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Abstract

Developmental trajectories provide the empirical foundation for theories about change processes

during development. However, the ability to distinguish among alternative trajectories depends on

how frequently observations are sampled. This study used real behavioral data, with real patterns of

variability, to examine the effects of sampling at different intervals on characterization of the

underlying trajectory. Data were derived from a set of 32 infant motor skills indexed daily during

the first 18 months. Larger sampling intervals (2-31 days) were simulated by systematically removing

observations from the daily data and interpolating over the gaps. Infrequent sampling caused

decreasing sensitivity to fluctuations in the daily data: Variable trajectories erroneously appeared as

step-functions and estimates of onset ages were increasingly off target. Sensitivity to variation

decreased as an inverse power function of sampling interval, resulting in severe degradation of the

trajectory with intervals longer than 7 days. These findings suggest that sampling rates typically used

by developmental researchers may be inadequate to accurately depict patterns of variability and the

shape of developmental change. Inadequate sampling regimes therefore may seriously compromise

theories of development.

Developmental Trajectories

Understanding developmental change is a central goal for developmental science. However,

despite numerous treatises by prominent developmental theorists in a variety of areas urging

researchers to focus on change processes (e.g., Elman, 2003; Flavell, 1971; Siegler, 1996;

Thelen & Smith, 1994), developmental psychologists have made surprisingly little progress

toward understanding the process of developmental change. Part of the problem is historical.

Much of the work in developmental psychology has concentrated on descriptions of children’s

behavior at various ages or on the earliest manifestations of particular abilities. Decades of

reliance on cross-sectional designs, demonstration proofs, and broad-sweeping longitudinal

approaches have left researchers with a gallery of before and after snapshots, studio portraits

of newborns, and fossilized milestones, but little understanding of the process of development

itself. What we need are accurate, fine-grained depictions of developmental trajectories for

cognitive, language, perceptual, motor, and social skills.

The staggering variety of developmental trajectories has also contributed to the lack of progress

in understanding change processes. The shape of developmental change might assume any

number of patterns (Figure 1). For instance, a trajectory might show smooth and monotonic

improvements with age, proceeding at a steady pace as in children’s use of retrieval strategies

in addition (Siegler, 1996), or with accelerating or decelerating rates of change, as in infants’
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acquisition of new words (McMurray, 2007) and improvements in toddlers’ walking skill

(Adolph, Vereijken, & Shrout, 2003), respectively. The path of change may show

discontinuities such as abrupt, stage-like shifts in performance between periods of relative

stability, as in children’s stage-like success on many Piagetian tasks (Schultz, 1998), their

abrupt shift from ignoring to marking the past tense of verbs (Marcus, et al., 1992), and the

sudden transition to grasping while reaching (Wimmers, Savelsbergh, Beek, & Hopkins,

1998). Variability may increase during the period of acquisition, with a series of reversals

vacillating between less and more mature expressions of the skill, as in children’s conservation

of volume (van der Maas & Molenaar, 1992). Or a variable acquisition period may entail use

of multiple, unsystematic use of strategies between incorrect and correct endpoints, as in

(Church & Goldin-Meadow, 1986) and their acquisition of a theory of mind (Flynn, 2006).

Discontinuities can take on other shapes, such as episodic changes, where development

advances like climbing a staircase, with sudden improvements in children’s conceptual

understanding separated by long periods in a single stage (Case & Okamoto, 1996) or small

fits and starts of physical growth separated by periods of stasis (Lampl, Veldhuis, & Johnson,

1992). Discontinuities can involve reversible patterns of change, as in the U-shaped course of

children’s success on math equivalence problems (McNeil, 2007), infants’ alternating stepping

movements (Thelen, 1984), and the classic description of over-regularizations in past tense

verb forms (Marcus, 1992), or the inverted-U-shaped trajectory of cognition over the life span

(Craik & Bialystok, 2006), and infants’ zigzag-shaped error rate in detecting threats to balance

as they learn to sit, crawl, cruise, and walk (Adolph, 2005).

Such descriptions of developmental trajectories play an instrumental role in formulating and

testing theories of development (Gottlieb, 1976; Siegler, 2006; Smotherman & Robinson,

1995; Wohlwill, 1973). For example, a contentious theoretical debate was spurred by

descriptions of a sudden, stage-like increase in children’s rate of word learning, the so-called

“vocabulary spurt,” or “naming explosion” (Bloom 2004; Ganger & Brent, 2004). According

to the classic description, at about 18 months of age, when children have acquired

approximately 50 words, they display a sharp transition from an initial stage of slow vocabulary

growth to a later stage of faster growth. Several influential theories were advanced to explain

the putative shift, invoking major cognitive or linguistic changes that coincided with the spurt

(e.g., Gopnik & Meltzoff, 1987; Reznick & Goldfield, 1992). However, recent work shows

that for most children the increase in the rate of word learning is best fit by a quadratic rather

than a logistic function (Ganger & Brent, 2004). Without a stage-like spurt in the trajectory,

theories positing a sudden, fundamental change in cognitive or linguistic abilities become

superfluous.

As illustrated by this example, regardless of whether the theoretical perspective is one of

discontinuity or continuity, spurts or quadratics, theoretical accounts of how change occurs are

built upon the foundation of an accurate portrayal of the pattern of developmental change

(Wohlwill, 1970, 1973). And, as we demonstrate in this paper, an accurate characterization of

the developmental trajectory depends on the rate at which observations are sampled.

The Problem of Sampling Rate

More than 75 years ago, Vygotsky (1978) criticized researchers’ reliance on sampling methods

that merely characterize the stable endpoints in cognitive development. As a remedy, he

proposed a “microgenetic method” of sampling at small time intervals to observe development

in progress. More recent researchers also have cautioned against over-reliance on cross-

sectional and long-term longitudinal designs (Wohlwill, 1970, 1973), and have espoused the

microgenetic method for capturing the process of developmental change (e.g., Granott &

Parziale, 2002; Kuhn, 1995; Siegler, 2006; Thelen & Ulrich, 1991).
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However, apart from the general criticism that researchers’ typical sampling intervals are too

large, the microgenetic method does not quantify the potential consequences of various rates

of data collection for detecting and characterizing different patterns of development.

Proponents of the microgenetic method have offered general suggestions that researchers

should collect observations spanning the entire period of change from one stable state to

another, and that the frequency of observations should be high relative to the rate of change of

the phenomenon (Siegler, 2006). But these proponents have not addressed the problem of how

to decide whether a sampling interval is small enough to detect the shape of the underlying

trajectory. That is, when does one stable state end and another begin? Is the development step-

like or is there an intervening period of variability, partial or intermittent expression, or

disruption of performance? Similarly, critics of developmental methodology have recognized

that overly large sampling intervals in longitudinal research can cause important patterns of

change to go undetected, and have suggested that developmental researchers sample at smaller

intervals (Burchinal & Appelbaum, 1991; Collins, 2006; Hertzog & Nesselroade, 2003;

McArdle & Epstein, 1987). But how small is small enough?

In fields of inquiry such as physiology, psychobiology, health psychology, and neuroscience,

principles are available to guide the selection of an appropriate sampling rate to ensure recovery

of the underlying pattern. For instance, the Nyquist-Shannon sampling theorem (Nyquist,

1928/2002; Shannon, 1949/1998) provides an algorithm for calculating the minimum sampling

rate to fully characterize complex waveforms. The sampling theorem stipulates that for a

waveform composed of one or more frequencies, with a maximum relevant bandwidth (B), the

minimum sampling frequency (fs) necessary to reconstruct the original waveform must be at

least twice the bandwidth (fs > 2B). In other words, sampling frequency must be at least twice

as frequent as the highest frequency component. For example, recording sounds at 20 kHz, the

upper limit for human auditory perception, would require sampling the waveform at a minimum

of 40 kHz (which is one reason why mp3 digital sound files have such poor quality for higher

frequency sounds). Assumptions about the maximum relevant bandwidth are dictated by the

nature of the research question. A study of human color discrimination would not require light

wavelengths to be sampled beyond the blue end of the visible spectrum.

Ironically, the same developmental psychologists who scrupulously use principles such as the

Nyquist-Shannon theorem to select sampling rates to estimate functions for physiological and

psychophysical variables rely on intuition, convenience, and tradition to select sampling

intervals to characterize developmental change in said functions. For example, to describe age-

related changes in the ERP associated with face and object recognition, Webb, Long, and

Nelson (2005) sampled the EEG at 100 Hz to ensure that they could characterize specific

components of the EEG response distributed during the first 1500 ms after presentation of the

stimulus. But, they relied on arbitrary two-month intervals to chart the developmental trajectory

of the ERP signals. To describe the development of stereoacuity in infants, Held, Birch, and

Gwiazda (1980) estimated the psychophysical functions by ensuring a sufficiently high

sampling rate to distribute intervals of visual angle along the inflection of the curve. Yet, they

relied on an arbitrary, one-month sampling interval to estimate infants’ developmental

trajectories and onset ages. Similarly, Adolph (1997) described developmental changes in

infants’ perception of affordances for crawling and walking by sampling at sufficiently small

intervals of difficulty to ensure robust estimates of the psychophysical functions, while relying

on an arbitrary three-week sampling interval to estimate the developmental trajectories.

A recommended remedy for researchers’ sampling dilemma is to design the spacing of

observations based on a formal theoretical model about the shape of the underlying

developmental function (Boker & Nesselroade, 2002; Burchinal & Appelbaum, 1991). Such

a model would dictate the minimum number of data points and their optimal spacing in time

(e.g., a linear function requires only two observations at each end of the acquisition period).
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However, formal rules such as the Nyquist theorem are applicable only when the data consist

of complex waveforms and the maximum frequency of interest is known in advance. If the

temporal scale of developmental changes also were known in advance, then applying a formal

rule like the Nyquist might be possible (e.g., sample at twice the frequency of the smallest

significant change). Unfortunately, most developmental data are not periodic and are not

generated by simple mathematical functions, where the relevant scale of temporal change can

be obtained by deduction. Thus, developmental researchers must determine patterns of

developmental change empirically and discover, rather than deduce, the temporal scale of

events that make a difference in the process of change.

The problem is compounded because, as Collins and Graham (2002) point out, empirically

derived sampling intervals lead to a “chicken and egg” situation: Without prior knowledge

about the shape of the underlying trajectory to inform a statistical function, researchers cannot

know how frequently to space their observations. And, the underlying function that determines

the shape of the developmental trajectory cannot be discovered empirically without making a

decision about sampling interval. Often, researchers do not even have prior information about

the approximate ages that span the period of developmental change.

Implications for the Shape of Change

Few examples of developmental research have systematically assessed the empirical costs and

benefits of large and small sampling intervals on descriptions of developmental change. A

notable exception is Lampl and colleagues’ research on patterns of physical growth (Johnson,

Veldhuis, & Lampl, 1996; Lampl, Johnson, & Frongillo, 2001; Lampl, Veldhuis, & Johnson,

1992). Traditionally, children’s growth is characterized as a continuous function from birth to

adulthood, with more rapid growth rates during infancy and adolescence. However, when

children’s height is measured every day, growth appears to be episodic. Infants’ height, for

example, can increase 1.65 cm in the course of a single day, separated by long periods of days

or weeks during which no growth occurs. Sampling at weekly intervals results in developmental

trajectories that preserve the episodic nature of children’s growth but reduce the observed

number of growth spurts, increase the amplitude of the spurts, and prolong the periods of stasis.

And sampling at quarterly or yearly intervals, as in traditional studies of growth, results in the

smooth, continuous growth curves on standard growth charts.

Even within a 24-hour period, growth is not continuous. In a tour de force of micro-

measurement, Lampl and colleagues (Noonan et al., 2004) demonstrated episodic growth on

two time scales: brief periods of substantial growth on a scale of minutes and days, flanked by

long periods of no growth on an hourly and weekly scale. Leg growth in freely moving lambs

was measured with a microtransducer surgically implanted across the tibial growth plate. Bone

length was sampled at 167-sec intervals over a period of 3 weeks, synchronized with video

recordings of the lambs’ activity. Periods of bone growth revealed by the microtransducer

coincided with periods of recumbency revealed by the video recordings, and periods when

bones did not grow coincided with periods of loading the limbs in stance or locomotion. The

authors calculated that 90% of bone growth occurs while lying down, even though lambs spend

just over 50% of their time in a recumbent position, and little or no growth occurs while standing

or walking. Clearly, tradition, intuition, and convenience that informed traditional studies of

physical growth have been inadequate for capturing the richness of the actual trajectory.

The case of physical growth shows how increased sampling resolution from years to days to

minutes can provide novel insights into developmental process. The episodic growth pattern

from minute to minute indicates that bones lengthen only when compressive forces on the leg

are absent. Paradoxically, other research has demonstrated that the presence of physical forces

applied to bone promote growth by stimulating the expression of genes that regulate cartilage

and bone formation (Muller, 2003). Together, these research findings imply that cellular
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processes involved in regulating physical growth must be coordinated and synchronized on a

temporal scale previously unsuspected.

As exemplified by the research on physical growth, overly large sampling intervals will cause

interval data to appear smooth and continuous, regardless of whether the underlying trajectory

is episodic or U-shaped. Similarly, overly large sampling intervals will distort the shape of

change for binary data (skills that are indexed as absent or present). Figure 2 shows the potential

impact of sampling at monthly intervals on characterizing patterns of development using actual

data from daily observations of two infants’ progress in balancing upright. The top panel (A)

shows a step function, where the infant exhibited a single transition from not-standing to

standing, from one day to the next. The bottom panel (B) shows a variable developmental

function, where standing was expressed intermittently (21 times) over a protracted transition

period of several weeks. For skills with variable trajectories and reversals, interpolating over

the existing data points—which is what all developmental researchers do when measurements

are collected at weekly, monthly, and yearly intervals—can distort the shape of the

developmental trajectory. Infrequent observations will cause binary data to appear as a step

function, with a single abrupt transition, regardless of whether the underlying trajectory is

variable, with a series of reversals. As illustrated by the gray curves in the figure, the variable

data in (B) will appear to follow the same developmental path as the stage-like data in (A).

Implications for the Timing of Change

Overly large sampling intervals are also likely to produce errors in estimating onset ages—the

earliest age at which children consistently and reliably express a behavior, skill, or

physiological milestone. Identification of onset ages plays a prominent role in normative and

clinical studies of human development, screening for developmental delay, and experimental

manipulations of development in animals. The onset ages of cognitive and motor milestones

are commonly used to document developmental delays in clinical populations, such as the

delay in autistic and deaf children’s acquisition of theory of mind (Peterson & Siegal, 1999).

Age at onset is used to compare the development of different skills such as language

comprehension and production (Clark & Hecht, 1983), or to compare the development of the

same skill expressed in different contexts, such as the age of attaining conservation of quantities

in different cultures (Dasen, 1984), or the age of reaching for objects in the light and in the

dark (Clifton, Muir, Ashmead, & Clarkson, 1993). Researchers use age at onset to assess effects

of prior experiences on the development of a target skill, such as interactions with siblings on

acquiring a theory of mind (Perner, Ruffman, Leekam, 1994), experience with pottery making

on the onset of conservation (Price-Williams, Gordon, & Ramirez, 1969), or the effect of

sleeping prone versus supine on the subsequent development of crawling (Majnemer & Barr,

2005). Measures of experience in human infants typically are calculated as the number of days

between onset and test dates, for assessing effects of crawling experience, for example, on

improvements in perceptual, cognitive, and social tasks (Campos et al., 2000).

It is easy to imagine how sampling at longer intervals will result in reduced accuracy in

estimating the onset age of skills that exhibit abrupt, step-like transitions (e.g., monthly

sampling risks 1-month delays in estimates of onset ages; see Figure 2A). But it is less intuitive

how the choice of sampling interval affects the accuracy of estimating onset ages in skills with

variable developmental trajectories. As shown in Figure 2B, infrequent sampling is likely to

miss the period of variability, and thereby provide a later estimate of the onset age.

Occasionally, the observations will fall on a day when the skill is present, but not yet stable,

and thus distort the estimate of onset by providing a prematurely early estimate.

As we have argued in the foregoing account, the rate at which behavior is sampled is likely to

have a significant impact on our ability to discern the shape and timing of developmental

change. Sampling at inappropriately large intervals can yield an erroneous picture of the
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underlying developmental trajectory, which in turn may provide misleading inferences for

developmental theory. But the real cost is not just in misrepresenting the pattern of change. It

is the loss of the ability to distinguish among alternative trajectories, such as the ones depicted

in Figure 1. An important principle of empirical science is that theories and hypotheses must

be falsifiable. It should be possible in principle to obtain some set of measurements that would

not accord with the theory (Popper, 1959). Inferences about particular developmental

trajectories are not falsifiable unless the data could have revealed alternative patterns of change.

Confidence in the shape of a developmental trajectory depends on whether the data were

sampled at appropriate intervals to permit the possible detection of alternative paths. And

because there are no generally accepted rules or theorems to guide selection of a sampling

interval in a particular developmental context, appropriate sampling intervals must be

determined empirically.

Current Study

In the present study, we aimed to meet the challenge of the microgenetic method by establishing

empirically whether the different sampling rates typically used by developmental psychologists

in microgenetic and longitudinal research—days, weeks, and months—are sufficient to

accurately characterize the pattern of developmental change. Our aims were four-fold. First,

we sought to demonstrate that real data with real patterns of variability could yield dramatically

different trajectories when sampled at rates commonly used in developmental research. Second,

we aimed to quantify how quickly researchers lose the picture of developmental change when

sampling at increasingly large intervals. It is a mathematical certainty that coarser sampling

will be less sensitive to fluctuations in the data, but it is not clear at what rate researchers will

incur the cost of misrepresenting the underlying trajectory. Third, we assessed the consequence

of different sampling intervals for estimating onset ages—the earliest manifestation of stable

expression of skills and abilities. And fourth, we tested whether the effects of sampling interval

generalize across children, the first 18 months of life, and a range of different skills.

Specifically, this study measured the impact of collecting developmental data at intervals of

varying length on loss of sensitivity to detect the underlying trajectory. To ensure that natural

patterns of variability would be included in the data, we compiled a real data set of daily changes

in 32 infant motor skills (sitting, crawling, standing, walking, etc.) obtained from parent

checklist diaries, rather than an artificial data set of experimenter-generated data. We focused

on motor skills because motor performance is overt and amenable to objective, reliable

measurement, new motor skills are highly salient to parents, and motor development has a long

history of longitudinal and microgenetic research. However, in principle, the data set could

have been constructed from any skills appearing at any point in the lifespan, indexed in terms

of competence rather than performance, and obtained in the laboratory or during home visits

rather than by parents’ reports.

Following in the long tradition of language studies (e.g., Darwin, 1877/1974; Dromi, 1987),

parents served as informants by noting the presence or absence of each skill at the end of the

day in a checklist diary. Although readers’ first inclination may be skepticism regarding

parental reports, home observations integrated over the course of the day may be the best way

to determine if a skill is in children’s repertoire because parents are with their children in many

different situations, including contexts that are likely to elicit and support the emergence of

new skills (Bodnarchuk & Eaton, 2004). For language skills, laboratory tests and experimenter

home visits grossly underestimate children’s early abilities, necessitating parental reports to

avoid false negatives (Bates, 1993). For motor skills, parent checklist diaries of basic motor

skills are concordant with experimenter home visits (Bodnarchuk & Eaton, 2004).
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As is customary in the literature, we treated the appearance and disappearance of motor skills

as binary, categorical data (present or absent). Like researchers in other developmental domains

that treat skills categorically (e.g., object permanence, conservation, and theory of mind), we

established operational definitions for the performance of each skill. For several skills, we

included multiple criteria for successful performance (e.g., walking < 3 m and walking > 3 m)

to determine whether more stringent criteria would affect the trajectory.

From the daily assessments, we constructed developmental trajectories for each skill at the

finest available grain of temporal resolution. Then we systematically removed observations to

simulate the effects of sampling at intervals ranging from daily to monthly, and reconstructed

the developmental trajectories based on the reduced number of observations. Key features of

the resulting trajectories were compared to the original data to determine the loss of sensitivity

for detecting various patterns of developmental change that result from different sampling

schedules. In addition, we formulated a method based on a neurally-inspired activation function

for objectively estimating onset ages for each skill. We compared the estimated onset ages

derived from the original daily observations with those derived from the simulations of larger

sampling intervals to determine the magnitude of error that could be attributed to sampling

frequency.

Method

Checklist Diary

We compiled a database of daily diary data from eleven families (5 boys, 6 girls). Nine infants

were Caucasian and two were Asian. All parents were middle class and highly educated. Eight

infants had parents who were doctoral students or professors in psychology or anthropology,

including the daughter of the first author, and thus most respondents were experienced in

methods of behavioral data collection. Parents began keeping diary records before their infants

could perform any of the target skills, and ended participation several weeks after their infants

could walk independently. One family stopped participation abruptly when the infant was 9

months old because of a medical emergency. For the other 10 infants, length of participation

ranged from 10.94 to 17.00 months (M = 12.59 months). One additional family ceased

participation after only 3 months because the parents found it to be too grueling; data from this

infant were not included in the database.

Parents were trained to make daily entries into a 3-page, paper-and-pencil, checklist diary

containing 32 gross motor skills involving balance and locomotion, all of which could be

performed in a minimally structured environment (i.e., with a floor and furniture). Instruction

manuals accompanied parents’ diaries with detailed descriptions of the criteria for each skill

(see Appendix 1), and a reminder for how to fill out the diary. The diaries were similar to those

used by Bodnarchuk and Eaton (2004), who showed that parents’ reports were concordant with

home visit observations. Data were collected for 22 additional stair climbing and sliding skills,

but these were not included in the current study because they required access to special

equipment not readily available on a daily basis.

Parents noted whether they had observed infants perform each skill at any point over the course

of the day. The diaries provided space for additional written comments about observed skills

that did not quite match criteria. Such comments about the first two participants—the first

author’s daughter and the son of another psychology professor—provided useful information

for revising skill definitions and criteria. Only skills with uniform definitions and criteria were

included in the final data set. Parents entered a question mark for days when they could not

remember whether they had witnessed the skill or if they had forgotten to fill in their diaries.

Parents also noted days when infants did not have normal access to the floor or to furniture
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(due to long car trips, camping trips, infants’ illness, etc.) and thus were precluded from

performing various skills due to situational factors.

Diaries were distributed to parents each month and were organized to minimize errors in

parents’ reports. Skills were grouped roughly by postural systems and order of appearance

(sitting, prone/crawling, standing/cruising/walking). The first page of the diary contained

sitting and early prone skills, the second page contained crawling and upright skills, and the

third page contained stair climbing and sliding skills. More stringent criteria for specific skills

(e.g., “walking > 3 m”) followed more lenient criteria (“walking < 3 m”). Some of the skills

in our dataset were ordered hierarchically, where demonstrated facility for a stricter criterion

necessarily assumed facility under a more lenient criterion (noted by asterisks in Appendix 1).

For example, once a child can consistently walk 3 meters or more it is not necessary to also

record walking less than 3 meters. Therefore, after infants demonstrated facility for at least 30

consecutive days with the stricter criterion, the entries for the lenient criterion were assumed

to be present.

During monthly lab visits, researchers collected parents’ completed diaries from the previous

month, interviewed parents about diary entries (confirmed infants’ expression of new skills,

cessation of old skills, and question-mark and no-access days), and distributed a new diary for

the current month. The interviewer reminded parents about the criteria for the various skills

using verbal descriptions, physical demonstrations of the behaviors, and by directing them to

the relevant definitions in the instruction manual.

Missing Data

Because our aim was to assess effects of sampling interval on characterization of the underlying

developmental trajectories, it was especially important to maintain high confidence in the

integrity of the time series. Days that parents noted with question marks and days in which

infants had no access to the floor constituted missing data. Given that the aim of the study was

to detect variability, we adopted a conservative strategy for interpolating over missing data.

For each skill, a software program written in our laboratory searched for the first instance of

existing data prior to the day for which data were missing and replaced the missing data entry

with that notation. The assumption underlying the interpolation rule was that infants were likely

to have continued doing what they last did until otherwise noted. At most, two consecutive

days of missing data were reconstructed in this way. If a skill contained more than two

consecutive days of missing data or if missing data constituted 5% or more of all entries, the

time series was not used for further analyses.

Overall, each infant contributed 4-30 skills (M = 23.73 skills) for a total of 99,971 usable diary

entries in the final data set across infants and skills. Several factors caused the large range in

the number of skills that each infant contributed. For the first two infants in the sample, we

revised the definitions and criteria for several skills, and thus eliminated several time series

collected under earlier definitions and criteria. For other infants, some of the time series

included more than 5% missing data due to days noted with question marks, days when infants

did not have access to the floor, and in the case of one infant, a lost month of entries. Across

the sample, some infants never performed certain skills (e.g., never crawled > 3 m). Finally,

several time series were either cut short or were not performed by the infant who withdrew

from the study because of a medical emergency.

Manipulation of Sampling Frequency

The critical tests involved varying sampling frequency, then interpolating over the intervening

points. The actual daily data entries provided the smallest sampling interval. We wrote software

to simulate the effect of sampling at longer intervals by systematically selecting observation

Adolph et al. Page 8

Psychol Rev. Author manuscript; available in PMC 2009 March 11.

N
IH

-P
A

 A
u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t



points at 2- to 31-day intervals for each skill reported by each parent in the data set. For example,

to simulate a 2-day sampling interval, the program selected every second data point; to simulate

a 3-day sampling interval, the program selected every third data point. After resampling,

removed days were replaced with interpolated values. The process continued for each of the

remaining sampling intervals until the least frequent sample at 31-day intervals. Therefore,

every simulated time series had the same number of days as the original.

When observation points are distributed in time, the specific day that each sample is collected

can vary (e.g., sampling at a 2-day interval could be initiated on the first available day that

measurements were collected and on all odd numbered days thereafter, or the sample could

begin on the second day of data collection and proceed on all even numbered days). Failure to

take phase into account would allow for random sampling effects to influence the overall

trajectory, particularly if performance of the skill is variable. For example, the singular

occurrence of a skill on Day 31, but not on surrounding days, would appear as a stage-like

transition a month earlier if sampling at 30-day intervals beginning on Day 1 (i.e., 1, 31, 61,

91...) compared to the same rate of sampling beginning on Day 2 (2, 32, 62, 92...). To allow

for random variation due to the phase of sampling, the final data set was exhaustive and included

all possible phases at each sampling interval (e.g., 30 phase sets were created for each skill

when sampling was conducted at 30-day intervals).

The resulting final data set included the original data collected daily, and data sets resulting

from sampling at 2-31 day intervals at all possible phases. After sampling each simulated series

of observations, the software program interpolated over missing values by filling in daily values

based on the last available observation point. Although it would have been possible to use an

alternative rule, such as retroactively filling in missing data according to the next available

data point, we adopted a conservative assumption that a binary function continues on the same

trajectory until a demonstrated instance of a change. Because each of the original time series

resulted in 495 additional sampled time series, the original data set of 261 (infant × skill) time

series yielded a final data set of 129,456 unique time series.

Results

Effects of Sampling Interval on Observed Trajectories

We assessed the effect of variations in sampling interval on the shape of the observed trajectory

by counting the number of transitions between absent and present for each time series. A single

transition would represent an abrupt step-like trajectory from absent to present, as exemplified

by infant 11 who began standing on one day and stood every day thereafter (see Figure 2A,

which is also depicted as the data point nearest the origin in Figure 3A). Alternatively, multiple

transitions would represent a variable trajectory between absent and present, as exemplified

by infant 7 who vacillated 21 times between standing and not-standing (see Figure 2B and top

data point in left-most panel of Figure 3A).

Of the 261 time series in the data set, only 15.7% showed single abrupt transitions (either onsets

alone or a single onset and offset) at a one-day sampling interval. For the remaining 84.3% of

time series, the daily diary data showed variable trajectories, ranging from 3 to 72 transitions

during the acquisition period (M = 13.37 for those time series showing variable trajectories).

Inspection of all time series revealed that variable trajectories were characteristic of all infants

and skills. Between 65% and 100% of the time series for each infant showed multiple

transitions, regardless of sex. Similarly, between 67% and 100% of the time series for each

skill (expressed by at least two infants) showed multiple transitions, regardless of the kind of

skill, the strictness of the criterion for judging skill occurrence, or the average age at which the

skill was expressed.
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The consequence of larger sampling intervals was to obscure the true shape of the

developmental trajectory. Across the 32 motor skills in the data set, sampling at the simulated

rate of once per week caused 51.2% of the 220 variable time series to show a single transition

from absent to present. At the simulated rate of once per month, 91.4% of the variable time

series appeared to involve a single, abrupt transition. Overall, with monthly sampling, 242

(92.7%) of the 261 time series appeared to follow step-like trajectories (compared to the 15.7%

based on daily samples), yielding a very different picture of developmental change from that

of the daily data.

How quickly did we lose the picture of developmental change? Given fewer observations at

larger sampling intervals, one would expect a general loss of sensitivity to detect variability.

In fact, sampling at progressively larger intervals carried a tremendous cost: Sensitivity to

detect variability in the time series declined dramatically each time we widened the sampling

interval by one day. Figure 3A illustrates this precipitous drop-off in sensitivity for each child

for one skill, standing (also represented in Figure 2). Of the 8 children depicted in the graph,

only one (infant 11) exhibited a step-like transition from absence to presence when standing

was indexed daily. By the time sampling approached 14-day intervals, however, the child with

21 transitions (infant 7) was indistinguishable from the child with a single transition.

The black curves in Figure 3B show that the dramatic decrease in sensitivity was evident for

all of the 32 skills in the data set. The gray curve in the figure shows the group average across

sampling intervals. Although infants averaged 11.74 transitions (SD = 10.48) in their actual

daily diaries across all 32 skills, sampling once per week yielded only 2.51 transitions (SD =

2.10), on average, and sampling once per month yielded only 1.20 transitions (SD = 0.83). The

drop-off in sensitivity is more evident in Figure 3C, which depicts these same data expressed

as a percentage of the number of transitions observed with daily sampling. As shown by the

concentration of trajectories in the lower left of the figure, for most time series, fewer than 1

in 4 transitions (25%) were detected when sampling at larger than one-week intervals.

Moreover, time series with frequent transitions were disproportionately mischaracterized. The

only trajectories that were depicted accurately at larger sampling intervals were the 41 time

series (15.7% of all time series) with only 1 abrupt transition from absent to present, shown

by the superimposed horizontal lines at 100%.

Each day that the sampling interval widened resulted in fewer transitions detected. To quantify

how quickly sensitivity to variability was lost, we fit a variety of mathematical functions to the

data shown in Figure 3B. The loss of sensitivity to detect transitions was best described by an

inverse power function, meaning that the rate of loss of sensitivity was greatest at the smallest

sampling intervals and declined as intervals grew larger. As shown in Figure 3D, most of the

R2 values exceeded 0.8 for power functions fit through the data for each of the 240 time series

with multiple transitions at each of the 31 possible phases.

Effects of Sampling Interval on Estimated Onset Ages

Developmental researchers rely on onset age—the earliest date at which children can

consistently and reliably express a particular motor or cognitive skill—as a primary index of

developmental progress. As the foregoing discussion of sampling intervals suggests, measuring

developmental change at long intervals is likely to result in greater error in identifying the onset

of skill performance than measuring at shorter intervals. We sought to quantify the expected

magnitude of error in estimating the onset ages by calculating the deviation between the date

determined by a particular sampling frequency and the date determined by daily sampling.

When sampling at 31-day intervals, each unique phase set provided a separate estimate of the

onset age, and thus a distribution of 31 different estimates of the error of measuring onset age

relative to daily samples. In addition to phase differences, if onset is determined by a criterion
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other than first day of expression, the specific pattern of days in which a skill occurs within a

variable trajectory can influence the age identified as the onset of stable performance. Because

most time series were variable, we sought to vary the particular sequence of days in which the

skill was expressed to obtain a larger and more robust set of time series. By creating variants

through a constrained randomization procedure, we provided more time series for analysis at

all sampling intervals, including short intervals that provided fewer estimates of onset age (e.g.,

sampling on alternate days provides only two estimates, one for each phase). In applying a

randomization procedure, however, it was important to constrain the procedure to local

sequences within the time series, thereby leaving the overall arc of the trajectory the same.

We used a Monte Carlo randomization procedure to introduce slight variations in the dates at

which skills were expressed. In a typical randomization procedure, the sequence of events in

the entire time series is shuffled, producing a random reordering of the data set (e.g., Johnson

et al., 1996; Kleven, Lane, & Robinson, 2004). Clearly, if the sequence of events in the original

time series were completely randomized, no developmental pattern could be discerned. To

preserve the overall developmental pattern while creating random variations in the daily events,

randomization was constrained to restrict the temporal range within which shuffling occurred.

A similar procedure was applied by Loreau (1989), who constrained randomization on a

seasonal basis to maintain biological realism in a model of annual activity cycles and ecological

competition.

To implement our randomization procedure, each binary time series, after simulated sampling

and interpolation, was parsed into a sequence of bins comprising 14 consecutive days. The size

of this bin (14 days) was selected after exploring alternative bin widths, and was chosen to

provide a diversity of permutations while introducing minimal error in the overall

developmental profiles. Within each bin, daily events were randomly resampled without

replacement, creating a sequential permutation of the original bin (Crowley, 1992). Although

the specific dates of occurrence were reordered within bins throughout the time series, the

sequence of 14-day bins was not modified. Thus, for a time series of daily samples spanning

a year, there would be 26 14-day bins and therefore (14!)26 possible permutations. We selected

25 randomly generated time series from this set of possible permutations for each unique phase

set for further analysis. This approach resulted in the creation of many alternative time series

that differed in the specific dates that skills were expressed, but which preserved the same

general developmental trajectory.

The 129,456 density x phase combinations and 25 randomization procedures applied at each

simulated sampling interval resulted in a total of 3,236,400 time series of skill performance.

For each of these time series, we applied an objective algorithm to identify the onset age based

on the earliest age at which the skill was consistently and reliably performed. Determination

of the onset age is straightforward when the underlying developmental trajectory is a step-

function because skill performance exhibits a single transition from absence to presence in the

infant’s repertoire (see Figure 2A). However, objectively defining skill onset is more

problematic when the skill is performed on one day and not on the next (see Figure 2B).

In determining onset age, one might simply report the first day on which the skill was observed.

In some developmental research, however, the first date of observation is not used as the

criterion for onset because a singular performance followed by weeks of no expression may

be interpreted as anomalous or unrepresentative of a stable ability. Other criteria (e.g., skill

must be expressed on three consecutive days) are also arbitrary and seem to lead to exceptions

and additional criteria requiring qualitative inspection of each time series. In lieu of these

options, and to provide an automated method of determining the onset of stable performance

of each skill that could be applied to three million time series, we applied an objective algorithm
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to summate over variable periods of skill expression until a criterion level of skill performance

was reached.

The algorithm we used to objectively determine the onset age consisted of an activation

function that summated across consecutive days of variable skill performance. Although

inspired by the rules of summation that generate action potentials in a neuron, this function did

not involve processing of the data with an artificial neural network, but acted more generally

as a smoothing function over periods of variable expression. The critical parameters of the

activation function were a decay rate (d), a criterion onset threshold (Ton), and a criterion

inactivity threshold (Toff). Activity accumulated or decayed in the function over successive

days following equation 1, where At is the accumulated activity at time t, E is the value of the

event at time t (1 = skill present, 0 = skill absent), and d is decay rate, which specifies the

amount of activity that carries over from one day to the next.

(1)

With this simple smoothing rule, each day that a skill was performed added activity to the

function (much like a small synaptic potential contributes to the net depolarization of a neuron),

but activity decayed from one day to the next. When the skill was performed over consecutive

days, the function approximated a logarithmic function and activity summated toward an

asymptote that represented consistent and reliable performance. Over a span of days when the

skill was not performed, activity decayed toward zero as a negative exponential function. When

the cumulative activity, as determined by the particular pattern of skill expression over

successive days, exceeded the criterion onset threshold (Ton), the skill was considered stable

and the onset age was determined by tracing the rising slope of activity back to the preceding

minimum below the inactivity threshold (Toff, see Figure 4A). In practice, this algorithm

identified the first day a skill was expressed in cases where there was a single step-like transition

from one day to the next, and it consistently identified a date between the first day a skill was

expressed and the asymptote in trajectories with periods of variable expression.

We systematically explored the effects of varying different parameters in this function with a

subset of the data to maximize the number of time series for which an objective onset age could

be determined. To confirm the validity of this function, all four authors visually examined

representative graphs of the time series to identify an age by consensus for the onset of stable

and consistent performance. The subset of time series included skills that exhibited sudden

onset from one day to the next, and skills that showed protracted periods of intermittent

expression before skills were consistently expressed. Parameters of the activation function then

were adjusted to identify the same ages in the exemplar trajectories. For the results reported

below, we used a decay rate of 0.8, an upper onset threshold of 75% of asymptote, and a lower

inactivity threshold of 10% of asymptote as optimal for identifying onset ages across all types

of trajectories. With these settings, we identified onset ages for 3,045,764 time series (94.1%).

In most instances, failure to identify an onset age by these objective criteria was due to the

infrequent expression of the skill (on five or fewer days) in the time series (and thus, insufficient

activity accumulated to exceed the onset threshold).

For each child and each skill, we used the activation function to identify an onset age from the

original daily diary data. Then, we compared the original onset ages with estimated onset ages

for all of the other time series generated by the randomization procedure at each of the simulated

sampling intervals and phases. Figure 4B shows a series of histograms charting the distributions

of error estimates for one representative skill, standing, in all 8 of the infants for whom we had

useable data. As revealed by reading down the column of histograms, the magnitude of error

increased systematically with larger sampling intervals. As sampling interval increased, the
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distributions progressively shifted to the right, reflecting delays in identifying onset. At the

most extreme, the estimated onset age was delayed by 55 days.

The pattern of increasing error exemplified by standing was characteristic across the entire

data set (Figure 4C). With daily sampling, the magnitude of error introduced by the Monte

Carlo randomization procedure averaged 4.31 days (SD = 1.97) across infants and skills. In

other words, constraining our randomization of skill sequences within 14-day bins resulted in

relatively small variations in onset age. However, with progressively longer sampling intervals,

the average magnitude and range of error in estimating onset ages increased sharply. For

example, sampling at weekly intervals resulted in a mean absolute error of 6.31 days (SD =

4.43), and absolute errors >14 days occurred in 7.7% of estimated onset ages. (Errors larger

than about 14 days can seriously compromise theorizing about motor skills.) Sampling at 20

day intervals resulted in a mean absolute error of 11.06 days (SD = 7.74), and absolute errors

> 14 days in 21.4% of estimates. At a 30-day sampling interval, the mean absolute error

compared to daily samples was 15.06 days (SD = 9.86), and absolute errors > 14 days

constituted 37.5% of estimates. At the most extreme, the estimate of onset age differed from

the actual onset age calculated from daily sampling by 109 days.

Moreover, errors were not distributed symmetrically around the daily estimates of skill onset;

most errors were greater than 0, indicating a delayed estimate of the onset age. Sampling at

longer intervals resulted in estimates that were increasingly delayed. When sampled at 2-day

intervals, 19.5% of estimates were delayed relative to the actual onset age, compared with

20.1% occurring earlier and 60.4% on the correct date. Sampling at weekly intervals resulted

in 34.3% of all estimates occurring later than the actual onset age. At 30-day sampling intervals,

delay errors increased to 59.0% of all estimates. For all skills, acceleration errors did not change

across sampling intervals. But delay errors increased with longer sampling intervals: The rate

of increase followed a power function, R2 = 0.96.

Discussion

A fundamental goal of developmental science is to understand change processes. To achieve

this goal, researchers need accurate pictures of the shape of change, and such pictures require

repeated observations. Most developmental researchers, however, do not conduct longitudinal

and microgenetic studies because repeated observations are difficult and expensive to collect.

The problem is compounded because overly large sampling intervals distort depictions of

developmental change by obscuring important fluctuations in the data: Trajectories charted

with binary data will appear more abrupt than they really are, and trajectories charted with

interval or ratio data will smooth over important irregularities such as regressions and sudden

changes in the rate of change.

The present study addressed the problem of selecting sampling intervals for developmental

data by assessing the empirical costs of sampling at progressively larger intervals. The aim

was not merely to confirm the loss of detail with coarser sampling, but to determine how quickly

depictions of development may be altered by sampling data at the rates typically used by

developmental researchers. We compiled an illustrative dataset of 32 infant motor skills, and

sampled daily to provide a fine-grained depiction of developmental change. We used real,

rather than hypothetical data to ensure that our sampling regimes incorporated actual patterns

of variability into depictions of the shape of developmental change. Most skills showed a period

of variability (vacillating between occurrence and absence) before acquiring a stable period of

daily expression. When we simulated sampling at longer intervals (2-31 days), the picture of

a variable acquisition period was quickly lost, so that skills with variable trajectories showed

a single, step-like transition. Other critical aspects of the trajectories were also distorted: Most

skills showed large delays in estimating onset ages.
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Daily Changes in Infant Motor Skill Acquisition

A surprising finding that emerged from analyses of the original, daily time series was the large

number of transitions preceding stable performance. The widespread practice of using point-

onset dates for motor skills (e.g., Adolph, et al., 2003; Campos et al., 2000; Frankenburg &

Dodds, 1967) presupposes that most skills appear suddenly and are consistently expressed

thereafter. However, in the current study, a variable acquisition period characterized most skills

for every infant across the entire age range. For example, infants averaged 14.57 transitions

(SD = 4.96) for standing, as illustrated in Figure 2, and 13.37 transitions across all skills (SD
= 10.35). Is it really possible that infants vacillate between occurrence and absence of a skill

on a day-to-day basis? Perhaps the variability is just noise and is not developmentally

significant.

Several factors lend assurance that the diary reports were reliable indicators of daily

performance. First, the parents were a select group of observers. Eight infants had parents who

were professors or doctoral students, and who conducted behavioral research of their own. In

addition, parents were carefully trained on the criteria for each skill, and understood the

importance of noting question-mark days when they had insufficient data to mark a skill present

or absent. Most parents spontaneously annotated their diaries when infants’ performance did

not meet criterion (e.g., number of crawling steps, seconds of independent sitting), suggesting

that they took the criteria seriously, and were eagerly waiting for performance to reach

threshold. A second factor that inspires confidence in the daily data is a reliability study: A

less select group of 95 parents provided reliable reports of sitting, crawling, standing, and

walking skills using a daily checklist diary designed after the one used here (Bodnarchuk &

Eaton, 2004). Home visits by experimenters blinded to the diary entries yielded concordant

data for 11 of 12 measures. A third factor concerns the directional bias of parents’ errors. If

parents did err, the most likely errors were false positives. That is, observing infants pass

criterion on one day may have biased parents to produce “present” responses on the following

days. False positives, however, would produce fewer transitions in the time series for any skill,

suggesting that the number of transitions reported here are, if anything, an underestimate of

the true day-to-day variability.

Why then might infants have failed to express sitting, crawling, walking or other basic motor

patterns after demonstrating the ability to do so? Variable acquisition periods cannot be

attributed to a lack of opportunity. We only analyzed skills that could be performed in a normal

home environment (with floor, furniture, etc.), and that did not require special equipment or

resources (e.g., stairs). Moreover, we eliminated days when the family situation precluded

access to the floor (traveling, illness, etc.). Variable acquisition periods also cannot be

explained as an artifact of low base-rate levels of performance. Nearly all (94%) of the 261

time series eventually reached a stable pattern of daily performance, suggesting that infants

were highly motivated to perform the indexed skills.

A remaining possibility is that variable acquisition periods reflect a biological reality: As

infants acquire new motor skills, they perform close to the limits of their abilities, much like

athletes struggling to meet their personal best during competition. In early periods of skill

acquisition, infants’ peak skill level is far below the criterion level, and on a binary scale, the

skill is considered absent. At later periods, as infants’ abilities hover around the criterion

threshold, their top level of performance exceeds criterion on some days, but not others,

resulting in variable trajectories. Eventually, infants’ peak skill level comfortably surpasses

threshold, and skills are expressed on a consistent, daily basis. To achieve a more stringent

criterion for the same skill (e.g., walks > 3 m versus walks < 3 m), infants must acquire a still

higher level of peak performance.
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This “peak performance” interpretation implies that at least for gross motor skills, over the first

year and a half of life, infants continually push the envelope of possibility by attempting actions

that they haven’t quite mastered. Like Vygotsky’s (1978) concept of a “zone of proximal

development,” day-to-day variability in motor skill performance may reflect periods of

development when infants are operating close to their limits; they are most disrupted by

perturbations, and can benefit most from external support. This account also accords with

previous proposals that motor skills are more unstable and sensitive to context when they first

appear in infants’ repertoires (Thelen, Fisher, & Ridley-Johnson, 1984; Robinson &

Smotherman, 1992; Garciaguirre, Adolph, & Shrout, 2007). As infants’ peak abilities expand,

performance improves, and skills are expressed for longer durations and under more variable

and challenging circumstances.

A question that arises about daily variation in infants’ motor skills is whether even smaller

sampling intervals would have revealed something additional. As in the example of physical

growth, where episodic growth across days encompassed episodic growth across minutes, like

a set of nested Russian dolls, smaller, meaningful units of motor action are nested within daily

samples. For example, nested within the stuttering day-to-day trajectory of performance in

crawling and walking, infants also show a variable trajectory in their expression of locomotion.

On the scale of minutes and seconds, infants vacillate between short bouts of locomotion and

longer periods of rest (Adolph, Badaly, Garciaguirre, & Sosky, 2008; Badaly & Adolph,

2008; Chan, Lu, Marin, & Adolph, 1999). Variable expression from step to step produces a

temporally distributed and spatially variable practice regimen that is most effective in

promoting motor learning (Adolph & Berger, 2006). The intervening rest periods provide time

to consolidate effects of practice and to renew infants’ motivation. Thus, intermittent rest

periods may be especially important when infants must operate at peak performance simply to

execute crawling or walking steps.

These theoretical speculations about variable acquisition periods, however, depend on the

characterization of the developmental trajectory. Without evidence for variable acquisition

periods, the foregoing discussion of theoretical implications for motor skill acquisition would

be moot. And without sampling at a rate that renders the same picture as the daily data, there

would be no evidence for variable acquisition periods. Instead, we would be constructing an

account to explain step-like transitions in the development of motor skills. A similar dilemma

is posed for sampling development in other domains.

Empirical and Theoretical Costs of Sampling Decisions

Given the long history of microgenetic research (Vygotsky, 1978), methodologists’

exhortations to select sampling intervals for reasons other than convenience, tradition, or

intuition (Wohlwill, 1970, 1973), and formal demonstrations that long sampling intervals can

compromise conclusions about development (Boker & Nesselroade, 2002; Collins, 2006), one

might expect that developmental research would reflect the same care in choice of sampling

regime as in experimental design. Unfortunately, it does not. The general principle that we

must take sampling interval seriously in designing developmental studies is not reflected in

current practice.

Possibly, general awareness about sampling on a developmental time scale has not yet filtered

down to the rank and file. As Collins and Graham (2002) commented, a similar situation

prevailed 40 years ago for the use of power analyses to determine sample size: Originally,

power was a concept that statisticians worried about, but it was not widely applied in actual

research settings. Now researchers routinely use power analyses to design their experiments

as they balance the practical demands of minimizing sample size while avoiding the empirical

and theoretical pitfalls of type two errors.
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How quickly we lose the picture of developmental change—How seriously must

developmental researchers consider the problem of selecting a sampling interval? In previous

studies of infant motor skill acquisition that are touted in the literature as heroic examples of

microgenetic research, observations were collected at weekly or monthly intervals, two of the

larger intervals among our simulated sampling frequencies (Adolph, 1997; Corbetta &

Bojczyk, 2002; Thelen et al., 1993; Thelen & Ulrich, 1991; Vereijken & Thelen, 1997). In the

current study, daily sampling revealed that 84% of time series exhibited a variable pattern of

emergence. When we simulated sampling infants’ daily motor performance at larger intervals,

the picture of day-to-day variability was quickly lost. When sampled once per week, fewer

than half of these time series appeared variable, and when sampled monthly, only 9% appeared

variable. In other words, sampling motor skills once a month caused 75% of the developmental

trajectories to erroneously look abrupt and step-like, thus characterizing 93% of the entire time

series with step-like trajectories. It should come as no surprise then that researchers typically

consider the first appearance of motor skills to be the onset of a stable period of expression.

The shape of developmental change was not just distorted at the largest sampling intervals.

Relatively small increases in interval length resulted in unexpectedly large decrements in

sensitivity to variability. In fact, an inverse power function accurately described the rate of loss

of sensitivity in portraying actual developmental trajectories. These findings indicate that, in

the realm of motor development, the ability to detect variable developmental trajectories drops

off extremely rapidly at sampling intervals longer than 2 to 3 days. It is the rapidity of this

drop-off in sensitivity that is counter-intuitive, not the fact that infrequent sampling generally

reduces precision.

A second aspect of developmental profiles that was significantly affected by different sampling

rates was estimates of onset ages. Increasingly large sampling intervals caused an increased

rate of errors in estimating the earliest age of stable expression for motor skills. With one-

month sampling intervals, the average absolute error was 15 days, and 59% of errors were

biased toward delays. In areas such as infant motor development and language acquisition

where skills appear and disappear in relatively quick succession, errors of this magnitude are

likely to have serious consequences for both theory and application in studies of development.

Erroneous onset ages carry concomitant costs for estimating durations of experience (e.g., how

long a child has been walking or talking), developmental sequences (e.g., the ordering of motor

and linguistic events), and the duration of stable periods (e.g., telegraphic speech, over-

regularization of verb tense).

Risks of over-sampling—Of course, frequent sampling also carries potential costs. As

others have pointed out (Cohen, 1991; McCartney, Burchinal, & Bub, 2006), substantial

practical costs can be incurred by dense sampling. Collection of behavioral data, particularly

in experimental settings, often entails considerable time, effort, and expense that may present

logistical difficulties. Frequent sampling may have adverse effects on subject recruitment and

attrition because demands on participation can be considerable and onerous. Repeated testing

can alter participants’ responses to the experimental condition, although this problem can be

addressed explicitly by including a control group sampled less frequently. Dense sampling

over a long period exacerbates problems of data management and methods for summarizing

and analyzing data.

But does over-sampling carry the risk of misrepresenting developmental trajectories, thereby

causing researchers to misinterpret the research findings? Many time-based phenomena are

evident only when assessed on the appropriate time scale. For example, it might be difficult to

discern a 24-hr circadian rhythm while viewing an activity record plotted on a time scale of

seconds, or to detect the day-to-day variability in infants’ acquisition of crawling and walking

over a trajectory that included the bout-rest periods of locomotion on a time scale of seconds.
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More generally, researchers might fail to detect a developmentally significant pattern on a

larger time scale that is obscured by abundant low-level variability or noise in a densely

sampled time series.

The interpretive problem, however, arises solely from failure to adequately summarize data

obtained from dense sampling. There are no intrinsic interpretational problems that arise from

sampling frequently, because any time series can be resampled at a reduced rate or smoothed

to faithfully represent patterns at a lower grain of resolution. In fact, researchers routinely over-

sample physiological and movement data and then apply various smoothing functions to reduce

noise and to detect underlying patterns in the data. In other words, researchers can recover the

developmental pattern from over-sampled data, but the converse is not true: Researchers cannot

recover the developmental pattern from data sampled with overly large intervals.

Moreover, as illustrated by the findings in the present study, variable developmental trajectories

are not an inevitable consequence of high sampling rates. Although we found that infant motor

development is most often characterized by variable trajectories, the data also demonstrated

that 15.7% of the daily time series showed a sudden, step-like transition, with the skill appearing

from one day to the next. Contrary to the notion that high sampling rates might create the false

impression of variability, only with sufficiently frequent sampling is it possible to refute the

possibility that a developmental trajectory is variable, and that a step-function is a more

accurate depiction of the underlying pattern. This fact is well appreciated by evolutionary

scientists, who acknowledge the need for much finer resolution in the fossil record, on a

geological time scale, to distinguish between competing theories of evolutionary change, such

as gradualism versus punctuated equilibrium (Gould & Eldredge, 1993; Gingerich, 2001).

Beyond binary data—Can conclusions regarding the effects of sampling interval generalize

beyond the specifics of the dataset reported here? Sitting, standing, walking, and so on were

scored as binary data (either present or absent over the course of each day), and all skills reached

a level of stable, daily performance. Likewise, skills in other domains can be expected to attain

stable, daily performance (e.g., correct production of words, learning the multiplication tables).

Skills such as crawling, and cruising (and in other domains, weaning from breastfeeding, the

ability to distinguish speech sounds outside the native language, etc.) also attain stable offset

periods, where children never produce them again. But what of skills scored as a binary process

with base rates between 0 and 1? Symbolic play, for example, might achieve a stable base rate

during the preschool years between 0.8 and 1, and professional hitting averages in baseball

only rise to the neighborhood of 0.2 to 0.3. Going in the other direction, crying begins at 1 for

newborns, but thankfully decreases to a base rate closer to 0. How does a base rate less than 1

(and for offsets, a base rate greater than 0) affect the optimal selection of sampling interval?

A simple Markov switching model can help to clarify the issue of generalization to skills with

intermediate base rates. Even a high base rate will result in some days when the skill is not

expressed. Figure 5 provides an illustration. The black curves represent data from three

hypothetical time series; the gray curves represent a 15-day moving average that smoothes

over the same data. Suppose that the developmental trajectory involves a step-like switch from

an early period of absence (pE = 0) to a later period of probabilistic occurrence (pL < 1.0). For

instance, as shown in Figure 5A, a sudden, step-like shift from absence to a 0.95 probability

of daily expression would result in an average of five days when the skill was not expressed,

and 11 concomitant transitions (between absence and presence, and vice versa) within a 100-

day period that actually represents the stable base rate of the skill. Under these conditions,

sampling on a daily basis would reveal occasional transitions in the stable base rate, which

might be misidentified as a variable period of acquisition. In such a situation, it might seem

preferable to sample less frequently, say, once a week or once a month, to reduce the chance

of erroneously attributing transitions to a variable acquisition period rather than to a stable,
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more mature period with a base rate < 1. Obviously, if fewer samples are collected, fewer false

transitions would be detected.

However, a reduced sampling rate would not provide a more accurate measure of the

developmental profile. Instead, it would fail to identify the correct onset age in a step-like

trajectory, and it would decrease the estimate of the number of transitions during the acquisition

period for time series with variable trajectories. In contrast, for step-like trajectories, dense

sampling would pinpoint the onset age. For variable trajectories, dense sampling would allow

researchers to distinguish a variable acquisition period from a post-acquisition period with a

stable base rate < 1, using the difference in the number of transitions (or some other measure

of variability, as revealed by a smoothing function) as an index.

For example, Figure 5B presents the same two-state model (pE and pL) as in 5A, but now

separated by a 60-day window (representing a variable acquisition period) in which the

underlying process randomly shifts between pE and pL. If pL is high (pL > .8), then the number

of transitions detected by daily sampling will be greater during the variable acquisition period

than during the later period of stable expression. But, as shown in Figure 5C, if pL is low (pL

< .5), then the number of transitions during the variable acquisition period will be less than the

number observed after the onset of stable expression. In both cases, a simple smoothing

function can reveal differences in the level of expression during the variable acquisition and

stable periods. Thus, the difference in the number of transitions over the entire time series

provides a clue as to whether the change from absence to stable expression is step-like or

variable. Even though the absolute number of transitions can be inflated during acquisition for

skills with base rates < 1, only dense sampling can reveal differences in the rate of expression

when expression of the skill is probabilistic.

Recording skills with greater precision does not alleviate the need for dense sampling to

characterize the developmental trajectory. The findings regarding sampling intervals should

also generalize from the binary data presented here to more precise levels of measurement

(ordinal, interval, and ratio scales). Ordinal data, for instance, present much the same problem

as binary data for dealing with variable trajectories. On an ordinal scale, sampling less

frequently would pose the risk of missing periods of vacillation between higher and lower

levels of performance, periods of inconsistent fluctuation between several levels, periods of

consistent expression at intermediate levels, or wholesale reversals in levels of performance.

Similarly, when skills are indexed with interval or ratio data, infrequent sampling over

development can lead to decreased sensitivity to detect periods of stability and instability (in

single observations, means, and measures of variability such as the coefficient of variation).

Interval and ratio data are conducive to interpolation and curve-fitting that smooth over

variations in the developmental trajectory, so that researchers may fail to detect brief episodes

of improvement (as in the case of physical growth) or decrement, interruptions in the expression

of skills, spikes in activity, accelerations (e.g., the vocabulary explosion) and decelerations, or

other changes in rate that are evident only when sampling on a finer time scale. Moreover,

because sensitivity to random sampling error is greater with larger sampling intervals,

estimation of onset ages based on achievement of a criterion level of performance, as measured

with ordinal or interval data, also would be subject to the same types of errors that we have

described for binary data.

Theoretical consequences—Developmental trajectories provide more than empirical

summaries of change over time: Historically, evidence that cognitive, perceptual, social, or

motor skills exhibit particular developmental trajectories (step-like, variable, linear, episodic,

U-shaped, etc.) has stimulated some of the most important theories in developmental

psychology. The concept of developmental stages illustrates the profound influence of
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empirical claims about developmental trajectories on theoretical work about developmental

change. Stage theories have enjoyed a long and influential history in developmental psychology

(e.g., Baltes, Reese, & Nesselroade, 1977; Brainerd, 1978; Piaget, 1954). Although the concept

of developmental stages encompasses qualitative changes, hierarchical reorganizations,

universal sequences, and so on (Fischer & Silvern, 1985), typically, a central feature of stage

theories involves the timing of development—extended, stable periods interrupted by shorter

periods of developmental change. Rapid, stage-like transitions from one stable pattern of

performance to the next are characteristic of phenomena ranging from moment-to-moment

fluctuations in sleep and waking states in rat pups (Blumberg, Seelke, Lowen, & Karlsson,

2005) to patterns of change on an evolutionary time scale (Gould & Eldredge, 1993).

Considerable effort has been devoted to constructing formal models that can account for abrupt

transitions between developmental stages. For example, theoretical accounts of stage-like

cognitive development include simulations using connectionist models (McClelland, 1989)

and rule-based approaches (Siegler, 1976), and mathematical models based on catastrophe

theory (van der Maas & Molenaar, 1992), dynamic systems theory (Thelen & Smith, 1994),

and other mathematical frameworks (van Rijn, van Someren, & van der Maas, 2003). For

instance, according to catastrophe theory and dynamic systems theory, enhanced variability is

a hallmark of transitions between stable attractors (Kelso, 1995; Thelen & Smith, 1994) such

as successive stages (Raijmakers & Molenaar, 2004). Thus, accurate assessment of the amount

and timing of variability is critical for empirically evaluating such models of cognitive

development.

The present study suggests that researchers’ ability to accurately characterize variable and step-

like trajectories in development is profoundly affected by sampling rate, and either trajectory

may be inferred erroneously as an artifact of inadequate sampling. Models of developmental

change become moot if the empirical evidence cannot distinguish among alternative

trajectories. That is, without an appropriate sampling interval, researchers would not be able

to detect a sufficient amount of variability to distinguish between punctate onset dates

(Wimmers et al., 1998), instability around times of transitions (Kelso, 1995), expression of

partial knowledge (Munakata, McClelland, Johnson, & Siegler, 1997), or other patterns of skill

onset.

Sampling Development

How can developmental researchers avoid the pitfalls of under-sampling? Unfortunately,

formal principles such as the Nyquist theorem are not applicable to developmental time series

because developmental trajectories can assume many different shapes, few of which are

periodic or conform strictly to mathematical functions. Instead, sampling rates must be

determined empirically based on the questions being addressed and developmental processes

being studied. Building on previous work (Siegler, 2006; Thelen & Ulrich, 1991), the present

study suggests some precepts to guide the empirical enterprise of identifying optimal sampling

rates to accurately capture the shape of developmental change.

(1). Determine the base rate—In most cases, skills of interest to developmental

psychologists eventually reach a level of stable, consistent performance. Estimating the typical

rate at which the skill is expressed is important in planning how to sample the acquisition period

and/or the more mature, stable period. For skills with stable periods of occurrence (or stable

periods of absence in the case of skills that disappear from children’s repertoires), determining

the base rate of occurrence will depend on the number of observations collected, not on the

rate of sampling. If the base rate is less than 1, applying a smoothing function may be useful

in determining an average rate of occurrence (see Figure 5).
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(2). Find the acquisition period—For most kinds of skills, researchers are likely to initiate

a study with some knowledge of the time frame encompassing significant development. Some

aspects of children’s behavior emerge over a span of weeks; other aspects may require years.

A preliminary investigation with economical sampling (at monthly intervals or longer) may

be useful to identify the approximate age range for the acquisition period, and thereby narrow

the span of time requiring more detailed examination. Note that the initial characterization of

the developmental trajectory from the preliminary study is unlikely to reveal a detailed and

accurate picture of the shape of developmental change, but may be necessary in planning more

detailed sampling in future efforts.

(3). Sample as small as you can—If the objective is to accurately portray the shape of a

developmental process, it is crucial to sample data at the minimum, practicable interval,

especially over the ages spanning the acquisition period. Researchers should consider the

default rate for most kinds of child behavior to be daily sampling: absence or presence over

the course of the day for skills indexed with binary data; highest level attained over the course

of the day for skills indexed with ordinal data; and a summary score such as the mean, sum,

or coefficient of variation over the course of the day for skills indexed with interval or ratio

data. One reason to consider daily sampling a privileged sampling interval is that it reflects the

nearly ubiquitous influence of 24-hour circadian rhythms on human psychological functions.

Skills expressed each day are interrupted by sleep each night, during which the day’s activities

and experiences may be absent, suppressed, forgotten, or consolidated (e.g., Stickgold,

2005). A second reason to consider daily sampling privileged is that the present study and

others (e.g., Ganger and Brent’s study of the vocabulary explosion and Lampl and colleagues’

work on physical growth) serve as demonstration proofs of important day-to-day changes in

multiple domains of development. Sampling less frequently than every day risks losing the

shape of those trajectories. Sampling multiple times each day may provide additional or

converging insights into development, as in the cases of infant walking and physical growth.

However, multiple samples per day also introduce variability that may not be meaningful

because circadian rhythms affect patterns of performance by changing children’s behavioral

state, motivation, and opportunity for performance.

(4). Look before the onset—To satisfy the objective of describing the entire trajectory,

especially the shape of the acquisition period, researchers will need to focus attention on the

ages when the skill is first expressed. A preliminary investigation using coarse sampling should

be useful for obtaining an initial estimate of an onset age, but as the findings of the present

study show, estimates of onset ages based on infrequent sampling are likely to produce large

delay errors, and such errors increase with larger sampling intervals. In trajectories based on

monthly samples, for example, estimates of onset age are three times more likely to occur after

the actual onset age. Therefore, the earliest expression of the skill is likely to occur before the

earliest onset age identified by relatively infrequent sampling. As a consequence, more dense

sampling efforts should include ages prior to the crude estimate of onset.

5. Look for changes in variability—For skills indexed by binary data, trajectories may

be step-like or variable. The latter will show fluctuations prior to attaining a stable level of

performance. If the base rate of occurrence is high but < 1 during the period of stable

performance (> .8), then a variable acquisition period will likely consist of an increased number

of transitions. In contrast, if the base rate is low (< .5), then a variable acquisition period should

show a lower number of transitions relative to the later period of stability. As shown in Figure

5B-C, application of a simple moving average or similar smoothing procedure can reveal

periods of enhanced variability regardless of the base rate. After smoothing, variable periods

appear as a lower rate of occurrence relative to later ages. Thus, smoothing techniques can be
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useful in demarcating changes in the level of variability of performance, which can help

researchers to verify that they have distinguished the acquisition and stable periods.

Concluding Remarks

Historically, much of developmental research has resembled the old saw about the man who

lost his keys in a dark alley and turned his attention to searching for them on the street, “where

the light was much better.” Understanding child development has benefited from descriptions

of age-related differences and demonstrations of the surprising abilities of infants. But

understanding the process of developmental change requires more. It requires solid empirical

foundations built upon accurate depictions of change over time. The implications of our

analysis of sampling intervals would appear to offer a bleak view of methodological difficulties,

even greater than those already recognized by researchers engaged in longitudinal and

microgenetic research. The payoff for dealing with the thorny methodological difficulties of

sampling rate is that accurate descriptions of developmental trajectories will be instrumental

to advancing theories of development. It is simply necessary for understanding the shape of

developmental change.

Appendix 1. Skills Analyzed from Daily Diaries

Skill Description

Sits (propped on hands) Sits on floor for ≥ 30 s, with legs outstretched, using hands for support.

*Sits (hands free) Sits on floor for ≥ 30 s, with legs outstretched, without using hands for support.

Sitting to prone Shifts from sitting position with legs outstretched to prone position.

Prone to sitting Shifts from prone or crawling position into sitting position with legs outstretched.

Kneel to stand (holding) Shifts from kneeling, sitting, or crawling position to standing position by holding onto furniture to pull
body upright.

*Squat to stand (hands free) Shifts from kneeling, sitting, or crawling position into a squat, and then stands up without pulling upright
on furniture.

Stands (holding) Balances upright for ≥ 3 s by holding onto furniture for support.

*Stands (hands free) Balances upright for ≥ 3 s without holding onto furniture for support.

Stand to sit (holding) Shifts from upright to sitting position while holding onto furniture for support.

*Stand to sit (hands free) Shifts from upright to sitting position without holding onto furniture for support.

Rolls front to back Shifts from lying prone to lying supine.

Rolls back to front Shifts from lying supine to lying prone.

Torso raised (propped on arms) Pushes head and chest off floor by propping on forearms or hands while lying prone.

*Torso raised (1 arm free) Pushes head and chest off floor by propping on 1 arm and using the other hand or arm to reach or manipulate
objects.

Rocks on hands and knees Rocks ≥ 2 oscillations while balanced on hands and knees.

Turns 180° prone Pivots in place ≥ 180° while on belly or hands and knees.

Crawls belly (< 3 m) Crawls forward < 3 m, before stopping, with belly resting on floor for duration of each crawling cycle.

*Crawls belly (≥ 3 m) Crawls forward ≥ 3 m without stopping, with belly resting on floor for duration of each crawling cycle.

Crawls intermittent belly (< 3 m) Crawls forward < 3 m, before stopping, with belly alternately raised in air and resting on floor during each
crawling cycle.

*Crawls intermittent belly (≥ 3 m) Crawls forward ≥ 3 m without stopping, with belly alternately raised in air and resting on floor during each
crawling cycle.

Crawls hands and knees (< 3 m) Crawls forward < 3 m, before stopping, balancing on hands and knees for duration of each crawling cycle.

*Crawls hands and knees (≥ 3 m) Crawls forward ≥ 3 m without stopping, balancing on hands and knees for duration of each crawling cycle.
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Skill Description

Crawls hands and feet (< 3 m) Crawls forward < 3 m, before stopping, balancing on hands and feet for duration of each crawling cycle.

*Crawls hands and feet (≥ 3 m) Crawls forward ≥ 3 m without stopping, balancing on hands and feet for duration of each crawling cycle.

Cruises 2 hands (< 3 steps) Takes < 3 upright steps, torso sideways, holding onto furniture for support with both hands.

*Cruises 2 hands (≥ 3 steps) Takes ≥ 3 upright steps, torso sideways, holding onto furniture for support with both hands.

Cruises 1 hand (< 3 steps) Takes < 3 upright steps, torso frontward, holding onto furniture for support with 1 hand.

*Cruises 1 hand (≥ 3 steps) Takes ≥ 3 upright steps, torso frontward, holding onto furniture for support with 1 hand.

Walks supported (2 hands held) Walks with both hands held by caregiver, supporting own weight.

*Walks supported (1 hand held) Walks with 1 hand held by caregiver, supporting own weight.

Walks (< 3 m) Walks independently < 3 m.

*Walks (≥ 3 m) Walks independently ≥ 3 m.
*
Denotes skill with stricter definition than preceding skill.
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Figure 1.

Idealized shapes of developmental change, with age shown on the X-axis and an index of

behavioral expression or level of performance on the Y-axis. (a) Linear, (b) Accelerating, (c)

Asymptotic, (d) Step-like, (e) S-shaped, (f), Variable, (g) Unsystematic, (h) Stair-climbing, (i)

U-shaped, (j) Inverted-U-shaped.
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Figure 2.

Examples of developmental trajectories derived from daily data (black curves) for standing

(balancing upright for ≥ 3s without holding a support) in two infants. (a) Trajectory that exhibits

abrupt step-function from absent to present from one day to the next. Simulated monthly

sampling (gray curve) results in an error in identifying the skill onset age, but does not distort

the shape of the trajectory. (b) Variable trajectory, where skill vacillated 21 times between

absent and present over the course of several weeks. Simulated monthly sampling (gray curve)

misrepresents both the shape of the variable trajectory and the estimated onset age.
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Figure 3.

Effects of sampling interval on sensitivity to variability in developmental trajectories. (a) The

number of observed transitions between absence and presence for one skill (standing). Each

curve represents data for one of the 8 infants for whom we had a complete time series. Open

symbols depict data when the skill was sampled daily; lines show data averaged across all

possible phases at each of the 1- to 31-day sampling intervals. Note that the data point nearest

the origin represents the stage-like data from infant #11, shown in Figure 2A. The other 7 data

points show data for variable trajectories from other infants, including the top data point

depicting infant #7, shown in Figure 2B. (b) Number of observed transitions, presented as in

Figure 3A, for all 32 skills. The thick gray line represents the mean trajectory across all 261

time series. (c) The same data presented in Figure 3B expressed as a percentage of observed

transitions recorded at daily intervals. The horizontal line at 100% represents the 41 time series

with only 1 abrupt transition from absent to present (15.7% of all time series). Most time series

consisted of variable trajectories when measured daily, but more than 75% of transitions were

not detected when sampled at weekly intervals. (d) Distribution of R2 values for inverse power

functions fit to each of the 240 time series with multiple transitions. Most time series were best
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described by an inverse power function, indicating that modest increase in small sampling

intervals (< 1 week) resulted in a sharp decline in the ability to detect transitions.
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Figure 4.

Effects of sampling interval on estimates of onset ages. (a) Neurally-inspired activation

function and resulting estimate of the onset age applied to the daily data shown in Figure 1B

for standing in infant #7. The onset age is determined by identifying the first instance of activity

that exceeds a criterion threshold, then tracing the function back to the preceding period of

inactivity. In this case, the function identifies an onset age at 501 days (shown as vertical dashed

line). (b) Histograms showing errors in estimates of the onset age for one skill, standing, in all

8 of the infants for whom time series were available. Y-axis is expressed as a percentage of

total estimates. Note that larger sampling intervals result in a greater range of errors, a general

increase in the magnitude of errors, and a tendency for errors to be shifted toward later ages.
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(c) Number of days that estimates of onset ages deviated, either earlier or later, from estimates

derived from daily sampling. Data are presented for all available skills for each child (261 time

series) as a function of the sampling interval; the superimposed gray line shows the mean

absolute error resulting from sampling at different intervals.
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Figure 5.

Simulated developmental trajectories (dark lines) generated by a simple Markov switching

model. In each graph, the first 60 days represents a period where the behavior of interest is not

yet expressed (p = 0), and the final 100 days represents a period of consistent expression in

which the behavior occurs at a stable rate < 1. (a) A stage-like trajectory involving an abrupt

transition from absence (extended through the first 120 days) to a high base rate of occurrence

(p = .95) during the period of stable expression. (b) Trajectory involving an intervening

acquisition period (from day 61 to day 120) before achieving a stable period with a high base

rate (p = .95). During the acquisition period, behavior is generated by randomly switching

between the early regime (absence) and the later period of stability (high base rate). (c)
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Trajectory involving an intervening acquisition period before a stable period with a lower base

rate (p = .5). Regime switching occurs in the same way as in (b). In all three graphs, the thicker

gray line shows a 15-day moving average that depicts the same data; in graphs (b) and (c), this

smoothing function visually demarcates the variable acquisition period from the later period

of stable expression.
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