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Abstract. We propose a generalized equation to represent a continuum of sur-

face reconstruction solutions of a given non-integrable gradient field. We show

that common approaches such as Poisson solver and Frankot-Chellappa algo-

rithm are special cases of this generalized equation. For a N × N pixel grid, the

subspace of all integrable gradient fields is of dimension N2 − 1. Our frame-

work can be applied to derive a range of meaningful surface reconstructions from

this high dimensional space. The key observation is that the range of solutions is

related to the degree of anisotropy in applying weights to the gradients in the inte-

gration process. While common approaches use isotropic weights, we show that

by using a progression of spatially varying anisotropic weights, we can achieve

significant improvement in reconstructions. We propose (a) α-surfaces using bi-

nary weights, where the parameter α allows trade off between smoothness and ro-

bustness, (b) M-estimators and edge preserving regularization using continuous

weights and (c) Diffusion using affine transformation of gradients. We provide

results on photometric stereo, compare with previous approaches and show that

anisotropic treatment discounts noise while recovering salient features in recon-

structions.

1 Introduction

Reconstruction from gradient fields is important in several applications such as pho-

tometric stereo (PS) and shape from shading (SfS) [1], mesh smoothing, retinex [2],

high dynamic range compression [3], phase unwrapping, image editing, matting and

fusion [4]. In gradient based algorithms, the gradient field of images is manipulated to

achieve the desired goal and the final image is obtained by a 2D integration of the ma-

nipulated gradient field. In PS/SfS, surface normals/gradients are obtained first and the

desired surface is obtained by integrating the gradient field. The gradient field of a sur-

face should have zero curl or it should be integrable. The integral along any closed loop

(path) should be equal to zero and the reconstruction should not depend on the choice

of the integration path. In practice, the obtained gradient field is rarely integrable due to

the inherent noise in the estimation process, or manipulation of gradient fields. In ad-

dition, ambiguities in the solution and ill-posed problems often lead to non-integrable

gradient fields.



Previous methods have used the integrability constraint during the estimation of

surface (or surface normals) in PS, SfS and Shape from Texture as in [1][5]. In these

methods, integrability is enforced as a constraint to regularize the solution or to re-

move the inherent ambiguities. For example, by enforcing integrability in uncalibrated

PS, the ambiguity in shape estimation can be reduced to a generalized bas-relief trans-

formation [6]. Another class of methods first estimate the gradient field and then apply

integrability to estimate the surface as in [7][8][9][10]. We propose a general framework

for surface reconstruction when a non-integrable gradient field is already provided.

Frankot & Chellappa [8] project the non-integrable gradient field on to a set of

integrable slopes using the Fourier basis functions. Several variants of this approach

have been proposed by either choosing a different basis function [11] (cosine functions)

or using a redundant non-orthogonal set of basis functions (shapelets) [12]. In [7], a

direct analytical solution based on solving a Poisson equation was proposed. Petrovic et

al. [10] used a loopy belief propagation algorithm to obtain the integrable gradient field

from a given non-integrable gradient field assuming Gaussian noise in the gradients.

Most of these methods are based on minimizing a least square cost function, try to

estimate a smooth surface and do not consider the effect of outliers in the given gradient

field. A natural approach to overcome outliers and reduce noise would be to use a robust

estimation like RANSAC. However, due to the high dimensionality, applying RANSAC

is computationally prohibitive.

Noise reduction in images is a topic commonly addressed in image restoration tech-

niques. Several PDE’s based methods such as anisotropic diffusion [13], shock filters

and energy based methods [14] (see [15] for detailed analysis and algorithms) have

been proposed that try to restore an image while maintaining edges or sharp features.

Inspired by the success of these approaches, we show how to incorporate robust esti-

mation, regularization and anisotropic diffusion in the gradient integration problem.

Contributions: The contributions of our paper are as follows

– We present a generalized equation for surface reconstruction from non-integrable

gradient fields. This unification results in a continuum of solutions based on the

degree of anisotropy in assigning weights to the gradients during the integration.

– We show that common approaches such as Poisson solver and Frankot-Chellappa

algorithm can be formulated as special cases of our framework at one end of the

continuum and correspond to isotropic gradient weights.

– We derive new types of reconstructions using a progression of spatially varying

anisotropic weights along the continuum. We propose a solution based on the gen-

eral affine transformation of the gradients using diffusion tensors near the other end

of the continuum and show that it produces better feature preserving reconstructions

compared to previous methods.

The subspace of all integrable gradient fields for a N×N pixel grid is of dimension

N2−1 [16] and it is not possible (and practical) to characterize all the solutions. The so-

lutions we propose constitute a range of meaningful solutions that might be close to the

desired surface. Although we describe a range of solutions, the choice of using a partic-

ular algorithm for a given application remains an open problem. In general, for smooth

surfaces without sharp discontinuities, least square approaches may give good solutions
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∇2 ≡

[
0 1 0
1 −4 1
0 1 0

]
∇2

w ≡

[
0 wy(y − 1, x) 0

wx(y, x − 1) −

∑
wx(y, x)

0 wy(y, x) 0

]

∇2
D ≡

[
0 d22(y − 1, x) + d21(y − 1, x) −d21(y − 1, x)

d11(y, x − 1) + d12(y, x − 1) −

∑
d11(y, x) + d21(y, x)

−d12(y, x − 1) d22(y, x) + d12(y, x) 0

]

∇2: Isotropic kernel, ∇2
w: Anisotropic kernel, ∇2

D: Diffusion kernel

Fig. 1. A continuum of solutions can be derived using our framework by changing fi’s in (6). At

one end is the Poisson solver which gives equal weight to all the gradients, resulting in a spa-

tially invariant isotropic Laplacian kernel ∇2. Individual scaling of the gradients using spatially

varying weights (binary for α-surface, continuous for M-estimator and Regularization) results in

anisotropic kernel ∇2
w (

∑
denotes the sum of neighboring values). In Diffusion, x and y gra-

dients are scaled and linearly combined, resulting in an affine transformation of gradients. This

results in diffusion kernel ∇2
D

while handling noise. With sharp features in surface, the proposed diffusion and alpha-

surface methods produce better feature preserving reconstructions in the presence of

noise and outliers.

2 Problem Statement

Consider a H×W rectangular grid (y, x) of image pixels. Let {p(y, x), q(y, x)} denote

the given non-integrable gradient field over this grid. Define the curl and divergence

operators as: curl(p, q) = ∂p
∂y
− ∂q

∂x
, div(p, q) = ∂p

∂x
+ ∂q

∂y
. Given {p, q}, the

goal is to obtain a surface Z. Let {Zx, Zy} denote the gradient field of Z. A common

approach is to minimize the least square error function given by [7][1]

J(Z) =

∫ ∫ (
(Zx − p)2 + (Zy − q)2

)
dxdy . (1)

The Euler-Lagrange equation gives the Poisson equation: ∇2Z = div(p, q). We will

refer to this method as Poisson solver. One can always write {Zx, Zy} = {p, q} +
{ǫx, ǫy}, where {ǫx, ǫy} denote the correction gradient field which is added to the given

non-integrable field to make it integrable. It was shown in [16] that integrable gradient

fields form a subspace of dimension HW − 1 in the 2HW -dimensional space of all

gradient fields. By adding the correction gradient field, one can move from a point in

the 2HW -dimensional space corresponding to the given non-integrable gradient field

to the subspace of valid integrable gradient fields. From (1), Poisson solver minimizes

J(Z) =
∫ ∫

(ǫ2x + ǫ2y)dxdy. Thus, Poisson solver finds that solution which minimizes

the norm of the correction gradient field (see Fig. 2).
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Fig. 2. Space of all solutions (Left) Poisson solver finds the solution corresponding to the min-

imum norm correction gradient field, but this may not be robust. (Middle) We show that all

gradients are not required for integration using a graph analogy. A 2D graph corresponding to a

sample 4 × 4 grid. Nodes correspond to the value of the surface at the grid points and gradients

correspond to the edges (Right) A spanning tree is the minimal configuration required for gradi-

ent integration. Using only those gradients which correspond to the edges in the spanning tree,

all node values can be obtained up to a constant of integration

(a) (b) (c)
(d)

Fig. 3. Effect of outliers in 2D integration (a) True surface (b) Gaussian noise (σ = 0.02g, g =

maximum gradient magnitude) and uniformly distributed outliers were added to the gradients of

this surface. Reconstruction using Poisson solver. Mean Square Error (MSE) = 10.81 (c) If the

location of outliers were known, rest of the gradients can be integrated to obtain a much better

estimate. MSE = 0.211 (d) One-D height plots for a scan line across the middle of grid

It is well known that a least square solution does not perform well in the presence

of outliers. Consider the surface shown in Figure 3(a), which consists of a ramp and

several peaks. Gaussian random noise and uniformly distributed outliers were added

to the gradient field of this surface. The reconstructed surface from the noisy gradient

field using Poisson solver is shown in Figure 3(b). However, if we knew the locations

of the outliers, we could use the rest of the gradients to perform the integration. The

corresponding reconstruction is shown in Figure 3(c). It is clear that a better solution

can be obtained by removing outliers. Thus, gradient integration can be thought of as a

robust estimation problem. How can we find other meaningful solutions in the space of

all solutions? In the next section, we put forward a framework to do so.

3 A General Framework

A general solution can be obtained by minimizing the following nth order error func-

tional

J =

∫ ∫
E(Z, p, q, Zxayb , pxcyd , qxcyd , . . .) dxdy , (2)



where E is a continuous differentiable function, a, b, c and d are non-negative integers

such that a + b = k, c + d = k − 1 for some positive integer k, Zxayb = ∂kZ
∂xa∂yb ,

pxcyd = ∂k−1p

∂xc∂yd , qxcyd = ∂k−1q

∂xc∂yd and the above equation includes terms correspond-

ing to all possible combinations of a, b, c and d for all k, 1 ≤ k ≤ n. Restrict-

ing to first order derivatives (n = 1), we will consider error functionals of the form

J =
∫ ∫

E(Z, p, q, Zx, Zy)dxdy. The Euler-Lagrange equation gives

∂E

∂Z
− d

dx

∂E

∂Zx

− d

dy

∂E

∂Zy

= 0 or
∂E

∂Z
= div(

∂E

∂Zx

,
∂E

∂Zy

) . (3)

Consider the following form for ∂E
∂Zx

and ∂E
∂Zy

∂E

∂Zx

= f1(Zx, Zy)− f3(p, q),
∂E

∂Zy

= f2(Zx, Zy)− f4(p, q) , (4)

where fi : R × R → C, i = 1 . . . 4 are different functions. Note that these functions

cannot be arbitrary as they should satisfy ∂2E
∂Zx∂Zy

= ∂2E
∂Zy∂Zx

. This implies that

∂f1(Zx, Zy)

∂Zy

=
∂f2(Zx, Zy)

∂Zx

. (5)

Substituting (4) into (3) and bringing all Z terms on one side, we get

div(f1(Zx, Zy), f2(Zx, Zy))− ∂E

∂Z
= div(f3(p, q), f4(p, q)) . (6)

We first show that the previous solutions such as Poisson solver and Frankot-Chellappa

algorithm (in general, projection onto continuous basis functions) can be derived us-

ing (6). We then propose other solutions using the above equation. In all solutions we

assume Neumann boundary conditions given by ∇Z · n̂ = 0.

Poisson Solver (Spatially Invariant Isotropic Weights): The Poisson equation

div(Zx, Zy) = div(p, q) can be obtained from (6) by substituting ∂E
∂Z

= 0,

f1(Zx, Zy) = Zx, f2(Zx, Zy) = Zy, f3(p, q) = p, f4(p, q) = q (see Table 1). (5) is

satisfied as both sides are zero.

Numerical Solution: Let u = div(p, q). Using finite differences and vectoring the

2D matrices in lexicographical ordering, the Poisson equation can be discretized to give

LZ = u, where u = [u(1, 1), . . . , u(H,W )]T and the matrix L is the sparse Laplacian

matrix3 of size HW ×HW . Each row of L has −4 at the diagonal entry and four 1’s

corresponding to the isotropic Laplacian kernel ∇2. Z can be obtained as Z = L−1u.

Reconstruction using basis functions: Frankot-Chellappa (FC) algorithm reconstructs

the surface Z by projecting {p, q} on the set of integrable Fourier basis functions. Let

F(s(x, y)) denote the Fourier transform of s(x, y)4. Given {p, q}, Z is obtained as [8]

Z = F−1(−j
ξxF(p) + ξyF(q)

ξ2
x + ξ2

y

) . (7)

3
The Laplacian matrix needs to be modified at the boundary according to the boundary conditions.

4 F(s(x, y)) =
∫

∞

−∞

∫
∞

−∞
s(x, y)e−j(ξxx+ξyy)dxdy



Let φ(x, y, ξx, ξy) = ej(ξxx+ξyy). We have φx = jξxφ, φy = jξyφ. Substituting ∂E
∂Z

=
0, f1(Zx, Zy) = F(Zx)φ, f2(Zx, Zy) = F(Zy)φ, f3(p, q) = F(p)φ, f4(p, q) =
F(q)φ in (6), we get

div(F(Zx)φ,F(Zy)φ) = div(F(p)φ,F(q)φ) ,

∴ jξxF(Zx) + jξyF(Zy) = jξxF(p) + jξyF(q) ,

∴ −(ξ2
x + ξ2

y)F(Z) = j (ξxF(p) + ξyF(q)) .

which is equivalent to (7). The projection on the Fourier basis functions is implicit in

the above definition of fi’s which transforms the domain as weighted basis functions φ,

the weights being equal to the Fourier transform coefficients. One can generalize this

approach to use any set of ortho-normal basis functions φ. Kovesi’s [12] algorithm is in

a similar spirit while using a redundant set of non-orthogonal basis functions.

In the next section, we show how the functions fi’s can be changed to obtain a

continuum of solutions. Intuitively, in solving the Poisson equation, the Laplacian ma-

trix L is obtained by using a spatially invariant isotropic kernel (∇2) which gives

equal weights to gradients. This results in Poisson solver being non-robust and favor-

ing smoothness. To obtain robust solutions, we modify the Laplacian matrix by using

spatially varying anisotropic kernel depending on local shape, or correction gradient

field.

4 A Continuum of Solutions

Techniques for robust estimation includes the well-known RANSAC [17] algorithm and

M-estimators. We first show that applying RANSAC to gradient integration is compu-

tationally prohibitive. To do that we need to find the minimum number m of gradients

required for integration. For example, if we want to estimate a line from 2D points, we

need m = 2 points. For a surface defined over a H ×W grid, the minimum number

of gradients required for integration is m = HW − 1. However, integration cannot be

done using any such set of m gradients. These m gradients should form a spanning tree

of the 2D planar graph defined on the grid. This can be seen as follows.

Define a 2D graph over the grid, where the nodes correspond to the value of the

surface at each pixel (grid point) and the edges correspond to the gradients (see Fig.

2). To be able to integrate, each node should be reachable using some integration path.

Since a spanning tree is a minimal configuration which spans all nodes, the gradients

should be in that configuration. For HW nodes, the number of edges in any spanning

tree is HW − 1, hence m = HW − 1.

4.1 RANSAC Gradient Integration (Computationally Prohibitive)

RANSAC works by randomly selecting a set of minimum data points m and finding

the number of inliers using a given tolerance level τ . This is repeated T times and the

set having the maximum number of inliers is used to estimate the parameters. A naive

RANSAC based approach to surface reconstruction can be as follows:

– Find a random spanning tree of the 2D planar graph on the grid.



– Integrate using the gradients corresponding to the edges in the spanning tree. Find

the number of gradient inliers using the solution given an error tolerance τ .

– Repeat T times and choose that spanning tree using which maximum number of

inliers are obtained.

In [17], it was shown that to ensure with probability γ that at least one of the random

selections is an error-free set of m data points, one must make at least T selections,

where T = log(1 − γ)/ log(1 − wm) and w is the probability that a particular data

point is an inlier. However, T becomes extremely large as the size of grid is increased.

For example, assuming w = 0.95, even for a 16 × 16 grid (m = 255), to ensure a

probability γ = 0.95, T = 1.43 ∗ 106. Thus, a random selection process for choosing

the inliers set is practically impossible for decent grid sizes.

4.2 α-surface: Anisotropic Scaling using Binary Weights

As noted in [17], if there is a problem related rationale for choosing the set of inliers,

one should use a deterministic selection process instead of a random one. In a general

estimation problem like fitting a line, each data point is independent and there are no

structural constraints. For 2D integration, integrability enforces a structural constraint.

Also, since the goal is to fit a surface, there is an inherent smoothness involved (at

regions separated by discontinuities). Thus, one can decide an initial spanning tree using

a deterministic process.

Suppose we fix an initial spanning tree, claiming all gradients corresponding to the

edges in this spanning tree to be inliers. We define α-surface as an iterative scheme,

where at each iteration, based on the tolerance level α, all gradients for which the cor-

rection term is less than α are added to the inliers set. Formally, let S denote the set

containing the gradients corresponding to the edges in the initial spanning tree. For an

α ≥ 0, α-surface is given by

– Initialize: Integrate using the gradients in the set S to get Z0. k ← 1.

– At iteration k: Compute Zx, Zy as the gradients of Zk−1.

– If |ǫx| = |Zx − p| ≤ α and Zx not in S, add Zx to set S. If |ǫy| = |Zy − q| ≤ α
and Zy not in S, add Zy to set S. Let n be the number of new additions to set S.

– Integrate using the gradients in S to obtain Zk.

– Terminate if n = 0, else k ← k + 1.

Note that the gradients are not removed from S in the above scheme because the mini-

mal configuration of spanning tree must be satisfied. The parameter α decides between

outliers and inliers. If α = 0, only the gradients corresponding to the initial spanning

tree are considered as inliers and are used for integration. As α is increased, more gradi-

ents are used for integration. At a large value of α, all gradients will be treated as inliers

and the solution becomes equivalent to that given by the Poisson solver. By changing

α, one can trace a path in the solution space, where one end is the solution based

on a minimal data configuration and the other end is the solution based on using all the

data. Thus, α-surface is a weighted approach, where the weights are 1 for gradients in

S (used for integration) and 0 otherwise. If we define

bx(x, y) = 1 if Zx ∈ S, 0 o.w., by(x, y) = 1 if Zy ∈ S, 0 o.w. , (8)



then the error functional J for each iteration of α-surface can be written as

J =

∫ ∫
bx(Zx − p)2 + by(Zy − q)2dxdy . (9)

The corresponding Euler-Lagrange equation is div(bxZx, byZy) = div(bxp, byq).
Thus, the gradient fields {Zx, Zy} and {p, q} are scaled using the binary weights bx

and by in an anisotropic manner.

Determining initial spanning tree: An easy way to fix an initial spanning tree is

to assign weights to each edge and find the minimum spanning tree (MST). In [18],

an approach for curl correction was presented, where first all edges corresponding to

non-zero curl were broken. The resulting graph was connected by finding the set of

links with minimum total weight by assigning curl values as weights. We have exper-

imented with two types of edge weights: one based on curl values and other based on

gradient magnitude. In our experience, assigning gradient magnitude as weights gives

better results compared to curl values. For results presented in Sect. 5, we use gradient

magnitude as weights.

Determining α: Suppose that the gradients are corrupted by additive IID Gaussian

noise N(0, σ2). In discrete domain, curl values can be obtained by considering the

smallest loop made up of 4 square connected pixels, (y, x), (y, x + 1), (y + 1, x) and

(y + 1, x + 1) (see Fig. 2(middle)). The integral along this loop is

Cp,q(y, x) = p(y + 1, x)− p(y, x) + q(y, x)− q(y, x + 1) . (10)

Using the above equation, the mean and variance of Cp,q will be 0 and 4σ2 respec-

tively (in practice, variance can be higher due to outliers). We estimate σ as σ =√
(σ2

C − µ2
C)/4, where (µC , σ2

C) denote the estimated mean and variance of Cp,q using

the given gradient field {p, q}. We use α = 1.5σ.

Numerical Solution: Let ub = div(bxp, byq). div(bxZx, byZy) can be written as

∇2
bZ, where∇2

b is the weighted Laplacian kernel (Fig. 1,∇2
w with b’s as weights). This

weighted kernel is applied at each pixel to calculate the weighted Laplacian matrix Lb

and the weighted divergence ub. Z is obtained as Z = L−1
b ub. Note that the matrix

Lb is guaranteed to be invertible since the set S contains the gradients corresponding

to some spanning tree (minimal configuration). Next we show how to generalize the

inlier/outlier weighting scheme to approaches based on continuous weights.

4.3 Anisotropic Scaling using Continuous Weights

In M-estimators, the effect of outliers is reduced by replacing the squared error residual

ρ(.) = (.)2 by another function of residuals. Here ρ is a symmetric, positive-definite

function with a unique minimum at zero, and is chosen to be less increasing than square.

Several functions such as Huber, Cauchy, Tuckey and those based on Lp norm have

been proposed. M-estimators can be formulated as an iterative re-weighted least squares

solution

J =

∫ ∫
w(ǫk−1

x )(Zx − p)2 + w(ǫk−1
y )(Zy − q)2dxdy , (11)

where the weights (wx = w(ǫk−1
x ), wy = w(ǫk−1

y )) at iteration k depends on the

residual at iteration k − 1 using the function ρ. The Euler-Lagrange equation of (11)



gives div(wxZx, wyZy) = div(wxp, wyq). This is similar to α-surface except that

the weights are continuous. Z can be obtained as Z = L−1
w uw.

Ill-posed problems (such as estimating optical flow) are often solved by regular-

ization. The Poisson solver can be regularized by modifying the error function as

J(Z) =

∫ ∫ (
(Zx − p)2 + (Zy − q)2

)
+ λ(φ(Zx) + φ(Zy))dxdy , (12)

where the second term is the regularization term using function φ. Common examples

include φ(s) =
√

1 + s2 and φ(s) = log(1 + s2). The Euler-Lagrange equation of the

above error functional gives: div(Zx, Zy)+(λ/2)div(φ′(Zx), φ′(Zy)) = div(p, q).
In terms of (6), this corresponds to ∂E

∂Z
= 0, f1(Zx, Zy) = Zx+λ

2 φ′(Zx), f2(Zx, Zy) =

Zy + λ
2 φ′(Zy), f3(p, q) = p, f4(p, q) = q (Table 1). Minimizing the energy as above

is difficult because of the above equation being non-linear. Using the principle of half-

quadratic minimization (see [14] for details), one can introduce auxiliary variables w =
(wx, wy). Minimizing (12) is then equivalent to the following iterative minimization

– Z0 ≡ 0. k ← 1. Repeat until convergence

– wk
x = φ′(Zk−1

x )/(2Zk−1
x ), wk

y = φ′(Zk−1
y )/(2Zk−1

y )

– Solve for Zk: ∇2Zk + λdiv(wk
xZk

x , wk
yZk

y ) = div(p, q)

The equation for solving Zk can be rewritten as (∇2 + λ∇2
wk)Zk = div(p, q), where

∇2
wk is the weighted Laplacian kernel (Fig. 1). The solution is given by Zk = (L +

λLwk)−1u.

4.4 Affine Transformation of Gradients using Diffusion Tensors

Image restoration from noisy images has been a classical problem in image processing.

Anisotropic diffusion [13] and energy minimization methods [14][15] are some of the

common approaches for image restoration. Weickert [19] proposed a generalization of

divergence based equation for image restoration, given by It = div(D∇I), where

D(y, x) =

[
d11(y, x) d12(y, x)
d21(y, x) d22(y, x)

]
is a 2× 2 symmetric, positive-definite matrix at each

pixel (a field of diffusion tensors). We propose to generalize the Poisson solver using D
as

div(D

[
Zx

Zy

]
) = div(D

[
p
q

]
) . (13)

The above equation is the Euler-Lagrange equation of the following error functional:

J(Z) =
∫ ∫

d11(Zx − p)2 + (d12 + d21)(Zx − p)(Zy − q) + d22(Zy − q)2dxdy and

can be written as

div(d11Zx + d12Zy, d21Zx + d22Zy) = div(d11p + d12q, d21p + d22q) . (14)

Note that (14) can be obtained from (6) by substituting ∂E
∂Z

= 0, f1(Zx, Zy) = d11Zx +
d12Zy , f2(Zx, Zy) = d21Zx + d22Zy, f3(p, q) = d11p + d12q, f4(p, q) = d21p + d22q
(Table 1). Thus, Diffusion corresponds to the function fi’s being affine in their argu-

ments. The gradients are scaled and linearly combined. The symmetry of the tensor



D comes directly from the fact that (5) must be satisfied, leading to d21 = d12. The

positive-definiteness criteria is required to avoid ill-conditioning in the numerical solu-

tion obtained from discretization. Although we loosely call this scheme as Diffusion,

there is no notion of time or iteration in this scheme.

Let uD = div(d11p + d12q, d21p + d22q). (14) can be written as ∇2
DZ = uD,

where ∇2
D denote the weighted Laplacian kernel based on the diffusion tensor D (Fig.

1). The solution is given by Z = L−1
D uD.

Obtaining diffusion tensor: Several schemes for obtaining diffusion tensor such as

edge preserving [15](Eq. 3.60) and coherence preserving [19] have been proposed. We

use an edge-preserving diffusion tensor obtained as follows. At each pixel, we find a

2× 2 matrix H by convolving component wise

[
p2 p× q

p× q q2

]
with a Gaussian kernel.

Let µ1 ≥ µ2 denote the eigen-values of H . We obtain new eigen values λ1, λ2 as:

λ2 = 1, λ1 = 1 if µ1 = 0, λ1 = β + 1 − exp(−3.315/µ4
1) if µ1 > 0. Here β = 0.02

to ensure positive-definiteness. D is obtained from the eigen-vectors of H and the new

eigen-values.

In all the above solutions, ∂E
∂Z

= 0. Our framework could also be used when the Z

values are known at some control points [20][21] by utilizing the ∂E
∂Z

term.

5 Results

We compare5 Poisson solver, FC algorithm, α-surface, M-estimator using Huber func-

tion, Diffusion and Regularization using φ(s) =
√

1 + s2, λ = 10. Since the divergence

of the given gradient field is not modified in the Regularization method, it usually does

not perform as well as other approaches. Table 1 gives the summary of fi’s and the

equation for each algorithm. Figure 4 shows the reconstructed surfaces using various

algorithms from the noisy gradient field of the synthetic surface shown in Figure 3.

Note that the surface reconstructed using α-surface and Diffusion are much better than

those reconstructed using other approaches. We also present results on calibrated photo-

metric stereo using synthetic and real sequences. The synthetic images were generated

using the Lambertian reflectance model under distant point light sources. We first esti-

mate the surface normals (nx, ny, nz) at each pixel. The gradient field is then obtained

as p = −nx/nz, q = −ny/nz . Pixels where the surface normal cannot be estimated

(being in shadow in most of the images) give rise to outliers. Table 2 gives the MSE

between the estimated surface and the true surface for various algorithms.

Vase: Six images generated using the Vase depth map are shown in Figure 5. We

add Gaussian random noise (σ = 10% of maximum intensity) to the images. In ad-

dition, we also add small amount of uniformly distributed noise to the light source

directions. The reconstructed surfaces using various algorithms are shown in Figure 5.

α-surface, Diffusion and M-estimator gives better shape estimate compared to the rest

of algorithms.

Mozart: Five images generated using the Mozart depth map are shown in Figure 6.

Gaussian random noise (σ = 5% of maximum intensity) was added to the images. The

5 Matlab code is available at http://www.cfar.umd.edu/∼aagrawal



Table 1. A continuum of solutions can be obtained by changing fi’s in (6), which control the

anisotropy of the weights applied to the gradients. In weighted solutions, the Laplacian matrix

is obtained using a spatially varying anisotropic kernel based on weights. This is in contrast

with a spatially invariant isotropic kernel used in the Poisson equation. In M-estimators, the

weights depend on the residual error, while in Diffusion and Regularization, they depend on

the underlying surface

Algorithm fi’s corresponding to (6), ∂E
∂Z

= 0 Equation

f1(Zx, Zy) f2(Zx, Zy) f3(p, q) f4(p, q)

Poisson solver Zx Zy p q LZ = u

Frank-Chell F(Zx)φ F(Zy)φ F(p)φ F(q)φ (7)

α-surface bxZx byZy bxp byq LbZ = ub

M-estimators wxZx wyZy wxp wyq LwZ = uw

Regularization Zx + λ
2
φ′(Zx) Zy + λ

2
φ′(Zy) p q (L + λLw)Z = u

Diffusion d11Zx + d12Zy d21Zx + d22Zy d11p + d12q d21p + d22q LDZ = uD

Table 2. Mean square errors (MSE) for synthetic data sets

Poisson-solver FC α-surface M-estimator Regularization Diffusion

Ramp-Peaks 10.81 11.20 2.65 9.49 5.35 2.26
Vase 294.46 239.62 22.20 15.14 164.98 2.78
Mozart 2339.24 1316.66 219.72 359.12 806.85 373.72

reconstructed surfaces using various algorithms are also shown in Figure 6. While the

discontinuities in the shape are smeared in Poisson solver, FC and Regularization, these

are preserved in α-surface, Diffusion and M-estimator.

Flowerpot: Figure 7 shows results on calibrated photometric stereo using 4 real

images of a flowerpot. Notice that least squares solutions (Poisson solver and FC al-

gorithm) are noisy and do not recover all features (such as the top of the flowerpot).

Diffusion, α-surface and M-estimator approaches recovers all salient features while

discounting noise.

6 Conclusions

We proposed a general framework for surface reconstruction from gradient fields, based

on controlling the anisotropy of weights for gradients during the integration. We showed

that previous solutions such as Poisson solver and Frankot-Chellappa algorithm are

special cases of our framework. We derived a continuum of solvers: α-surface (binary

weights) where α allows tradeoff between smoothness and robustness, Regularization

and M-estimators (continuous weights) and Diffusion (affine transformation on gra-

dients). Results and comparisons showed that α-surface and Diffusion method give

consistently better feature preserving reconstructions.



Fig. 4. Reconstruction in presence of noise and outliers (Ramp-Peaks): (Top two rows) (Left)

Reconstructed surfaces using various algorithms (Right) One-D height plots for a scan line across

the middle of grid for various solutions. (Bottom row) x and y gradient weights for the last

iteration of α-surface, M-estimator & Regularization. Last three images shows d11, d22 & d12

for Diffusion. (white= 1, black= 0) except for d12 (white= 0.5, black= −0.5). Notice that

α-surface and Diffusion give much better results compared to other approaches

Fig. 5. Photometric Stereo on Vase: (Top row) Noisy input images and true surface (Next two

rows) Reconstructed surfaces using various algorithms. (Right Column) One-D height plots for

a scan line across the middle of Vase. Better results are obtained using α-surface, Diffusion and

M-estimator as compared to Poisson solver, FC and Regularization



Fig. 6. Photometric Stereo on Mozart: Top row shows noisy input images and the true surface.

Next two rows show the reconstructed surfaces using various algorithms. (Right Column) One-D

height plots for a scan line across the Mozart face. Notice that all the features of the face are

preserved in the solution given by α-surface, Diffusion and M-estimator as compared to other

algorithms

Fig. 7. Photometric Stereo on Flowerpot: Left column shows 4 real images of a flowerpot.

Right columns show the reconstructed surfaces using various algorithms. The reconstructions

using Poisson solver and Frankot-Chellappa algorithm are noisy and all features (such as top of

flowerpot) are not recovered. Diffusion, α-surface and M-estimator methods discount noise while

recovering all the salient features
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