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WHAT IS THE REES ALGEBRA OF A MODULE?

DAVID EISENBUD, CRAIG HUNEKE, AND BERND ULRICH

(Communicated by Wolmer V. Vasconcelos)

Abstract. In this paper we show that the Rees algebra can be made into a
functor on modules over a ring in a way that extends its classical definition
for ideals. The Rees algebra of a module M may be computed in terms of a
“maximal” map f from M to a free module as the image of the map induced
by f on symmetric algebras. We show that the analytic spread and reductions
of M can be determined from any embedding of M into a free module, and
in characteristic 0—but not in positive characteristic!—the Rees algebra itself
can be computed from any such embedding.

The Rees algebra of an ideal I in a ring R, namely R =
⊕∞

n=0 I
n = R[It] ⊂

R[t], plays a major role in commutative algebra and in algebraic geometry since
Proj(R) is the blowup of Spec(R) along the subscheme defined by I. Several authors
have found it useful to generalize this construction from ideals to modules; see
for instance Gaffney and Kleiman [GK], Katz [K], Katz and Kodiyalam [KK],
Kleiman and Thorup [KT], Kodiyalam [Ko], Liu [L], Rees [R], Simis, Ulrich, and
Vasconcelos [SUV1], [SUV2], and Vasconcelos [V], who define the Rees algebra of a
module satisfying one or another hypothesis. Usually this hypothesis was tailored
to approach the problem(s) the authors were interested in solving.

The goal of this paper is to clarify the definition for arbitrary finitely generated
modules over a Noetherian ring R. Our interest in this clarification arose through
our work on generalized prinicipal ideal theorems and the heights of ideals of minors,
where we heavily use Rees algebras (see Eisenbud-Huneke-Ulrich [EHU1], [EHU2]).
It seems worthwhile to understand the differences and similarities of the various
approaches from the papers above, and to make the definition as functorial as
possible. Even for ideals there is a problem: in the grade 0 case it is not clear from
the definition above whether the Rees algebra depends on the embedding of I in R.

A natural approach is to define the Rees algebra of a module as the symmetric
algebra modulo R-torsion (that is, modulo elements killed by non-zerodivisors of
R). This does not provide a satisfactory definition in all cases in the sense that
it may give the wrong answer even for an ideal, if the ring is not a domain. In
general, as was well-known, it is a good definition when the module M “has a
rank”, i.e., when M is free of constant rank locally at the associated primes of
R. This hypothesis is sufficient for many applications; however, for example, it is
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not necessarily preserved replacing M by M/xM and R by R/xR even if x is a
non-zerodivisor on M and R.

Another alternative is to consider a module M together with an embedding into
a free module G, and define the Rees algebra of M to be the subalgebra of the
symmetric algebra of G generated by M . More generally, for any homomorphism
g : M → N we define R(g), the Rees algebra of g, to be the graded R-algebra which
is the image of the map Sym(g) : Sym(M)→ Sym(N). One may then try to define
the Rees algebra of M as R(g) for an embedding g of M into a free module G.

However, the result may depend on the chosen embedding g. In Section 1 we
give as example a principal ideal I in an Artinian ring of characteristic p > 0, and
an embedding g : I → R2 such that R(g) is not isomorphic to R(I) =

⊕∞
n=0 I

n.
Of course R(I) may also be expressed as R(i), where i is the inclusion of I as an
ideal of R. Thus R(g) depends on g, not only on M .

Here we take a third alternative:

Definition 0.1. If R is a ring and M is an R-module, we define the Rees algebra
of M to be

R(M) = Sym(M)/(
⋂
g

Lg)

where the intersection is taken over all homomorphisms g fromM to freeR-modules,
and Lg denotes the kernel of Sym(g).

Although the definition may at first appear somewhat complicated, it is at least
obviously functorial: if h : M → N is a homomorphism of R-modules, then for
every homomorphism from N to a free module g : N → G the map gh is a ho-
momorphism from M to a free module, so Sym(h) : Sym(M) → Sym(N) induces
an R-algebra homomorphism R(M) → R(N). As the symmetric algebra functor
preserves epimorphisms, so does the Rees algebra functor.

In Section 1 we solve the problem of computing R(M) (if M is finitely generated)
by showing that R(M) = R(f) for any homomorphism from M to a free module
F such that the dual map F ∗ → M∗ is surjective. This implies that forming the
Rees algebra of a finitely generated module over a Noetherian ring commutes with
flat base change. We also show that if g : M → R is an embedding in a free module
of rank 1, then R(M) = R(g), so that R(M) agrees with the classical definition
for ideals (in particular, this shows that the classical definition is independent of
the choice of representation of M as an ideal). Moreover, we show that in many
cases R(M) can be computed from any embedding. The following is a special case
of what we prove:

Theorem 0.2. Let R be a Noetherian ring and let M be a finitely generated R-
module. If R is torsion free over Z, or R is unmixed and generically Gorenstein,
or M is free locally at each associated prime of R, then R(M) ∼= R(g) for any
embedding g : M → G of M into a free module G.

In Section 2 we use our Rees algebra construction to introduce analytic spread
and integral dependence for arbitrary modules. We prove that for any embedding
g of M into a free module, the natural map R(M)→R(g) has nilpotent kernel. It
follows that analytic spread and integral dependence can be determined in R(g).

In two subsequent papers [EHU1], [EHU2] we apply the notions developed here
to obtain new generalized principal ideal theorems and results on heights of ideals
of minors of a matrix.
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1. Rees algebras

We begin with an example showing that the Rees algebra of a module cannot be
defined from an arbitrary embedding into a free module, even when the module is
an ideal:

Example 1.1. Let k be a field of characteristic p, let

R = k[X,Y, Z]/((Xp, Y p) + (X,Y, Z)p+1),

write x, y, z for the images of X,Y, Z in R, and take M to be the ideal M =
Rz ∼= R/(x, y, z)p. Write g1 : M → R for the inclusion M = Rz ⊂ R, and let
g2 : M → R2 = Rt1 ⊕Rt2 be the homomorphism sending z to xt1 + yt2. It is easy
to see that g2 is also an embedding. The algebra R(g1) is the same as the classical
Rees algebra R =

⊕∞
n=0(zn), and has pth graded component (zp) 6= 0. On the

other hand
R(g2)p = R(xptp1 + yptp2) = 0,

and it follows that R(g2) cannot surject onto the classicalR = R(g1) by any graded
homomorphism, so R(g2) 6∼= R(M) as graded rings.

To compute the Rees algebra of a module, we use the following notion.

Definition 1.2. Let R be a ring and let M be an R-module. We say that f : M →
F is a versal map to a free module, if F is a free R-module, f is a homomorphism,
and every homomorphism from M to a free module factors through f .

It follows at once from the definition that if f : M → F is a versal map to a free
R-module F , then R(M) = R(f). With a finiteness assumption it is easy to find
such a map:

Proposition 1.3. Let R be a ring and let M be a finitely generated R-module.
Let f : M → F be a homomorphism to a free R-module F so that the dual map
F ∗ → M∗ is surjective (such f can be obtained by composing the natural map
M →M∗∗ with the dual of any epimorphism from a finitely generated free module
onto M∗). One has that f is versal and R(M) = R(f). In particular, formation
of the Rees algebra of a finitely generated module over a Noetherian ring commutes
with flat base change.

Proof. Let g : M → G be a homomorphism to a free R-module. We must show
that g factors through f . Since M is finitely generated, g factors through a finitely
generated free summand of G, and we may assume that G is finitely generated. It
follows that the dual G∗ is free. Consequently we may write g∗ = f∗h. We may
also suppose that F is finitely generated. Since F and G are reflexive, the desired
factorization is g = h∗f .

The equality R(M) = R(f) has been observed just before the Proposition.
Finally assume that R is Noetherian and let f be any homomorphism satisfying
our hypothesis. If S is a flatR-algebra, then HomS(S⊗RM,S) = S⊗RHomR(M,R)
because M is finitely presented. Thus S⊗R f has a surjective S-dual, and it follows
that R(S ⊗RM) = R(S ⊗R f) = S ⊗R R(f) = S ⊗R R(M), as required. �
Example 1.1 continued. By Proposition 1.3 the map g2 is not versal. It is easy
to check that M∗ requires 3 generators and a versal map from M to R3 may be
written as

f : M = Rz → R3 = Rt1 ⊕Rt2 ⊕Rt3, z 7→ xt1 + yt2 + zt3.
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We have
R(f)p = R(xptp1 + yptp2 + zptp3) = Rzptp3 = R(M)p,

as implied by Proposition 1.3.

Next we show that our definition of the Rees algebra agrees with the classical
notion for ideals, which is thus independent of the embedding of the ideal into R.

Theorem 1.4. Let R be a ring, let M be a finitely generated ideal of R, and let
g : M → R be the inclusion map. The natural map from R(M) to the classical Rees
algebra R =

⊕∞
n=0 I

n = R(g) is an isomorphism.

Proof. Let f : M → F be a versal map to a free module F , of rank n, say. Since
f is versal we may find a homomorphism h : F → R so that g = hf . We must
show that φ : = Sym(h) is a monomorphism on the subring of Sym(F ) generated
by f(M).

Write Sym(F ) = R[t1, . . . , tn], and Sym(R) = R[z]. Let m1, . . . ,ms be genera-
tors of M , and write ai = g(mi) ∈ R, so that φ(f(mi)) = aiz. Let S = R[x1, . . . , xs]
be a polynomial ring, and consider the homomorphism ψ : S → Sym(F ) sending
xi to f(mi). We must show that the kernel of ψ is the same as the kernel of φψ.
Giving each xi degree 1, the kernel of φψ is homogeneous, so it suffices to show
that if u ∈ S is a form of degree d such that φψ(u) = 0, then ψ(u) = 0. We do
induction on d, the case d = 0 being obvious.

We may write u =
∑s

i=1 xiui where the ui are forms of degree d−1. We see that

0 = φψ(u) = φψ(
∑
i

xiui) = φψ(
∑
i

aiui)z,

so φψ(
∑

i aiui) = 0. By our induction hypothesis, ψ(
∑

i aiui) = 0, too.
We may expand each ψ(ui) in the form ψ(ui) =

∑
α ri,αt

α, where the sum runs
over all multi-indices α of weight d − 1, and thus

∑
i

∑
α airi,αt

α = 0. Since the
distinct monomials tα are linearly independent, we have

∑
i airi,α = 0 for each

α. By our hypothesis that g is an embedding, the f(mi) satisfy the same linear
relations as the ai, so we get

∑
i f(mi)ri,α = 0 for each α, and finally ψ(u) =∑

i

∑
α f(mi)ri,αtα = 0, as required. �

For the proofs that follow we need to identify the minimal and the associated
primes of R(M).

Proposition 1.5. Let R be a Noetherian ring and let M be a finitely generated
R-module. There is a one-to-one correspondence between the associated primes of
R(M) and the associated primes of R given by P 7→ R∩P , and likewise for minimal
primes.

Proof. Notice that R(M) is an R-subalgebra of a polynomial ring S in finitely
many variables over R. Every associated prime of R is the contraction of an as-
sociated prime of R(M), and every associated prime of R(M) is the contraction
of an associated prime of the polynomial ring S, which in turn is extended from
an associated prime of R. Since the resulting one-to-one correspondence between
Ass(R(M)) and Ass(R) is order preserving, we have also proved the claim about
minimal primes. �

Note that a versal map from a finitely generated module M to a free module
has the same image as the natural map from M to its double dual. This image is

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



REES ALGEBRA OF A MODULE 705

called the torsionless quotient of M . Any homomorphism from M to a free module
factors uniquely through the torsionless quotient of M . The following result gives
conditions under which the Rees algebra of a torsionless module can be deduced
from any inclusion into a free module. For convenience in applications we will state
it without the torsionless hypothesis.

Theorem 1.6. Let R be a Noetherian ring, let M be a finitely generated R-module,
and let g : M → G be a homomorphism to a free R-module G inducing an inclusion
on the torsionless quotient of M . If for each associated prime Q of R either RQ is
Gorenstein, or MQ is free, or RQ is Z-torsion free, then the natural epimorphism
R(M)→R(g) is an isomorphism.

Proof. Replacing M by its torsionless quotient, we may assume that g : M → G is
an inclusion.

Let f : M → F be a versal map from M to a free module, and let R = R(M) =
R(f) be the Rees algebra of M . Let h : F → G be a homomorphism with g = hf
and let φ : R → R(g) be the induced epimorphism. By Proposition 1.5 every
associated prime of R contracts to an associated prime of R. Hence to prove the
injectivity of φ we may replace R by RQ, where Q is an associated prime of R.

If R is Gorenstein (and hence Artinian), then free modules are injective, and
therefore any monomorphism from a module to a free module is versal. Similarly, if
M is free, then since R has depth 0, any monomorphism from M to a free module
splits, and thus again is versal. In either case we see that f and g are both versal,
and the injectivity of φ follows from the functoriality of the Rees algebra.

Finally, we treat the case where R is Z-torsion free. It suffices to consider the
case where F = G ⊕ H is finitely generated with H free, and h is the natural
projection. Set J = H · Sym(F ), the kernel of Sym(h). Since g is an inclusion, φ is
an injection in degree 1, and we must show that φ is an injection in every degree,
or equivalently J ∩R = 0. This follows from the next Lemma:

Lemma 1.7. Let R be a ring and let F be a finitely generated free R-module. Let
M be a submodule of F , and let R be the subalgebra of Sym(F ) generated by M .
Let H be a summand of F with H ∩M = 0. If d! is a non-zerodivisor in R, then
(H · Sym(F )) ∩Rd = 0.

Proof. It is enough to prove that the Lemma holds after localizing at each maximal
ideal of R, so we may assume that R is local.

Let t1, . . . , tn be a basis of F . Since R is local we may suppose that H is generated
by tm+1, . . . , tn. Set J = H · Sym(F ). We may assume that d > 1. Since (d − 1)!
is a non-zerodivisor as well, we know by induction that J ∩ Rd−1 = 0. Writing
∂i = ∂

∂ti
, one has ∂i(R) ⊂ R for every i because the R-algebra R is generated by

linear forms, ∂i(J) ⊂ J for every i ≤ m, and ∂i(J2) ⊂ J for every i.
Now if u ∈ J ∩ Rd, then ∂i(u) ∈ J ∩ Rd−1 = 0 for every i ≤ m. Since d! is

a non-zerodivisor on R, it follows that u ∈ R[tm+1, . . . , tn]d ⊂ J2. Thus ∂i(u) ∈
J ∩Rd−1 = 0 for every i, and hence u = 0 because d! is a non-zerodivisor. �

To connect our definition of the Rees algebra with the torsion in the symmetric
algebra, suppose that R is a Noetherian ring, M is a finitely generated R-module,
and A is the R-torsion of Sym(M). If MQ is free for every associated prime Q of
R and if f : M → F is a versal map to a free module, then Sym(f) induces an
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isomorphism Sym(M)/A→̃R(M). This follows from Proposition 1.5 and the fact
that Sym(f)Q is injective for every associated prime Q of R.

If we are only interested in the reduced structure of the Rees algebra of M , then
we can compute it from any embedding of the torsionless quotient of M .

Proposition 1.8. Let R be a Noetherian ring, let M be a finitely generated R-
module, and let g : M → G be a homomorphism to a free R-module G inducing an
inclusion on the torsionless quotient of M . The kernel of the natural epimorphism
R(M)→R(g) is nilpotent.

Proof. By Proposition 1.5 every minimal prime of R(M) contracts to a minimal
prime of R, so it is enough to prove the result after localizing at a minimal prime of
R. Thus we may assume that (R,m) is Artinian and local. We may also suppose
that G is finitely generated and we may replace M by its torsionless quotient to
assume that g is a monomorphism.

Let f : M → F be a versal map from M to a free module, and let K be the
kernel of the natural epimorphism R(M) = R(f) → R(g). Suppose first that M
has no free summand. Because R is local, it follows that Im f ⊂ mF . The kernel
K must be contained in the positive degree part of R(M), which is contained in
mSym(F ). As m is nilpotent, K is nilpotent as well.

In the general case, let H be a maximal free submodule of M . Since any inclusion
of finitely generated free modules over an Artinian ring splits, we may write G =
G′⊕H and M = M ′⊕H in such a way that g = g′⊕1H . The mapR(M)→ Sym(G)
is obtained from the mapR(M ′)→ Sym(G′) induced by g′ by adjoining polynomial
variables. As the kernel of the latter map is nilpotent, the desired result follows. �

2. Integral dependence

In this section we introduce general definitions of integral dependence and of
analytic spread for modules that we will apply elsewhere.

Definition 2.1. Let R be a ring, M an R-module, and U ⊂ L submodules of M .

(1) Let U ′, L′ be the images of U,L in R(M) and consider the subalgebras
R[U ′] ⊂ R[L′] ⊂ R(M). We say L is integral over U in M if the ring
extension R[U ′] ⊂ R[L′] is integral.

(2) We say M is integral over U or U is a reduction of M , if M is integral over
U in M .

In the situation of Definition 2.1(1) the Rees algebra of L maps to the Rees
algebra of M , so if L is integral over U , then L is integral over U in M .

Theorem 2.2. Let R be a Noetherian ring, M a finitely generated R-module,
U ⊂ L submodules of M , and f : M → F a versal map from M to a free R-module.
The following are equivalent:

(1) L is integral over U in M .
(2) For every minimal prime Q of R, the module L′ is integral over U ′ in M ′,

where ′ denotes images in F/QF .
(3) For every homomorphism M → G to a free R-module and for every homo-

morphism R→ S to a domain S, the module L′ is integral over U ′ in M ′,
where ′ denotes tensoring with S and taking images in S ⊗R G.
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(4) For every homomorphism R → V to a rank one discrete valuation ring V
whose kernel is a minimal prime of R, we have U ′ = L′, where ′ denotes
tensoring with V and taking images in V ⊗R F .

(5) (Valuative Criterion of Integrality) For every homomorphism M → G to
a free R-module and every homomorphism R → V to a rank one discrete
valuation ring V , we have U ′ = L′, where ′ denotes tensoring with V and
taking images in V ⊗R G.

Proof. By the functoriality of the Rees algebra, we may assume G = F in parts (3)
and (5). As R(M) embeds into R(F ) = Sym(F ), we may replace M by F in (1).
In parts (2)–(5), the rings R/Q, S, V are domains, and hence by Theorem 1.6 the
embedding of L′ and M ′ into the free modules F/QF, S⊗RF, V ⊗RF , respectively,
can be used to define R(L′) and R(M ′). In particular we may replace M by F in
these parts as well.

Now it is obvious that (1) implies (3). Part (1) follows from (2) sinceR(F )/
√

0 ⊂∏
QR(F/QF ), where Q ranges over all minimal primes of R and F/QF is consid-

ered as a module over R/Q. Finally, the equivalence of (2) and (4) and of (3) and
(5) has been shown in Rees [R, 1.5(ii)]. �

We see from Theorem 2.2 that our definition of integrality differs from that of
Rees [R, p. 435] when R is not a domain. Rees’ definition amounts to saying that
for every minimal prime Q of R, the module L′ is integral (in our sense or his)
over U ′ in M ′, where now ′ denotes images in M/QM . If, for example, k is a field,
R = k[x]/(x2), and U = 0 ⊂ L = M = (x)/(x2), then M is integral over U in our
sense but not in the sense of Rees.

Definition 2.3. Let R be a local ring with residue field k and let M be a finitely
generated R-module. The analytic spread `(M) of M is the Krull dimension of
k ⊗R R(M).

By way of illustration, we remark that the analytic spread of a finitely generated
module M over an Artinian local ring (R,m, k) is equal to the rank r of a maximal
free summand H of M (and is also equal to the dimension of the Rees algebra of
the module). Indeed, writing M = M ′ ⊕H we have that any homomorphism from
M to a free module F carries M ′ into mF , which generates a nilpotent ideal of
Sym(F ). Thus (R(M)/mR(M))red = R(M)red is a polynomial ring over k in r
variables.

If k is infinite one can show as in the case of ideals, using a homogeneous Noether
normalization of k ⊗R R(M) and Nakayama’s Lemma, that

`(M) = min{µ(U) | U is a reduction of M}.
Furthermore, `(M) ≤ µ(M) and equality holds if and only if M has no proper
reduction.

Proposition 2.4. Let R be a Noetherian local ring with residue field k, let M be
a finitely generated R-module, and let g : M → G be a homomorphism to a free
R-module G. If g induces an inclusion on the torsionless quotient of M , then
`(M) = dim k ⊗R R(g).

Proof. Proposition 1.8 shows thatR(M) differs fromR(g) only by a nilpotent ideal,
and thus the same holds after tensoring with k. �
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