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WHAT IS THE SMALLEST POSSIBLE CONSTANT

IN CÉA’S LEMMA?*

Wei Chen, Jinan, Michal Křížek, Praha

(Received February 3, 2006)

Abstract. We consider finite element approximations of a second order elliptic problem
on a bounded polytopic domain in

� d with d ∈ {1, 2, 3, . . .}. The constant C > 1 appearing
in Céa’s lemma and coming from its standard proof can be very large when the coefficients
of an elliptic operator attain considerably different values. We restrict ourselves to regu-
lar families of uniform partitions and linear simplicial elements. Using a lower bound of
the interpolation error and the supercloseness between the finite element solution and the
Lagrange interpolant of the exact solution, we show that the ratio between discretization
and interpolation errors is equal to 1 + O(h) as the discretization parameter h tends to
zero. Numerical results in one and two-dimensional case illustrating this phenomenon are
presented.

Keywords: supercloseness, Lagrange finite elements, Lagrange remainder, lower esti-
mates, elliptic problems, d-simplex, uniform partitions
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1. Introduction

The famous Céa’s lemma plays an important role in finite element theory, be-
cause it enables us to transform the question of convergence of the finite element

method (and a priori estimation of the discretization error) to the investigation of
approximation properties of relevant finite element spaces.

More precisely, let V be a real Hilbert space with a norm ‖·‖, F a linear continuous
form on V , and let a(·, ·) be a bilinear form on V × V . Assume that a(·, ·) is

*This research was supported by Shandong Province Young Scientists Foundation of
China 2005BS01008, Institutional Research Plan AV02 101 90503, and by Grant
No A 1019201 of the Academy of Sciences of the Czech Republic.
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continuous, i.e., a constant M exists such that

(1.1) |a(v, w)| 6 M‖v‖ ‖w‖ ∀ v, w ∈ V,

and V -elliptic, i.e., a constant m > 0 exists such that

(1.2) a(v, v) > m‖v‖2 ∀ v ∈ V.

We see that m 6 M . Consider now a nonempty finite dimensional subspace Vh ⊂ V .

Then, by the Lax-Milgram lemma, the problems: Find u ∈ V such that

a(u, v) = F (v) ∀ v ∈ V,(1.3)

and: Find uh ∈ Vh such that

a(uh, vh) = F (vh) ∀ vh ∈ Vh,(1.4)

have exactly one solution each. The function uh is called the Galerkin approximation.
Céa’s lemma says (see [5] and for a historical note also [9, p. 109]) that there exists

a constant C such that

(1.5) ‖u− uh‖ 6 C inf
vh∈Vh

‖u− vh‖.

The knowledge of the best possible value of C is thus important in obtaining reliable

a priori bounds of the discretization error.
A standard proof of (1.5) follows directly from (1.1)–(1.4). Indeed, for every

vh ∈ Vh we find that

(1.6) m‖u− uh‖2 6 a(u− uh, u− uh) = a(u− uh, u− vh) 6 M‖u− uh‖ ‖u− vh‖.

Therefore, C = M/m is a constant that may stand in (1.5). However, the ratioM/m

can be very large especially when a(·, ·) corresponds to an elliptic equation with
coefficients which attain considerably different values. E.g., for highly oscillating

coefficients coming from real-life technical problems we have M/m ≈ 100 for a heat
conduction problems described in [15, p. 209] and M/m ≈ 10 000 for a magnetic
field problem involving ferromagnetic media, see [15, pp. 134–138]. In [9, p. 105],
a simple procedure is presented for reducing the constant C in (1.5) to

√
M/m when

the bilinear form a(·, ·) is symmetric.
Using the theory of superconvergence, we show that the ratio between discretiza-

tion and interpolation errors equals 1 + O(h) as h → 0 for a class of second order
elliptic problems with variable coefficients. Therefore, we need not examine the
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Galerkin approximation uh, but only the approximation properties of the spaces Vh,

to get a reliable bound of the discretization error. Note that the right-hand side
of (1.5) can be estimated from above by C‖u − uh‖. From this we find the lower
bound 1 6 C. In [22, p. 197] Xu and Zikatanov derived a slight reduction of the

constant in (1.5) for the Petrov-Galerkin method as it is presented in [1].
The outline of this paper is as follows. In Section 2 we prove that the lower

bound 1 6 C is attainable in a special case. Then we shall consider a bounded
polytopic domain and describe regular families of uniform d-simplectic partitions

which enable us to get a supercloseness property. Section 3 contains results on
the gradient supercloseness between the finite element solution and the Lagrange

interpolant of the exact solution. In Section 4 we prove the main theorem on the
estimation of the discretization error. Section 5 is devoted to a lower bound of the

interpolation error. Finally, in Section 6, numerical results are presented to illustrate
the main theoretical result of Section 4.

Throughout the paper the standard Sobolev space notation is used (see [9]). The
symbol C (possibly with subscripts) stands for a positive generic constant inde-

pendent of the discretization parameter h, which nonetheless may depend on the
solution u or on a given fixed function. The generic constant may attain different

values at different occurrences.

2. Discretization

Let Ω ⊂ � d , d ∈ {1, 2, 3, . . .}, be a bounded domain with Lipschitz boundary ∂Ω.
Consider a class of second order elliptic problems described by the equations

− div(A∇u) = f in Ω,(2.1)

u = 0 on ∂Ω.

Here f ∈ L2(Ω) and A = A(x) = (aij(x))d
i,j=1 is a matrix (in general nonsymmetric)

whose entries are in L∞(Ω) and for which there exists C > 0 such that

(2.2) ξT A(x)ξ > CξT ξ ∀ ξ ∈ � d and a.a. x ∈ Ω.

This guarantees that the associated bilinear form a(u, v) = (A∇u,∇v) is continuous
and V -elliptic for

V = H1
0 (Ω).

To get the supercloseness property (3.5) below, we suppose in addition that aij are

Lipschitz continuous functions. This assumption is essential in superconvergence
theory, see [4, p. 34] for details.
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The upper bound (1.5) is usually enlarged by an interpolation error, i.e.,

(2.3) ‖u− uh‖1 6 C inf
vh∈Vh

‖u− vh‖1 6 C‖u− Ihu‖1,

where Ih : V → Vh ⊂ V is an interpolation operator, i.e., a linear continuous operator
such that Ih(vh) = vh for all vh ∈ Vh. From Section 1 we already know that if the

coefficients aij attain considerably different values, then m � M in (1.6) and the
standard proof of Céa’s lemma leads to a very large constant in (1.5). On the other

hand, for the Laplace operator we have

Proposition 2.1. If A is the unit matrix, then

|u− uh|1 = inf
vh∈Vh

|u− vh|1

and

|u− uh|1 < |u− Ihu|1(2.4)

whenever uh 6= Ihu on a set with a positive measure.
�������	�

. The associated bilinear form a(v, w) = (∇v,∇w) is symmetric and
therefore, by the Poincaré-Friedrichs inequality, it is a scalar product on V .

From (1.3) and (1.4) we get the orthogonality relation

a(u− uh, uh − vh) = 0 ∀ vh ∈ Vh.

Consequently, if uh 6= vh on a set with a positive measure, then

|u− uh|21 < |u− uh|21 + |uh − vh|21
= a(u− uh, u− uh) + 2a(u− uh, uh − vh) + a(uh − vh, uh − vh)

= a(u− uh, u− vh) + a(u− vh, uh − vh)

= a(u− uh + uh − vh, u− vh) = |u− vh|21.

Setting vh = Ihu, we obtain (2.4). �

Note that by the Poincaré-Friedrichs inequality the seminorm | · |1 is also a norm
in the space V . Thus for the Poisson problem and ‖ · ‖ = | · |1, the constant in Céa’s
lemma (1.5) is equal by Proposition 2.1 to 1 (cf. Example 6.2) for any dimension d

and any interpolation operator (linear, quadratic, cubic, etc.).

Next we will show that the constant C appearing on the right-hand side of (2.3) can
be arbitrarily close to 1 as h → 0 also for variable coefficients contained in the matrix
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A = A(x) (see (2.1)) when linear elements and uniform simplicial partitions are used.
Such partitions produce gradient superconvergence of finite elements (see, e.g., [2],
[3], [4], [21]).

To this end we moreover assume that Ω ⊂ � d is a polytopic domain, i.e., its

boundary ∂Ω is contained in a finite number of (d− 1)-dimensional hyperplanes. By
a polytope we mean a closure of a bounded polytopic domain. We shall consider

only face-to-face partitions Th of the polytope Ω into simplices (more precisely d-
simplices). A family F = {Th}h→0 of such partitions is said to be regular if there

exists a constant C > 0 such that

(2.5) measS > Chd
S

for any Th ∈ F and any simplex S ∈ Th, where hS = diam S.

Define a reference partition T̂ of � d using the well-known Kuhn simplicial partition
(see [16]) of d-dimensional unit cubes that tile the space � d . Each cube is partitioned

into d! simplices of the form

Sπ = {x = (x1, . . . , xd)> ∈ � d : 0 6 xπ(1) 6 . . . 6 xπ(d) 6 1},

where π denotes a permutation of the numbers 1, . . . , d.

Let d linearly independent unit vectors χ1, . . . , χd independent of h be given. We

shall introduce a family of d × d matrices Bh whose normalized columns form the
directions χ1, . . . , χd. Consider only such polytopes Ω and such linear affine mappings
Fh : � d → � d ,

Fh(x̂) = Bhx̂ + ch, x̂, ch ∈ � d ,

that for any simplex Ŝ ∈ T̂ we have either Fh(Ŝ) ⊂ Ω or Fh(Ŝ) ⊂ � d \ Ω, i.e., each
simplex S = Fh(Ŝ) is either inside Ω or outside Ω.
The set

Th = {S ⊂ � d : S = Fh(Ŝ) ⊂ Ω, Ŝ ∈ T̂}

will be called a uniform simplectic partition of Ω. The discretization parameter h is
the largest norm of all columns of Bh. Let us point out that all elements in Th have

the same volume and thus (2.5) may be replaced by

(2.6) meas S > Chd ∀S ∈ Th.

Define the finite element space Vh over the uniform simplectic partition Th as

(2.7) Vh = {v ∈ V : v|S ∈ P1(S) ∀S ∈ Th},
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where P1(S) is the space of linear polynomials. Then the weak formulation and the
corresponding finite element approximation for model problem (2.1) are described
by (1.3) and (1.4), respectively.

3. Supercloseness

In 1969 Oganesjan and Ruhovec (see [19]) examined the convergence of the finite

element method for solving a second order elliptic problem with Dirichlet bound-
ary conditions. They considered linear triangular elements over uniform partitions

(see Fig. 1). They did not apply Céa’s lemma, but used the triangle inequality

‖u− uh‖1 6 ‖u− Lhu‖1 + ‖uh − Lhu‖1,

where Lh is the standard Lagrange linear interpolation operator. When estimating

the last term they discovered a remarkable phenomenon of approximation theory,
namely that

(3.1) ‖uh − Lhu‖1 6 Ch2‖u‖3 for h ∈ (0, h0)

on a rectangular domain, where h0 > 0 is a constant. Later this phenomenon was
called supercloseness (see [21]), since

‖u− uh‖1 6 Ch|u|2(3.2)

and

‖u− Lhu‖1 6 Ch|u|2(3.3)

are the optimal error estimates, i.e., their approximation order cannot be improved
(see Theorem 5.1 and Remark 5.4). A suitable postprocessing operator based on the

supercloseness phenomenon (3.1) can be developed to improve the approximation
order of the gradients of finite element solutions from O(h) to O(h2). From then
on, the supercloseness property (3.1) between the finite element solution and the
interpolant of the exact solution has played an important and essential role in getting

many superconvergence results (see [3], [4], [7], [11], [13], [18], [21], and references
therein).
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Figure 1. Uniform partition of a square.

In one space dimension, the supercloseness of the finite element solution was con-

sidered by Tong in 1969 (see [20]). For linear tetrahedral elements, the first su-
percloseness phenomenon was discovered by C.M. Chen (see [7]) in 1980. It was
also independently rediscovered by Kantchev and Lazarov (see [12]) in 1986, and

later generalized by L. Chen [8] to quasi-uniform partitions. In 1987 Hlaváček and
Křížek [11] extended (3.1) to a general system of elliptic equations with variable

coefficients (which includes, e.g., linear elasticity equations, see also [10]).
In 1981 Zhu [23] proved superconvergence of the gradient of quadratic triangular

elements at the two Gaussian points of each edge. In a recent paper [4] his result
was extended to tetrahedral elements for problem (2.1) with Lipschitz continuous

coefficients. In particular, the supercloseness result for derivatives of the quadratic
elements on tetrahedral partitions holds as well:

(3.4) |uh −Qhu|1 6 C(u)h3,

where Qh is the standard quadratic Lagrange interpolation operator. Lin and Yan

in [18, p. 251] approximated the Poisson problem by rectangular block elements
(possibly smoothly deformed). Using special integral identities, they proved super-

closeness which gives superconvergence by means of an appropriate postprocessing
on quasi-uniform partitions.

In what follows, we will employ finite element spaces (2.7) to approximate prob-
lem (2.1) with Lipschitz continuous coefficients satisfying (2.2). For this case Brandts

and Křížek in [3, p. 498] proved the following result:

Theorem 3.1. Let F = {Th} be a regular family of uniform simplectic parti-
tions of a polytope Ω ⊂ � d , d < 6, and let u ∈ H3(Ω). Then there exist positive
constants C and h0 such that for any h ∈ (0, h0) we have

|a(u− Lhu, vh)| 6 Ch2‖u‖3|∇vh|0 ∀ vh ∈ Vh,

where Lhu ∈ Vh is the standard Lagrange linear interpolant.
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���������
3.2. By the Sobolev imbedding theorem, u ∈ H3(Ω) is continuous for

d < 6 and thus, the interpolant Lhu is well defined. To extend Theorem 3.1 also to
d > 6 we have to assume a higher regularity of u in order that Lhu be well defined
(see [3, p. 502]). We could also consider the Clément linear interpolation operator [6],

whose approximation properties are the same and which is defined on noncontinuous
functions via local regularizations.

Theorem 3.3. Under the assumptions of Theorem 3.1 we have supercloseness
between the finite element solution and the interpolant of the exact solution, namely,

there exist positive constants C and h0 such that

(3.5) |uh − Lhu|1 6 Ch2‖u‖3 for h ∈ (0, h0).

�������	�
. According to Theorem 3.1, we get

(3.6) a(u− Lhu, uh − Lhu) 6 Ch2‖u‖3|uh − Lhu|1.

Using (1.2) and the relation a(u− uh, vh) = 0 for all vh ∈ Vh, we obtain from (3.6)

that

|uh − Lhu|21 6 1
m

a(uh − Lhu, uh − Lhu) =
1
m

a(u− Lhu, uh − Lhu)

6 C

m
h2‖u‖3|uh − Lhu|1,

which proves the theorem. �

4. The main theorem

Now we give sufficient conditions that enable us to reduce the constantC appearing

on the right-hand side of (2.3) to 1 + O(h) in the case of variable coefficients of
problem (2.1). Compare (2.3) with (4.3) below.

Theorem 4.1. Let the assumptions of Theorem 3.1 hold and let there exist
positive constants C and h0 such that

(4.1) |u− Lhu|1 > Ch for h ∈ (0, h0).

Then

|u− uh|1 6 (1 + C1h)|u− Lhu|1(4.2)

and

‖u− uh‖1 6 (1 + C2h)‖u− Lhu‖1.(4.3)
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�������	�
. According to the Poincaré-Friedrichs inequality, Theorem 3.3 and (4.1),

we get

C3‖uh − Lhu‖1 6 |uh − Lhu|1 6 C4h
2‖u‖3 6 C1h|u− Lhu|1,

where C1 depends on u and C3 > 0. From this and the triangle inequality, we find
that

|u− uh|1 6 |u− Lhu|1 + |uh − Lhu|1 6 (1 + C1h)|u− Lhu|1

and

‖u− uh‖1 6 ‖u− Lhu‖1 + ‖uh − Lhu‖1 6 (1 + C2h)‖u− Lhu‖1.

�

���������

4.2. Assumption (4.1) says that the bound (3.3) and the standard

upper bound |u − Lhu|1 6 Ch are optimal, i.e., the approximation order of linear
elements cannot be improved when u is not linear everywhere in Ω. Since we were
not able to find any lower bound of the interpolation error in the literature, we will
examine the validity of (4.1) in the next section.


���������
4.3. Theorem 4.1 can be generalized also to higher order elements that

have the supercloseness property (see, e.g., (3.4)) provided an analogue of (4.1) holds.
However, we have to recall here a surprising result by Bo Li. In [17] he found that

for simplicial Pk-type elements with k > d > 1 the standard Lagrange interpolant
and the finite element solution are not superclose in the H1-norm.

5. Lower bound of the interpolation error for linear elements

First we examine in detail assumption (4.1) in the one-dimensional case.

Theorem 5.1. Let d = 1 and let v ∈ C2(Ω) \ P1(Ω). Then for any family of
uniform partitions there exist positive constants C and h0 such that

(5.1) |v − Lhv|1 > Ch for h ∈ (0, h0),

where C depends on the second derivatives of v.

�������	�
. Let z0 < z1 < . . . < zN be a uniform partition of the interval Ω such

that zj+1 − zj = h, and let z−1 = z0 − h and zN+1 = zN + h. Set

(5.2) C1 = max
x∈Ω

|v′′(x)| > 0.
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Without loss of generality we may suppose that C1 = max
Ω

v′′, since the case C1 =

max
Ω

(−v′′) can be treated similarly by setting v := −v. Due to the continuity of v′′

there exists a fixed subinterval Ω0 ⊂ Ω of positive length such that

(5.3) v′′(x) > C0 :=

√
7
8
C1 ∀x ∈ Ω0.

Furthermore, for sufficiently small h there exist indices j0 = j0(h) and j1 = j1(h)
such that zj ∈ Ω0 for all j = j0, . . . , j1, and zj0−1 and zj1+1 are outside Ω0. Set

(5.4) wh = v − Lhv

and let j ∈ {j0, . . . , j1 − 1} be given. For simplicity, let the symbol w′h(zj) denote
the derivative of wh from the right at the point zj . Using the Taylor expansion with
the Lagrange form remainder, we get

0 = wh(zj+1)− wh(zj) = hw′h(zj) +
h2

2
w′′h(ξ),

where ξ ∈ (zj , zj+1) ⊂ Ω0. Hence, from (5.4), we obtain |w′h(zj)| = 1
2h|v′′(ξ)| and

thus by (5.2),

(5.5) (w′h(zj))2 6 C2
1

4
h2.

Moreover, for x ∈ (zj , zj+1) we see from (5.4) and (5.3) that

w′h(x)− w′h(zj) =
∫ x

zj

w′′h(t) dt =
∫ x

zj

v′′(t) dt > C0(x− zj) > 0,

i.e.,

(w′h(x) − w′h(zj))2 > C2
0 (x− zj)2.

We shall integrate this inequality over (zj , zj+1). Since wh(zj+1) = wh(zj) = 0, we
find by (5.5), (5.3) and (5.2) that

∫ zj+1

zj

(w′h(x))2 dx(5.6)

> C2
0

∫ zj+1

zj

(x− zj)2 dx + 2w′h(zj)
∫ zj+1

zj

w′h(x) dx− h(w′h(zj))2

=
C2

0

3
(zj+1 − zj)3 − h(w′h(zj))2 > C2

0

3
h3 − C2

1

4
h3

=
( 7

3 · 8 −
1
4

)
C2

1h3 =
C2

1

24
h3 > h2

24

∫ zj+1

zj

(v′′(x))2 dx.

138



Summing these inequalities over all elements which entirely belong to Ω0, we get

by (5.4) for sufficiently small h that

|v − Lhv|21 = |w′h|20 >
∫ zj1

zj0

(w′h(x))2 dx

> h2

24

∫ zj1

zj0

(v′′(x))2 dx > h2

24
|v|22,Ω1

> h2

24
C2

0 meas Ω1,

where Ω1 6= ∅ is an open fixed interval such that Ω1 ⊂ Ω0. The reason for introduc-

ing Ω1 is that the end-points of Ω0 need not coincide with zj , in general. �

���������

5.2. The required H3-regularity of u appearing in Theorems 3.1, 3.3,
and 4.1 implies that u ∈ C2(Ω) for d = 1 due to the Sobolev imbedding theorem.
Therefore, Theorem 5.1 can be applied for v = u to fulfil assumption (4.1).

���������

5.3. The proof of Theorem 5.1 can be easily extended to families of
quasiuniform partitions whose elements S all satisfy 0 < C1h 6 measS 6 C2h.

���������

5.4. We will briefly sketch how to obtain a lower bound of the interpo-
lation error for the case d > 2, since a detailed proof would be too long. We employ
the standard technique which uses linear affine transformations from the reference
simplex Ŝ with vertices ĉ0 = (0, . . . , 0)>, ĉ1 = (1, 0, . . . , 0)>, . . ., ĉd = (0, . . . , 0, 1)>

to an arbitrary simplex S ∈ Th with vertices ci = cS
i ∈ � d , i = 0, 1, . . . , d, considered

as column vectors. Define an affine one-to-one mapping FS : Ŝ → S by

FS(x̂) = BS x̂ + c0, x̂ = (x̂1, . . . , x̂d)> ∈ Ŝ,

where

(5.7) BS = (c1 − c0, c2 − c0, . . . , cd − c0)

is a nonsingular d× d-matrix, since FS(ĉi) = ci for i = 0, . . . , d. For every v ∈ L2(S)
and x̂ ∈ Ŝ we set

(5.8) v̂(x̂) = v(x),

where x = FS(x̂). Thus we have a one-to-one correspondence between v̂ and v. By

the substitution theorem, for any n ∈ {0, 1, 2, . . .} there exists a constant C > 0 such
that for any simplex S, any v̂ ∈ Hn(Ŝ) and the associated v ∈ Hn(S) satisfying (5.8),
we have (see [9, p. 118] or [14, p. 46])

|v̂|n,Ŝ 6 C‖BS‖n|det BS |−1/2|v|n,S ,(5.9)

|v|n,S 6 C‖B−1
S ‖n|det BS |1/2|v̂|n,Ŝ ,(5.10)
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where ‖ · ‖ stands for the spectral norm. For a regular family of partitions we may
derive by (5.7) and (2.5) that

(5.11) ‖BS‖ 6 ChS and ‖B−1
S ‖ 6 Ch−1

S .

Now let v ∈ C2(Ω) \ P1(Ω) and let

C1 = max
Ω

max
i,j

|∂ijv(x)| > 0,

where ∂ijv(x) = ∂2v/(∂xi∂xj). We may suppose without loss of generality that
(cf. (5.2))

C1 = max
x∈Ω

∂k`v(x)

for some k, ` ∈ {1, . . . , d}. Then there exist a positive constant C0 < C1 (sufficiently

close to C1 like in (5.3)) and a subdomain Ω0 ⊂ Ω with positive measure such that

∂k`v(x) > C0 ∀x ∈ Ω0.

For any S ∈ Th define a linear interpolation function LSv ∈ P1(S) by (LSv)(ci) =
v(ci) for all i = 0, 1, . . . , d. Similarly we define L̂v̂ ∈ P1(Ŝ) and on the reference
simplex we set (cf. (5.4))

ŵ = v̂ − L̂v̂.

Then ŵ(ĉi) = 0 for all i = 0, 1, . . . , d, and for the Hessian matrices we have

(5.12) hes ŵ = hes v̂.

For simplicity we furthermore assume that BS are diagonal matrices. Then the

directions χi introduced in Section 2 are parallel to the coordinate axes and for the
second derivatives we have (cf. (5.10))

(5.13) |∂k`v|0,S 6 C‖B−1
S ‖2|det BS |1/2|∂k`v̂|0,Ŝ .

The seminorm |ŵ|1,Ŝ can be bounded from below by the L2-norm of the second

derivative ∂k`ŵ like in (5.6), cf. also [15, p. 68]. Using (5.9), the fact that L̂Sv = L̂v̂,

(5.12), (5.13) and (5.11), we find that

|v − LSv|1,S > C2‖BS‖−1|det BS |1/2|v̂ − L̂v̂|1,Ŝ

> C3‖BS‖−1|det BS |1/2|∂k`ŵ|0,Ŝ

= C4‖BS‖−1|det BS |1/2|∂k`v̂|0,Ŝ

> C5‖BS‖−1|det BS |1/2‖B−1
S ‖−2|det BS |−1/2|∂k`v|0,S

> C6hS|∂k`v|0,S .
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Squaring these inequalities and summing them over all elements S ∈ Th that entirely

belong to some Ω1 ⊂ Ω0 and using (2.6), we get

|v − Lhv|21 > |v − Lhv|21,Ω1
> Ch2,

which guarantees (4.1) for v = u ∈ C2(Ω) \ P1(Ω).

6. Numerical tests

For numerical illustration of the theoretical result presented in Theorem 4.1 and

the supercloseness property described in Theorem 3.3, we approximate problem (2.1)
by linear finite elements on uniform partitions. The exact solution u and the entries

of the matrix A were taken polynomial. Then the associated stiffness matrices and
the right-hand sides can be evaluated exactly (up to rounding errors), since we use

higher order numerical quadrature formulae. The corresponding systems of linear
algebraic equations are solved by the Gaussian elimination (to avoid the iteration

error). Tabs. 1–6 illustrate the results described in (4.2) and (4.3), as well as in (3.1),
(3.2), (3.3) and (3.5).
� ����������

6.1. Consider first the Poisson equation −((x2 + 1)u′)′ = f in Ω =
(0, 1) with homogeneous Dirichlet boundary conditions. The exact solution is chosen
as u(x) = x(x− 1). Then the right-hand side corresponding to u is given by f(x) =
−6x2 + 2x− 2. Numerical results are presented in Tabs. 1–2.

1/h |u− uh|1 |u− Lhu|1 |uh − Lhu|1 |u− uh|1/|u− Lhu|1
4 0.144404218 0.144337568 0.004386858 1.000461762

8 0.072177522 0.072168784 0.001123109 1.000121085

16 0.036085497 0.036084392 0.000282383 1.000030620

32 0.018042335 0.018042196 0.000070696 1.000007677

64 0.009021115 0.009021098 0.000017680 1.000001921

128 0.004510551 0.004510549 0.000004420 1.000000480

Table 1.

In the next two examples we use the triangulation from Fig. 1.
� ����������

6.2. Consider the Poisson equation −∆u = f in Ω = (0, 1) × (0, 1)
with homogeneous Dirichlet boundary conditions. The exact solution is chosen as
follows: u(x1, x2) = (x1 − x2

1)(x2 − x2
2). Then the corresponding right-hand side is
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1/h ‖u− uh‖1 ‖u− Lhu‖1 ‖uh − Lhu‖1 ‖u− uh‖1/‖u− Lhu‖1

4 0.144773606 0.144787921 0.004588179 0.999901132

8 0.072223310 0.072225144 0.001176216 0.999974601

16 0.036091208 0.036091439 0.000295837 0.999993607

32 0.018043048 0.018043077 0.000074070 0.999998399

64 0.009021205 0.009021208 0.000018524 0.999999600

128 0.004510562 0.004510563 0.000004632 0.999999900

Table 2.

given by f(x1, x2) = 2(x1−x2
1 +x2−x2

2). We observe that in this case estimate (2.4)
holds. All integrals were calculated by the quadrature formula from [14, p. 58] which
is exact for all quintic polynomials on triangles. For numerical results see Tabs. 3–4.

1/h |u− uh|1 |u− Lhu|1 |uh − Lhu|1 |u− uh|1/|u− Lhu|1
4 0.058775737 0.059199680 0.007072123 0.992838753

8 0.030161134 0.030221195 0.001904372 0.998012617

16 0.015180770 0.015188520 0.000485122 0.999489788

32 0.007603031 0.007604008 0.000121857 0.999871588

Table 3.

1/h ‖u− uh‖1 ‖u− Lhu‖1 ‖uh − Lhu‖1 ‖u− uh‖1/‖u− Lhu‖1

4 0.059027858 0.059353209 0.007222771 0.994518390

8 0.030195558 0.030241036 0.001948652 0.998496154

16 0.015185172 0.015191020 0.000496651 0.999614983

32 0.007603585 0.007604321 0.000124768 0.999903162

Table 4.

� ����������
6.3. Let again Ω = (0, 1)× (0, 1). For the nonsymmetric matrix

A(x1, x2) =
(

2 + x1 −1 + x2

−1− x1 2

)

that satisfies (2.2) the associated equation (2.1) is

−(2 + x1)∂11u + (2 + x1 − x2)∂12u− 2∂22u− ∂1u = f.

The exact solution is chosen as in the above example: u(x1, x2) = (x1−x2
1)(x2−x2

2).
Then the corresponding right-hand side is given by f(x1, x2) = 2 + x1− 2x2− 6x2

1 +
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12x1x2 − x2
2 + 4x2

1x2 − 8x1x
2
2. In Tabs. 5 and 6 we see numerical results similar to

those in Example 6.2.

1/h |u− uh|1 |u− Lhu|1 |uh − Lhu|1 |u− uh|1/|u− Lhu|1
4 0.059043100 0.059199680 0.012630950 0.997355048

8 0.030211424 0.030221195 0.003612123 0.999676693

16 0.015187941 0.015188520 0.000939795 0.999961922

32 0.007603964 0.007604008 0.000237630 0.999994297

Table 5.

1/h ‖u− uh‖1 ‖u− Lhu‖1 ‖uh − Lhu‖1 ‖u− uh‖1/‖u− Lhu‖1

4 0.059396267 0.059353209 0.012898294 1.00072545

8 0.030263783 0.030241036 0.003695387 1.00075220

16 0.015194820 0.015191020 0.000961874 1.00025011

32 0.007604836 0.007604321 0.000243233 1.00006770

Table 6.
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