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Abstract

Camera spectral sensitivity functions relate scene radi-

ance with captured RGB triplets. They are important for

many computer vision tasks that use color information, such

as multispectral imaging, color rendering, and color con-

stancy. In this paper, we aim to explore the space of spectral

sensitivity functions for digital color cameras. After collect-

ing a database of 28 cameras covering a variety of types,

we find this space convex and two-dimensional. Based on

this statistical model, we propose two methods to recover

camera spectral sensitivities using regular reflective color

targets (e.g., color checker) from a single image with and

without knowing the illumination. We show the proposed

model is more accurate and robust for estimating camera

spectral sensitivities than other basis functions. We also

show two applications for the recovery of camera spectral

sensitivities — simulation of color rendering for cameras

and computational color constancy.

1. Introduction

Camera spectral sensitivities are functions of wavelength

describing the relative efficiency of light detection for color

filters and image sensors. It relates scene radiance with

recorded RGB values for a digital color camera. The knowl-

edge of camera spectral sensitivities is important for many

computer vision tasks that use color information, such as

multispectral imaging [22, 17], color constancy [24, 3], and

spectral reflectance recovery [13, 5].

Camera spectral sensitivities are often measured with

a monochromator that generates narrow-band light and a

spectrophotometer that measures its spectral power distri-

bution [15]. This method, however, is applicable only in

a laboratory setting, with a time-consuming scanning over

the wavelength range of interest. Recent approaches sim-

plify the recovery of camera spectral sensitivities by us-

ing specialized targets such as a fluorescent checker [6],

a LED-based emissive chart [1], or multiple instead of a

single picture of a color target [23]. Nevertheless, it is as-

sumed [1, 7, 8, 19] that camera spectral sensitivities cannot

be reliably recovered by using regular broadband reflective

color targets (e.g., color checker) even with known illumi-

nation. The reason is that real-world spectral reflectance

has a lower intrinsic dimensionality than the number of un-

knowns of camera spectral sensitivities. The requirement of

specialized devices or targets has become a hurdle for the

estimation of camera spectral sensitivities, because com-

pared to fluorescent or LED-based color targets, reflective

color targets are still much more stable and easier to manu-

facture, maintain, and use.

On the other hand, for most digital color cameras, spec-

tral sensitivity functions are designed with certain con-

straints in mind, which means they may reside in some low

dimensional space. For instance, most digital color cameras

are designed to make ’nice’ pictures and the characteristics

of the camera spectral sensitivities are a trade-off between

maximizing quantum efficiency and minimizing noise.

Motivated by these observations, in this paper, we ask the

question: what is the space of spectral sensitivity functions

for digital color cameras? Finding a low-dimensional, sta-

tistical model for camera spectral sensitivities is useful for

estimating them with fewer constraints. With this goal, our

contributions in this paper are as follows:

• We have measured a database of spectral sensitiv-

ity functions for 28 cameras, including professional

DSLRs, point-and-shoot, industrial and mobile cam-

eras, as shown in Fig. 1. To our knowledge, this is

the most extensive database of this kind so far. The

database and source codes are available at http:

//www.cis.rit.edu/jwgu.

• We perform principal component analysis (PCA) on

this database and find that the space of camera spectral

sensitivities is two dimensional.

• Using this PCA-based model, we propose two methods

that estimate camera spectral sensitivities from a single

image of the commonly used reflective color checker,

for both known and unknown illumination.

• We also show several applications in color rendering

after we estimate camera spectral sensitivities.

2. Related Work

Estimation of Camera Spectral Sensitivity Cam-

era spectral sensitivities are usually measured using a

monochromator and a spectrometer [15, 14], with a time-

consuming scanning over the wavelength range of interest.
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Figure 1. The normalized spectral sensitivities of the 28 cameras in our database, including professional DSLRs, point-and-shoot, industrial

and mobile cameras. Statistical analysis of these measurements shows the space of camera spectral sensitivities is two-dimensional. This

statistical model is useful to recover camera spectral sensitivities from a single image with regular broadband reflective color targets.
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Figure 2. The need for statistics prior when estimating the camera

spectral sensitivities. Direct inversion by Eq. (2) suffers even with

a small amount of noise (1%) due to the low dimensionality of

spectral reflectance of real-world objects. The subscripts m and e

stand for the measured and estimated camera spectral sensitivities.

This method is accurate but expensive. Hardeberg et al. [7]

proposed to estimate the camera spectral sensitivities with

known illumination and scene reflectance, but they found it

unreliable due to the low intrinsic dimensionality of scene

spectral reflectance [9, 7]. To overcome this, Urban et al.

[23] took multiple pictures of a color target under differ-

ent LED illuminations. Dicarlo et al. [1] proposed to use a

LED-based emissive target, and recently Han et al. [6] pro-

posed to use a fluorescent color target.

Statistical Analysis of Camera Response Functions

Our work is inspired by [4] that performed statistical analy-

sis of camera radiometric response functions. Similar anal-

ysis has been performed for the spectra of daylight [10, 21]

and used for illumination and spectral reflectance recov-

ery [16]. For camera spectral sensitivity functions, Zhao

et al. [26] collected data for 12 cameras and compared four

types of basis functions to model camera spectral sensitiv-

ities. They found the radial basis function optimal for re-

covering camera spectral sensitivities. In comparison, with

more data, we find the PCA-based model more accurate.

We also propose to recover spectral sensitivities from a sin-

gle image under unknown illumination.

3. The Space of Camera Spectral Sensitivity

3.1. Statistical Analysis of Spectral Sensitivity Func-
tions for Digital Color Cameras

We first introduce some background and show why it is

necessary for statistical analysis of camera spectral sensitiv-

ities. The RGB triplet pixel intensities at one spatial posi-

tion x, Ik,x, k = R,G,B, can be modeled as the product

of the spectral reflectance of the point Rx(λ), the spectral

power distribution of the illuminant L(λ), and the camera

spectral sensitivities Ck(λ), k = R,G,B, integrating over

the visible spectral range from 400nm to 720 nm,

Ik,x =

� 720nm

400nm

Ck(λ)L(λ)Rx(λ) dλ, k = R,G,B. (1)

These equations can also be written in a matrix form, ik =
ckLR, k = R,G,B, where ik is a 1 × m vector (m is

the number of pixels), ck is a 1 × 33 vector (assuming we

have 33 bands from 400nm to 720nm with an interval of

10nm), L = diag(L(400nm), · · · , L(720nm)), and R =
[r1, · · · , rm], (rm = [Rm(400nm), · · · , Rm(720nm)]T ).

To estimate camera spectral sensitivities C =
[cR, cG, cB]

T
, (T is the transpose of the matrix), in the-
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ory we can take a picture of color patches with known

reflectance, R, under a known illuminant, and solve with

pseudo-inverse

ck = ik · (LR)+, k = R,G,B. (2)

In practice, however, as shown in Fig. 2, direct inversion

cannot reliably recover camera spectral sensitivities. Even

when we use 1269 Munsell color chips as the color target,

direct inversion is still quite sensitive to noise. As pointed

out in [9, 7], this is because spectral reflectance of real-

world objects has a low intrinsic dimensionality (i.e., 6 or

8) [12, 18] which makes R rank deficient. To overcome

the problem, recent work [1, 6] used either narrow-band

LED illumination or fluorescent color targets. Nevertheless,

it is highly desirable to solve this problem with reflective

color targets, because they are easier to manufacture, main-

tain, and use. We show below that with statistical analysis

of camera spectral sensitivity functions, we can find a low

dimensional model of spectral sensitivities and solve this

problem from a single image under unknown illumination.

3.2. Assumptions and Constraints for Camera Spec-
tral Sensitivity Functions

In this paper, we are interested in the spectral sensitivity

functions of digital color cameras in the visible spectrum

(i.e., 400nm to 720nm). To unify our discussion, we make

the assumptions and constraints listed below.

• We assume the spectral sensitivity functions of a cam-

era is spatially invariant, i.e., they are functions of

wavelength only: Ck(λ), k = R,G,B.

• We also assume the spectral sensitivity functions are

non-negative,

Ck(λ) ≥ 0, k = R,G,B. (3)

In addition, we normalize the spectral sensitivity func-

tion of each color channel to be between zero and one,

max
λ

Ck,n(λ) = 1, k = R,G,B, (4)

where ck,n is the normalized spectral sensitivity, and

ck = gk · ck,n, gk ≥ 0, k = R,G,B. 1 The absolute

magnitudes of spectral sensitivities can be accounted

by gain of an imaging system and thus can be excluded

for modeling spectral sensitivities. Note that our nor-

malization is different from previous work [6, 26]

where only the peak of CG(λ) is normalized to one.

We normalize such that the peak of all RGB chan-

nels to one, because we aim to use statistical models

to explain the spread rather than the height variation of

spectral sensitivity functions.
1After normalization, Eq. 1 becomes Ik,x =

�
720nm

400nm
gk ·

Ck,n(λ)L(λ)Rx(λ) dλ, k = R,G,B. where gk is the constant for

the red, green or blue channel, and Ck,n(λ) is the normalized spectral

sensitivity. The matrix form of Eq. 1 becomes ik = gkck,nLR, k=R, G,

B, where ck,n = [Ck,n(400nm), · · · , Ck,n(720nm)].

• To faithfully capture the color of a scene, in theory,

cameras need to satisfy the Luther condition [15], i.e.,

the camera spectral sensitivity functions need to be a

linear transformation of the CIE-1931 2-degree color

matching functions:




x̄

ȳ

z̄



 = T





cR
cG
cB



 , (5)

where [x̄, ȳ, z̄]
T

is the CIE-1931 2-degree color

matching function, [cR, cG, cB]
T

are the spectral sen-

sitivities of a digital color camera, and T is a full-rank

3 × 3 matrix to be determined. In practice, however,

due to limitations in hardware (e.g., color filters in the

Bayer pattern), the Luther condition is often satisfied

to a certain degree, especially for low-end consumer-

grade cameras.

Equations (3), (4), and (5) define the space of spectral

sensitivity functions of digital color cameras. It is easy to

see this space is a convex set. If C1 and C2 are in this

set, any convex combination aC1 + (1− a)C2, 0 ≤ a ≤ 1
must also be in this set. Below, we measured spectral sensi-

tivity functions for a wide range of cameras and performed

statistical analysis to chart the space.

3.3. Database of Camera Spectral Sensitivity

We have measured the spectral sensitivity functions for

28 cameras using a monochromator and a spectrometer

PR655. The measurement setup and details can be found

in the supplementary materials.

The raw measured data, after normalization, is in Fig. 1.

Most spectral sensitivity functions peak at similar wave-

length for each channel. To validate whether they satisfy

the Luther condition, we estimate the matrix T with least

square based on Eq. (5). The spectral Root Mean Square

(RMS) error, ||C2deg − T ·C||, is used for evaluation,

where C2deg is a matrix of the CIE-1931 2-degree color

matching function, and C are the measured camera spectral

sensitivities. Color difference (CIEDE00 [11]) is also cal-

culated between C2deg and T ·C under CIE D65 illumi-

nant for the 1269 Munsell color chips [18]. Ideally, both the

spectral RMS and color difference are zero if a camera per-

fectly satisfies Luther condition. As shown in Fig. 3, how-

ever, overall most cameras have a deviation from the Luther

condition, especially for the two industrial cameras. It also

shows that Canon cameras in general have lower RMS and

color differences than Nikon cameras in this aspect.

3.4. A PCA Model for Camera Spectral Sensitivity

We performed Principal Component Analysis (PCA) on

the normalized data for each color channel separately. In

our database, we have 9 Canon and 10 Nikon cameras, and
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Figure 3. A camera satisfies the Luther condition if its spectral sensitivity function is a linear transformation of the CIE-1931 2-degree

color matching function. The Luther condition can be evaluated by the RMS error between C2deg and T ·C, where T is computed by

Eq. (5), C2deg are the CIE-1931 2-degree color matching functions, and C are the measured camera spectral sensitivities. Color difference

(CIEDE00 [11]) is calculated between C2deg and T ·C under CIE D65 illuminant and the 1269 Munsell color chips [18]. Ideally, spectral

RMS and color differences are zero if a camera perfectly satisfies the Luther condition. Overall, most cameras have a deviation from the

Luther condition, especially for the two industrial cameras.

9 other cameras. PCA was performed on all Canon cam-

eras, all Nikon cameras, and all 28 cameras to investigate

the difference across different types of cameras. The re-

sults are shown in Fig. 4. When all 28 cameras are used, the

1st principal component explains over 95% of total variance

of the data, and the first two principal components explain

over 97%, which means camera spectral sensitivities can be

modeled as a two-dimensional space with reasonably high

accuracy (which is also confirmed by our recovered results

and applications). In other words, camera spectral sensitiv-

ities can be decomposed as ck,n = σk ·Ek, k = R,G,B,

where σ = [σ1,σ2] is a 1× 2 vector, Ek = [ek,1, ek,2]
T is

2× 33, the eigenvector matrix. The matrix form of Eq. 1 is

ik = gkσkEkLR, k = R,G,B, (6)

where Ek, k = R,G,B is shown in Fig. 4, and the scatter

plot of σ of the 28 cameras is shown in Fig. 5.

4. Spectral Sensitivity from a Single Image

We show the PCA model enables the recovery of camera

spectral sensitivities with commonly used reflective color

targets from a single image.

4.1. with a Known Light Source

If the spectrum of a light source is known, we can cap-

ture an image of a reflective color target (e.g., color checker)

and recover camera spectral sensitivities by gkσk =
ik(EkLR)+, k = R,G,B. The camera spectral sensitivi-

ties can be obtained by

ck = gkck,n = gkσkEk = ik(EkLR)+Ek, k = R,G,B.

(7)

4.2. with an Unknown Light Source

If the spectrum of a light is unknown but we know it is

daylight, we show both the spectrum of daylight and the

camera spectral sensitivities can be recovered, by using the

daylight spectrum model [10]. This daylight model is rep-

resented as L(λ, t) = L̄(λ) +M1(t)V1(λ) +M2(t)V2(λ),
where M1 and M2 are functions of correlated color tem-

perature (t), L̄(λ) is the average daylight spectrum, and

V1(λ) and V2(λ) are the characteristic vectors of day-

light. In matrix form, the daylight model can be expressed

as l(t) = l̄ + M1(t)v1 + M2(t)v2 Thus, Eq. (7) be-

comes Ck = ik(Ekl(t)R)+Ek, k = R,G,B. Both

σ and t are optimized iteratively to minimize the RMS

||ik − gkσkEkl(t)R||, k = R,G,B.

Figure 6 shows an example where we use both methods

to recover the spectral sensitivities of a Canon 60D camera.

Figure 6(d) shows the result when the spectrum of daylight

is known. Figures 6(e) and (f) show that without know-

ing the daylight, we can recover both the unknown daylight

spectrum and the camera spectral sensitivities. The recov-

ery of spectral sensitivities of more cameras can be found in

the supplementary materials. We also evaluated this method

under daylight at different time of the day in the supplemen-

tary material, which confirms the method stable.

4.3. Comparison with Other Basis Functions

We also compare this PCA model with three other ba-

sis functions for modeling camera spectral sensitivities [26],

including Fourier, radial, and polynomial basis. Details of

these basis functions are in the supplementary material.

Using the same captured image (Fig. 6(c)), we recover

camera spectral sensitivities with the four types of basis

functions, respectively. As shown in Fig. 7, the results are

not as accurate as that by using the PCA model (Fig. 6(f)).

We also use the recovered camera spectral sensitivities to

simulate the rendering of a color checker under D65 illu-

minant. In Fig. 8, the PCA model outperforms other basis

functions, resulting in the smallest color difference overall.
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
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Figure 4. The principal components of camera spectral sensitivities. Top Row: 1st principal component. Bottom Row: 2nd principal

component. The three columns represent the R/G/B channels, respectively. We performed PCA on Canon cameras, Nikon cameras, and

all 28 cameras. The 1st principal component accounts for over 95% of total variance for all three channels, and the first two principal

components accounts for over 97% of total variance. Thus, we model camera spectral sensitivity functions as two-dimensional functions.

  







Figure 5. The scatter plot of the 28 cameras in the two-dimensional space, for the red (a), green (b) and blue (c) channel. The red circles

are Canon cameras, the green diamonds are Nikon cameras, and the blue triangles are the other cameras in the database.

We also evaluate the robustness to noise when recov-

ering camera spectral sensitivities with the four types of

basis functions over the entire database (i.e., 28 cameras).

The proposed PCA model is more robust to noise, with the

smallest RMS error in the recovery in Table 1, contradict-

ing with that in [26]. We believe the reason is that our PCA

model is derived with more data (i.e., 28 vs 12 cameras).

5. Applications

In this section, we show two applications after the recov-

ery of camera spectral sensitivity functions.

5.1. Simulation of Color Rendering for Cameras

A straightforward application is to simulate the color

rendering of a multi-spectral image for cameras, i.e., gener-

ating a RGB image for certain camera models. This is use-

ful for the design and evaluation of cameras. Figure 9 shows

an example where renderings are made using the measured

and recovered camera spectral sensitivities of Canon 60D.

The multispectral images are from the database [25]. Color

difference is calculated, and they are close to one, indicating

the accuracy of the recovered camera spectral sensitivities.
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Figure 6. The recovery of camera spectral sensitivities of Canon 60D. (a) The measured spectrum of a daylight. (b) The spectral reflectance

of a color checker DC. (c) The captured image (glossy and duplicate patches are removed to avoid overweighting certain colors). (d) The

recovered spectral sensitivities with known daylight spectrum. By using a daylight model, we can recover both the daylight spectrum

(e) and the camera spectral sensitivities (f). The subscripts m and e in (d) and (f) stand for the measured and estimated camera spectral

sensitivities, respectively.
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Figure 7. The recovered camera spectral sensitivities of Canon 60D using other basis functions: (a) Fourier basis, (b) polynomial basis,

and (c) radial basis. The results are worse than that of using the PCA model as shown in Fig. 6(f). The subscripts m and e stand for the

measured and estimated camera spectral sensitivities, respectively.

5.2. Computational Color Constancy

Knowing camera spectral sensitivities is also useful for

computational color constancy [2], i.e., removing the over-

all color cast in captured images. In order to recover the

correct color of a scene, camera raw data needs to be con-

verted to device-independent XYZ by Eq. (5), and then a

chromatic adaptation transform is used to take care of the

difference in the white point. A simple way to calculate the

scene white point is [X Y Z]Tw = T · [R G B]Tw, where

[R G B]Tw is the radiance of a white Lambertian area in the

picture. A linear Bradford chromatic adaptation transform

is used to convert to CIE D65, the white point of sRGB color

space by default [2]. Computational color constancy relies

on the accurate estimation of T (by Eq. (5)) and the white

point of the scene. Knowing camera spectral sensitivities

can help us estimate the matrix T correctly.
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Figure 10. The correction of images by Canon 5D Mark II by removing the color cast in the image. A color checker is put in the scene for

reference. The estimated camera spectral sensitivities of Canon 5D Mark II is used to calculate T by Eq. (5). (a) The captured image in

sRGB. (b) The corrected image in sRGB based on T (c) The corrected image by dividing the white point (without using T).

 





Figure 8. Comparison of four types of basis functions for mod-

eling camera spectral sensitivity functions: A–PCA model (ours,

Fig. 6(f)), B–Fourier basis (Fig. 7(a)), C–radial basis (Fig. 7(c)),

and D–polynomial basis (Fig. 7(b)) with the ground truth (E). A

color checker is rendered under D65 with camera spectral sensitiv-

ities recovered using these basis functions, and converted to sRGB.

The average color difference between the renderings (from A to D)

and the ground truth (E) are 1.59, 3.54, 2.43 and 7. The gain of

the imaging system remains the same for all four basis functions.

Table 1. The spectral RMS between the measured and recov-

ered camera spectral sensitivities using four types of basis func-

tions. For polynomial, Fourier, and radial, 8 basis functions are

used [26]. At all noise levels, the PCA model outperforms other

basis functions.

In Fig. 10, the picture was captured by Canon 5D Mark

II, whose camera spectral sensitivities were estimated using

a single picture under unknown daylight. T was obtained

by Eq. (5) using the estimated camera spectral sensitivities.

The corrected image (Fig. 10(b)) is based on the T matrix.













Figure 9. Simulation of color rendering for cameras. The images

are rendered to sRGB based on the measured (top row) and esti-

mated (bottom row) camera spectral sensitivities of Canon 60D.

(a) face, (b) beads, and (c) peppers are from the multispectral im-

age database [25]. The values in the parentheses are the average

color difference (CIEDE00 [11]) between the bottom and top im-

ages in each column. For all three examples, the color difference

is close to one, indicating a close color match.

Without camera spectral sensitivities, one of the methods

to correct the images is to divide the white point RGB as

shown in Fig. 10(c). By comparing the two corrected im-

ages, the color is more saturated and natural in Fig. 10(b)

based on the recovered camera spectral sensitivities. More

examples can be found in the supplementary material.

6. Discussions

In this paper, we explored the space of spectral sensi-

tivity functions for digital color cameras. We measured

a database of 28 cameras. We found the space of cam-

era spectral sensitivities to be convex and two-dimensional.

Based on the statistical model, we propose two methods to

recover camera spectral sensitivities from a single image

with and without knowing the illumination. Compared to

other basis functions, we find the PCA-based model more

accurate and robust to noise. We also showed several appli-

cations with the recovery of camera spectral sensitivities.
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The proposed method also has limitations. First, spu-

rious measurements or outliers in the database may cause

errors in the learned PCA model. Functional PCA [20] may

be used to overcome this problem. Second, our method as-

sumes we have access to camera raw data to ensure the lin-

earity. When this assumption does not hold, both camera

response function and camera spectral sensitivities have to

be estimated simultaneously.

The proposed method works well under unknown day-

light. Next, we are interested in the recovery of camera

spectral sensitivities under general unknown illumination

such as indoor overhead light or mixed lighting. Finally, we

are also interested in applying the statistical model of cam-

era spectral sensitivities to infer some spectral information

for Internet photos.
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Figure 1. Experimental setup to obtain the ground truth of camera

spectral sensitivity.

1. Experimental Setup to Measure the Ground

Truth of Camera Spectral Sensitivity

As shown in Fig. 1, we have measured the spectral sen-

sitivity functions for 28 cameras, including professional

DSLRs, point-and-shoot, industrial and mobile cameras

(i.e.Nokia N900), using a monochromator and a spec-

trometer PR655. At each wavelength, the camera spec-

tral sensitivity in RGB channels is calculated by c(λ) =
d(λ)/(r(λ) · t(λ)), where d is the raw data recorded by the

camera, r is the illuminant radiance measured by the spec-

trometer, and t is the exposure time of the camera. All

other settings (i.e., ISO and aperture) remained the same

during the measurement for each camera. The procedure is

repeated across the whole visible wavelength from 400 to

720nm with an interval of 10nm.

2. Recovery of Camera Spectral Sensitivity Us-

ing Other Basis Functions

To fully evaluate the recovery performance using eigen-

vectors extracted from camera spectral sensitivities, we

compared the recovery by using other basis functions. Zhao

et al. [2] tested three basis functions besides camera space

eigenvectors, and they are polynomial, Fourier, and radial

basis functions. Zhao et al. [2] concluded that radial basis

functions are the best.

The equation for the basis functions can be found

here [2]. However, for completeness, these equations are

listed in the paper. The equation for the Fourier basis func-

tion is expressed as

F =

D�

i=0

ai · sin(iλπ), (1)

where λ is the wavelength vector normalized to be between

0 and 1. The Fourier basis functions are shown in Fig. 2(a).

The polynomial basis function is expressed as

F =

D�

i=0

ai · λ
i, (2)

where λ is the wavelength vector from 400nm to 720nm

with an interval of 10nm. It is normalized to be between 0

and 1. The recovered spectral sensitivity, F is a linear com-

bination of λi. The polynomial basis functions are shown

in Fig. 2(b).

The radial basis functions are expressed as

F =

D�

i=0

ai · exp(−
(λ− µi)

2

σ2
), (3)

where λ is the wavelength vector normalized to be between

0 and 1. µi and σ
2 are the peak wavelength and the vari-

ance of each basis function. The radial functions are shown

in Fig. 3(a), (b) and (c) for the red, green, and blue chan-

nels. Eight basis functions are selected for the polynomial,

Fourier, and radial method [2].

3. Robustness of Spectral Sensitivity Recovery

to Daylight Variation

Judd [1] proposed that the daylight spectrum can be well

represented using only a few parameters. To fully evaluate

our recovery of camera spectral sensitivity under daylight,

we simulated radiance using daylight measured at different

time of the day, based on which the camera spectral sensitiv-

ity is recovered. The measured and recovered camera spec-

tral sensitivity was then compared and spectral RMS calcu-

lated. The mean RMS for all 28 cameras in the database

1
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Figure 3. The radial basis functions of the (a) red, (b) green, and (c) blue channel.
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Figure 2. The Fourier basis and polynomial basis functions.

is in Fig. 4. The recovery accuracy is about 0.06, almost

invariant to daylight at different time of the day.

4. Dimensionality of Spectral Sensitivity

While the camera spectral sensitivity is of high dimen-

sion (i.e.33 if the wavelength ranges from 400nm to 720nm
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Figure 4. The spectral RMS error between the recovered and mea-

sured camera spectral sensitivity at different time of the day.

with an interval of 10nm), it can be represented using much

fewer parameters. The variance that can be explained given

the number of eigenvectors retained in the model is shown

in Fig. 5. With two eigenvectors, we found that the camera

spectral sensitivity can be well represented.
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Figure 6. The recovery of the camera spectral sensitivity of NikonD3 using a single picture of CCDC under unknown daylight. (a) The

radiance error given the estimated camera spectral sensitivity at a certain CCT. The daylight spectrum that yields the lowest radiance

difference is plotted in (b) and compared with the ground truth. (c) The measured and recovered camera spectral sensitivity of NikonD3.

The subscripts m and e stand for the measured and estimated camera spectral sensitivity.
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Figure 5. The percentage of total variance of the camera spectral

sensitivity explained given the number of eigenvectors retained in

the model. The first two eigenvectors are found to be enough to

represent the space of camera spectral sensitivity.

5. Results on Spectral Sensitivity Recovery

We recovered the camera spectral sensitivity of NikonD3

using a picture of CCDC under unknown daylight. The ra-

diance error given the CCT of daylight is in Fig. 6(a). The

daylight spectrum that yields the least radiance eror is se-

lected, and it is plotted in Fig. 6(b) with the measured day-

light spectrum. A close match can be found between our

recovered daylight and the ground truth. The recovered and

measured camera spectral sensitivity are shown in Fig. 6(c).

Similarly, the camera spectral sensitivity of a smartphone

camera, NokiaN900, and another DSLR, Canon5D Mark II

are recovered in Fig. ??.

6. Results on Computational Color Constancy

Accurate color corrections of images can be made by

knowing the camera spectral sensitivity. In order to recover

the correct color of a scene, camera raw data needs to be

converted to device-independent XYZ by Eq. (5) in the pa-

per, and then a chromatic adaptation transform (i.e.a linear

Bradford transform) is used to take care of the difference

in the white point. Computational color constancy relies on

the accurate estimation of T (by Eq. (5)) and the white point

of the scene. Knowing camera spectral sensitivity can help

estimate T correctly. Examples are shown in Fig. 8. The

color cast in the captured images in Fig. 8 is removed suc-

cessfully by knowing T estimated from the recovered cam-

era spectral sensitivity of Canon 5D MarkII. On the other

hand, the corrected images are less saturated by dividing

the white point (without knowing the T matrix).
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Figure 8. The correction of images by Canon5D Mark II by removing the color cast in the image. CC is put in the scene to locate the white

point. The estimated camera spectral sensitivity of Canon5D Mark II is used to calculate T by Eq. (5). Left column: The captured image;

Middle column: the corrected image based on T, and Right column: the corrected image by dividing the white point (without using T).

The images are rendered in sRGB color space.


