since the trees
are fixed).

pkid defines a distribution over syntactic children
of qi and their labels, given (1) the word qi, (2) the
parent of qi, (3) the dependency relation between
qi and its parent, (4) the answer-word qi is aligned
to, (5) the answer-word the child being predicted is
aligned to, and (6) the remainder of the answer tree.

4.2 Dynamic Programming

Given q, the score for an answer is simply p(q, τq |
a, τa). Computing the score requires summing over
alignments and can be done efficiently by bottom-up
dynamic programming. Let S(j, `) refer to the score
of τ j

q, assuming that the parent of qj , τq(j).par , is
aligned to a`. The base case, for leaves of τq, is:

S(j, `) = (4)

p#kids(0 | qj , left)× p#kids(0 | qj , right)

×
m∑

k=0

pkid (qj , τq(j).lab | qτq(j)
, `, k, τa)

Note that k ranges over indices of answer-words to
be aligned to qj . The recursive case is

S(i, `) = (5)

p#kids(|{j : τq(j) = i, j < i}| | qj , left)
×p#kids(|{j : τq(j) = i, j > i}| | qj , right)

×
m∑

k=0

pkid (qi, τq(i).lab | qτq(i), `, k, τa)

×
∏

j:τq(j)=i

S(j, k)

Solving these equations bottom-up can be done
in O(nm2) time and O(nm) space; in practice this
is very efficient. In our experiments, computing the
value of a question-answer pair took two seconds on

average.5 We turn next to the details of pkid , the core
of the model.

4.3 Base Model
Our base model factors pkid into three conditional
multinomial distributions.

pbase
kid (qi, τq(i).lab | qτq(i), `, k, τa) =

p(qi.pos | ak.pos)× p(qi.ne | ak.ne)
×p(τq(i).lab | config(τq, τa, i)) (6)

where qi.pos is question-word i’s POS label and
qi.ne is its named-entity label. config maps
question-word i, its parent, and their alignees to
a QG configuration as described in Table 1; note
that some configurations are extended with addi-
tional tree information. The base model does not
directly predict the specific words in the question—
only their parts-of-speech, named-entity labels, and
dependency relation labels. This model is very sim-
ilar to Smith and Eisner (2006).

Because we are interested in augmenting the QG
with additional lexical-semantic knowledge, we also
estimate pkid by mixing the base model with a
model that exploits WordNet (Miller et al., 1990)
lexical-semantic relations. The mixture is given by:

pkid (• | •) = αpbase
kid (• | •)+(1−α)pls

kid (• | •) (7)

4.4 Lexical-Semantics Log-Linear Model
The lexical-semantics model pls

kid is defined by pre-
dicting a (nonempty) subset of the thirteen classes
for the question-side word given the identity of
its aligned answer-side word. These classes in-
clude WordNet relations: identical-word, synonym,
antonym (also extended and indirect antonym), hy-
pernym, hyponym, derived form, morphological
variation (e.g., plural form), verb group, entailment,
entailed-by, see-also, and causal relation. In ad-
dition, to capture the special importance of Wh-
words in questions, we add a special semantic re-
lation called “q-word” between any word and any
Wh-word. This is done through a log-linear model
with one feature per relation. Multiple relations may
fire, motivating the log-linear model, which permits
“overlapping” features, and, therefore prediction of

5Experiments were run on a 64-bit machine with 2× 2.2GHz
dual-core CPUs and 4GB of memory.



any of the possible 213 − 1 nonempty subsets. It
is important to note that this model assigns zero
probability to alignment of an answer-word with
any question-word that is not directly related to it
through any relation. Such words may be linked in
the mixture model, however, via pbase

kid .6

(It is worth pointing out that log-linear models
provide great flexibility in defining new features. It
is straightforward to extend the feature set to include
more domain-specific knowledge or other kinds of
morphological, syntactic, or semantic information.
Indeed, we explored some additional syntactic fea-
tures, fleshing out the configurations in Table 1 in
more detail, but did not see any interesting improve-
ments.)

parent-child Question parent-child pair align respec-
tively to answer parent-child pair. Aug-
mented with the q.-side dependency la-
bel.

child-parent Question parent-child pair align respec-
tively to answer child-parent pair. Aug-
mented with the q.-side dependency la-
bel.

grandparent-child Question parent-child pair align respec-
tively to answer grandparent-child pair.
Augmented with the q.-side dependency
label.

same node Question parent-child pair align to the
same answer-word.

siblings Question parent-child pair align to sib-
lings in the answer. Augmented with
the tree-distance between the a.-side sib-
lings.

c-command The parent of one answer-side word is
an ancestor of the other answer-side
word.

other A catch-all for all other types of config-
urations, which are permitted.

Table 1: Syntactic alignment configurations are par-
titioned into these sets for prediction under the Jeop-
ardy model.

4.5 Parameter Estimation

The parameters to be estimated for the Jeopardy
model boil down to the conditional multinomial
distributions in pbase

kid , the log-linear weights in-
side of pls

kid , and the mixture coefficient α.7 Stan-

6It is to preserve that robustness property that the models are
mixed, and not combined some other way.

7In our experiments, all log-linear weights are initialized to
be 1; all multinomial distributions are initialized as uniform dis-

dard applications of log-linear models apply con-
ditional maximum likelihood estimation, which for
our case involves using an empirical distribution p̃
over question-answer pairs (and their trees) to opti-
mize as follows:

max
θ

∑
q,τq,a,τa

p̃(q, τq,a, τa) log pθ(q, τq | a, τa)︸ ︷︷ ︸P
x pθ(q,τq,x|a,τa)

(8)
Note the hidden variable x being summed out; that
makes the optimization problem non-convex. This
sort of problem can be solved in principle by condi-
tional variants of the Expectation-Maximization al-
gorithm (Baum et al., 1970; Dempster et al., 1977;
Meng and Rubin, 1993; Jebara and Pentland, 1999).
We use a quasi-Newton method known as L-BFGS
(Liu and Nocedal, 1989) that makes use of the gra-
dient of the above function (straightforward to com-
pute, but omitted for space).

5 Experiments

To evaluate our model, we conducted experiments
using Text REtrieval Conference (TREC) 8–13 QA
dataset.8

5.1 Experimental Setup
The TREC dataset contains questions and answer
patterns, as well as a pool of documents returned by
participating teams. Our task is the same as Pun-
yakanok et al. (2004) and Cui et al. (2005), where
we search for single-sentence answers to factoid
questions. We follow a similar setup to Shen and
Klakow (2006) by automatically selecting answer
candidate sentences and then comparing against a
human-judged gold standard.

We used the questions in TREC 8–12 for training
and set aside TREC 13 questions for development
(84 questions) and testing (100 questions). To gen-
erate the candidate answer set for development and
testing, we automatically selected sentences from
each question’s document pool that contains one or
more non-stopwords from the question. For gen-
erating the training candidate set, in addtion to the
sentences that contain non-stopwords from the ques-
tion, we also added sentences that contain correct

tributions; α is initialized to be 0.1.
8We thank the organizers and NIST for making the dataset

publicly available.



answer pattern. Manual judgement was produced
for the entire TREC 13 set, and also for the first 100
questions from the training set TREC 8–12.9 On av-
erage, each question in the development set has 3.1
positive and 17.1 negative answers. There are 3.6
positive and 20.0 negative answers per question in
the test set.

We tokenized sentences using the standard tree-
bank tokenization script, and then we performed
part-of-speech tagging using MXPOST tagger (Rat-
naparkhi, 1996). The resulting POS-tagged sen-
tences were then parsed using MSTParser (McDon-
ald et al., 2005), trained on the entire Penn Treebank
to produce labeled dependency parse trees (we used
a coarse dependency label set that includes twelve
label types). We used BBN Identifinder (Bikel et al.,
1999) for named-entity tagging.

As answers in our task are considered to be sin-
gle sentences, our evaluation differs slightly from
TREC, where an answer string (a word or phrase
like 1977 or George Bush) has to be accompanied
by a supporting document ID. As discussed by Pun-
yakanok et al. (2004), the single-sentence assump-
tion does not simplify the task, since the hardest part
of answer finding is to locate the correct sentence.
From an end-user’s point of view, presenting the
sentence that contains the answer is often more in-
formative and evidential. Furthermore, although the
judgement data in our case are more labor-intensive
to obtain, we believe our evaluation method is a bet-
ter indicator than the TREC evaluation for the qual-
ity of an answer selection algorithm.

To illustrate the point, consider the example ques-
tion, “When did James Dean die?” The correct an-

9More human-judged data are desirable, though we will ad-
dress training from noisy, automatically judged data in Sec-
tion 5.4. It is important to note that human judgement of an-
swer sentence correctness was carried out prior to any experi-
ments, and therefore is unbiased. The total number of questions
in TREC 13 is 230. We exclude from the TREC 13 set questions
that either have no correct answer candidates (27 questions), or
no incorrect answer candidates (19 questions). Any algorithm
will get the same performance on these questions, and therefore
obscures the evaluation results. 6 such questions were also ex-
cluded from the 100 manually-judged training questions, result-
ing in 94 questions for training. For computational reasons (the
cost of parsing), we also eliminated answer candidate sentences
that are longer than 40 words from the training and evaluation
set. After these data preparation steps, we have 348 positive
Q-A pairs for training, 1,415 Q-A pairs in the development set,
and 1,703 Q-A pairs in the test set.

swer as appeared in the sentence “In 1955, actor
James Dean was killed in a two-car collision near
Cholame, Calif.” is 1955. But from the same docu-
ment, there is another sentence which also contains
1955: “In 1955, the studio asked him to become a
technical adviser on Elia Kazan’s ‘East of Eden,’
starring James Dean.” If a system missed the first
sentence but happened to have extracted 1955 from
the second one, the TREC evaluation grants it a “cor-
rect and well-supported” point, since the document
ID matches the correct document ID—even though
the latter answer does not entail the true answer. Our
evaluation does not suffer from this problem.

We report two standard evaluation measures com-
monly used in IR and QA research: mean av-
erage precision (MAP) and mean reciprocal rank
(MRR). All results are produced using the standard
trec eval program.

5.2 Baseline Systems

We implemented two state-of-the-art answer-finding
algorithms (Cui et al., 2005; Punyakanok et al.,
2004) as strong baselines for comparison. Cui et
al. (2005) is the answer-finding algorithm behind
one of the best performing systems in TREC eval-
uations. It uses a mutual information-inspired score
computed over dependency trees and a single align-
ment between them. We found the method to be brit-
tle, often not finding a score for a testing instance
because alignment was not possible. We extended
the original algorithm, allowing fuzzy word align-
ments through WordNet expansion; both results are
reported.

The second baseline is the approximate tree-
matching work by Punyakanok et al. (2004). Their
algorithm measures the similarity between τq and τa
by computing tree edit distance. Our replication is
close to the algorithm they describe, with one subtle
difference. Punyakanok et al. used answer-typing in
computing edit distance; this is not available in our
dataset (and our method does not explicitly carry out
answer-typing). Their heuristics for reformulating
questions into statements were not replicated. We
did, however, apply WordNet type-checking and ap-
proximate, penalized lexical matching. Both results
are reported.



development set test set
training dataset model MAP MRR MAP MRR
100 manually-judged TreeMatch 0.4074 0.4458 0.3814 0.4462

+WN 0.4328 0.4961 0.4189 0.4939
Cui et al. 0.4715 0.6059 0.4350 0.5569

+WN 0.5311 0.6162 0.4271 0.5259
Jeopardy (base only) 0.5189 0.5788 0.4828 0.5571
Jeopardy 0.6812 0.7636 0.6029 0.6852

+2,293 noisy Cui et al. 0.2165 0.3690 0.2833 0.4248
+WN 0.4333 0.5363 0.3811 0.4964

Jeopardy (base only) 0.5174 0.5570 0.4922 0.5732
Jeopardy 0.6683 0.7443 0.5655 0.6687

Table 2: Results on development and test sets. TreeMatch is our implementation of Punyakanok et al.
(2004); +WN modifies their edit distance function using WordNet. We also report our implementation of
Cui et al. (2005), along with our WordNet expansion (+WN). The Jeopardy base model and mixture with
the lexical-semantics log-linear model perform best; both are trained using conditional maximum likelihood
estimation. The top part of the table shows performance using 100 manually-annotated question examples
(questions 1–100 in TREC 8–12), and the bottom part adds noisily, automatically annotated questions 101–
2,393. Boldface marks the best score in a column and any scores in that column not significantly worse
under a a two-tailed paired t-test (p < 0.03).

5.3 Results

Evaluation results on the development and test sets
of our model in comparison with the baseline algo-
rithms are shown in Table 2. Both our model and
the model in Cui et al. (2005) are trained on the
manually-judged training set (questions 1-100 from
TREC 8–12). The approximate tree matching algo-
rithm in Punyakanok et al. (2004) uses fixed edit dis-
tance functions and therefore does not require train-
ing. From the table we can see that our model signif-
icantly outperforms the two baseline algorithms—
even when they are given the benefit of WordNet—
on both development and test set, and on both MRR
and MAP.

5.4 Experiments with Noisy Training Data

Although manual annotation of the remaining 2,293
training sentences’ answers in TREC 8–12 was too
labor-intensive, we did experiment with a simple,
noisy automatic labeling technique. Any answer
that had at least three non-stop word types seen in
the question and contains the answer pattern defined
in the dataset was labeled as “correct” and used in
training. The bottom part of Table 2 shows the re-
sults. Adding the noisy data hurts all methods, but

the Jeopardy model maintains its lead and consis-
tently suffers less damage than Cui et al. (2005).
(The TreeMatch method of Punyakanok et al. (2004)
does not use training examples.)

5.5 Summing vs. Maximizing

Unlike most previous work, our model does not try
to find a single correspondence between words in the
question and words in the answer, during training or
during testing. An alternative method might choose
the best (most probable) alignment, rather than the
sum of all alignment scores. This involves a slight
change to Equation 3, replacing the summation with
a maximization. The change could be made during
training, during testing, or both. Table 3 shows that
summing is preferable, especially during training.

6 Discussion

The key experimental result of this work is that
loose syntactic transformations are an effective way
to carry out statistical question answering.

One unique advantage of our model is the mix-
ture of a factored, multinomial-based base model
and a potentially very rich log-linear model. The
base model gives our model robustness, and the log-



test set
training decoding MAP MRR
Σ Σ 0.6029 0.6852
Σ max 0.5822 0.6489
max Σ 0.5559 0.6250
max max 0.5571 0.6365

Table 3: Experimental results on comparing sum-
ming over alignments (Σ) with maximizing (max)
over alignments on the test set. Boldface marks the
best score in a column and any scores in that column
not significantly worse under a a two-tailed paired t-
test (p < 0.03).

linear model allows us to throw in task- or domain-
specific features. Using a mixture gives the advan-
tage of smoothing (in the base model) without hav-
ing to normalize the log-linear model by summing
over large sets. This powerful combination leads
us to believe that our model can be easily ported
to other semantic processing tasks where modeling
syntactic and semantic transformations is the key,
such as textual entailment, paraphrasing, and cross-
lingual QA.

The traditional approach to cross-lingual QA is
that translation is either a pre-processing or post-
processing step done independently from the main
QA task. Notice that the QG formalism that we have
employed in this work was originally proposed for
machine translation. We might envision transfor-
mations that are performed together to form ques-
tions from answers (or vice versa) and to translate—
a Jeopardy! game in which bilingual players must
ask a question in a different language than that in
which the answer is posed.

7 Conclusion

We described a statistical syntax-based model that
softly aligns a question sentence with a candidate
answer sentence and returns a score. Discrimina-
tive training and a relatively straightforward, barely-
engineered feature set were used in the implementa-
tion. Our scoring model was found to greatly out-
perform two state-of-the-art baselines on an answer
selection task using the TREC dataset.
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