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Claim:

N = 8 SUGRA has the nicest S-matrix in four dimensions.

• The entire tree-level S-matrix is determined recursively in terms of the

three-particle one, which is completely fixed by Lorentz symmetry.

• The massless S-matrix exists in the whole moduli space and E7(7) has

a simple action on the tree-level S-matrix.

• The one-loop S-matrix is determined by the most special and simplest

of all singularities, called the leading singularity.
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Of course, being finite is not very exciting by itself.

• Expansion parameter is E/MPl. Asymptotic expansion. e−(MPl/E)p

corrections are large at super-Planckian energies.

• E7(7) must be broken down to a discrete subgroup by black holes.

• All this is consistent with the impossibility of decoupling it from

M-theory. (Green, Ooguri, Schwarz 07/04.)

• The interesting features of quantum gravity are really a consequence of

the breakdown of local field theory. (Holographic description).

Real Interest:

• All the structures I will explain today and the ones which are yet to be

found hint towards the existence of a dual formulation.

• N = 8 SUGRA seems to be the prototype where to fully test and

develop the ideas of the analytic S-matrix program from the 60’s. (One

reason the program was so difficult was that it was applied to very

difficult theories!)

• Perhaps a twistor string theory for gravity. More generally, a topological

string theory. (This duality would imply finiteness while being

non-perturbatively incomplete!).

(Witten 2003, Berkovits, Nair, Boels, Mason, Skinner, Wolf, Abou-Zeid, Hull,

Mansfield, . . . )
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BCFW Deformation:

(Britto, F.C., Feng 12/04, with Witten 01/05)

Search for a one cplx. parameter family of deformations of M and compute

it by using its physical singularities.

p1 → p1(z) = p1 + zq and p2 → p2(z) = p2 − zq

with
p1 = (1, 1, 0, 0), p2 = (1,−1, 0, 0), q = (0, 0, 1, i)
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Pure gravity has two copies of the spin symmetry! This is why it is better

behaved than YM.

Number of copies of the Lorentz group is equal to the spin (i.e. zero for

scalars!).
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Under Q-SUSY

M(ηi) → M(ηi + µi)

SWI becomes a simple translation in η.
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BCFW Recursion Relations in Maximal SUSY

Naively Impossible! (M(φ1, . . . , φn) does not vanish as z →∞).

Key point: If one approaches infinity in a supersymmetric way then all

amplitudes vanish at infinity (as 1/z2)!
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L R

p1 → p1(z) = p1 + zq and p2 → p2(z) = p2 − zq

p1 = (1, 1, 0, 0), p2 = (1,−1, 0, 0), q = (0, 0, 1, i)

η1(z) = η1 + zη2
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Vacuum Structure, Soft Emission and E7(7)

N = 4 SYM: Nice massless S-matrix only at the origin of moduli space.

N = 8 SUGRA: Nice massless S-matrix everywhere in the moduli space.

Moduli space: 70 scalars in the (4− index)A of SU(8) R−symmetry.

−i [XI1,···,I4 , XI5,···,I8 ] = �JI2···I8T
J
I1

+ · · · + �I1,···,I7JT J
I8

Non-Linearly realized symmetry, 63 + 70 = 133, E7(7).

[T, T ] ∼ T, [X,T ] ∼ X, [X,X] ∼ T
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Single-Soft Emission

Using the RRs one can show that gravitons give a divergence (Weinberg),

graviphotons gives a finite answer, scalars vanish! This is the indication of a

moduli space.



Vacuum Structure, Soft Emission and E7(7)

N = 4 SYM: Nice massless S-matrix only at the origin of moduli space.

N = 8 SUGRA: Nice massless S-matrix everywhere in the moduli space.

Moduli space: 70 scalars in the (4− index)A of SU(8) R−symmetry.

−i [XI1,···,I4 , XI5,···,I8 ] = �JI2···I8T
J
I1

+ · · · + �I1,···,I7JT J
I8

Non-Linearly realized symmetry, 63 + 70 = 133, E7(7).

[T, T ] ∼ T, [X,T ] ∼ X, [X,X] ∼ T

Vacuum Structure, Soft Emission and E7(7)

N = 4 SYM: Nice massless S-matrix only at the origin of moduli space.

N = 8 SUGRA: Nice massless S-matrix everywhere in the moduli space.

Moduli space: 70 scalars in the (4− index)A of SU(8) R−symmetry.

−i [XI1,···,I4 , XI5,···,I8 ] = �JI2···I8T
J
I1

+ · · · + �I1,···,I7JT J
I8

Non-Linearly realized symmetry, 63 + 70 = 133, E7(7).

[T, T ] ∼ T, [X,T ] ∼ X, [X,X] ∼ T

Single-Soft Emission

Using the RRs one can show that gravitons give a divergence (Weinberg),

graviphotons gives a finite answer, scalars vanish! This is the indication of a

moduli space.
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Double Soft Emission and E7(7)

Consider an amplitude with two scalars φabcd
1 and φ2;efgh in the double

soft limit.

Using the SUSY BCFW recursion relations:
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In N = 8 SUGRA ∆3;∞ vanishes!
This means that no scalar triangles are needed to reproduce the

singularities of Feynman diagrams.
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external kinematical invariants. (This is the no-triangle hypothesis) (Very

recently proven by N. Bjerrum-Bohr and P. Vanhove using string-based methods for

reduction procedures. arXiv:0805.3682)

One-Loop Solution

c

a

b

dM1-loop
n =

�

Iabcd

Babcd ×

Iabcd are partitions of {1, . . . , n} into four non-empty sets.



An additional step using Dim. Reg. is possible. A single cut. This

signals the presence of rational functions which are not determined by the

cuts in four-dimensions. Work in progress (Arkani-Hamed, F.C., J. Kaplan)

We argued the absence of rational terms in N = 8 SUGRA by using some

number theoretic properties of the functions as kinematical invariants are

taken to be algebraic numbers!

Summary:

One-loop amplitudes in N = 8 SUGRA are completely determined by their

leading singularities.

In other words, all one-loop amplitudes can written as a sum over scalar box

integrals in D = 4− 2� with coefficients which are rational functions of the

external kinematical invariants. (This is the no-triangle hypothesis) (Very

recently proven by N. Bjerrum-Bohr and P. Vanhove using string-based methods for

reduction procedures. arXiv:0805.3682)

One-Loop Solution

c

a

b

dM1-loop
n =

�

Iabcd

Babcd ×

Iabcd are partitions of {1, . . . , n} into four non-empty sets.



One-Loop Solution

c

a

b

dM1-loop
n =

�

Iabcd

Babcd ×

Iabcd are partitions of {1, . . . , n} into four non-empty sets.
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singularities.
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Leading Singularity Conjecture

The S-matrix of N = 8 SUGRA is completely determined by its leading

singularities.

Ingredients:

• Generalization to include Dim. Reg.

• Careful study of dLIPS in higher loop amplitudes.

• Maximal SUSY to relate the infinite cplx. momentum limit to that of well

behaved gravitons.

• Good behavior at infinite complex momentum of graviton amplitude (Not

related to SUSY).
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• All the S-matrix is determined algebraically in terms of tree-level

amplitude which are determined by Lorentz symmetry.

• If at any loop level the S-matrix fails to be determined by the leading

singularity it will be a sign of an UV divergence, e.g., at three-loop in

pure gravity the (+ + +) and (−−−) vertices, which are not there at

tree-level, are needed. These are generated by the two-loop

counterterm.
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• Prove the Leading Singularity Conjecture.

• Find a dual theory.

• Construct the finite action of E7(7) on the S-matrix.

• Understand the connection between the presence of E7(7) and the

other properties of the S-matrix.

• Start the exploration of higher dimensional field theories.
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