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What is the structure of the Roper resonance?

O. Krehl,1,* C. Hanhart,2 S. Krewald,1 and J. Speth1
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~Received 30 November 1999; published 24 July 2000!

We investigate the structure of the nucleon resonanceN* (1440) ~Roper! within a coupled-channel meson
exchange model for pion-nucleon scattering. The coupling toppN states is realized effectively by the cou-
pling to thesN, pD, andrN channels. The interaction within and between these channels is derived from an
effective Lagrangian based on a chirally symmetric Lagrangian, which is supplemented by well known terms
for the coupling of theD isobar, thev meson, and the ‘‘s,’’ which is the name given here to the strong
correlation of two pions in the scalar-isoscalar channel. In this model the Roper resonance can be described by
meson-baryon dynamics alone; no genuineN* (1440) ~three quark! resonance is needed in order to fitpN
phase shifts and inelasticities.

PACS number~s!: 14.20.Gk, 13.75.Gx, 11.80.Gw, 24.10.Eq
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I. INTRODUCTION

The experimental and theoretical investigation of t
baryon spectrum helps to improve our knowledge of QCD
the nonperturbative regime—especially of the confin
mechanism, which is most important for binding a system
quarks into a hadron. Experimental information about
mass, width, and decay of baryon resonances serves
testing ground for several models of the internal structure
the nucleon and its excited states. Most of this information
extracted from partial wave analyses ofpN scattering data
@1–3#, sometimes in combination with transition amplitud
to inelastic channels such aspN→hN @4–6# or pN
→ppN @7,8,6#. In addition there is information availabl
from photo- and electroproduction ofN* resonances@9# and
a2p scattering@10,11#, hadronic two-pion production@12#,

or, as recently proposed, from theNN̄ decay channel of the
J/C @13#.

The mass spectrum of excited baryon states has been
culated within several quark models~QM!. The nonrelativis-
tic QM of Isgur and Karl@14#, for example, leads to a goo
qualitative understanding of the negative parity resonan
by assuming a structure of three constituent quarks that
confined by a harmonic oscillator potential and inter
through a residual interaction inspired by one gluon
change. In order to describe the positive parity states, h
ever they had to introduce an additional anharmonicity i
the confining oscillator potential that lowers the mass of
first positive parity resonance„N* (1440)… @15#. The relativ-
ized QM@16# gives a good qualitative picture of the baryon
spectrum by using an interaction which, in the nonrelativis
limit, can be decomposed into a color Coulomb part, a c
fining interaction, a hyperfine interaction and a spin-or
interaction between quarks. The confinement is provided
a Y-type string interaction between all three quarks. One~of
several! difficulties with this model is that the low lying

*Present address: Software Design and Management, Herrnst
57, D-63065 Offenbach, Germany.
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positive parity resonances are systematically overestim
by at least 100 MeV. A rather different interaction mech
nism was used by Glozman and Riska@17#. In their model,
two quarks interact via pion exchange. This flavor-depend
force is responsible for the low mass of the Roper resona
„N* (1440)…. Confinement is achieved by an oscillator pote
tial. Thus the interaction mechanisms of the Glozman-Ri
model and the Isgur-Karl-Capstick model are quite differe
and it is not clear whether the mass spectrum should be
scribed by either one of these interactions or a mixture
both @18–22#.

The photo- and electroexcitation of baryon resonan
have been studied by several groups using several diffe
models. Li and collaborators@23,24# found theQ2 depen-
dence of theN* →Ng helicity amplitudes to be very sens
tive to the structure of the Roper resonance. While the n
relativisticq3 model is not able to describe theQ2 behavior,
a hybrid q3g model is in agreement with the available e
perimental data. A similar conclusion was reached by C
stick @25#, who found large disagreement in the photoprodu
tion amplitude of the Roper between a theoretical calculat
in a nonrelativistic q3 model—including relativistic
corrections—and the experimental data. However Caps
and Keister@26# pointed out that relativistic effects are ver
important in these amplitudes. They were able to desc
the helicity amplitudes using a ‘‘relativized’’q3 QM. Card-
arelli et al. also investigated the electroproduction of t
Roper resonance and concluded that this resonance
hardly be interpreted as a simple radial excitation of
nucleon@27#. Recently the Tu¨bingen group@28# found large
contributions from meson-baryon intermediate states in
transition amplitudesN* (1440)→Ng. Thus even the study
of its electromagnetic excitation does not clearly reveal
structure of the Roper resonance.

The decay widths of baryons have been calculated us
several approaches by combining a QM with a model for
decay of the three quark system into a meson baryon s
such as the3P0 model@29,30#, or the string breaking mecha
nism of the flux tube model@31–33#. ThepN decay width of
the Roper resonance as calculated by Capstick and Ro
@29# is in agreement with the analysis of Cutkosky and Wa

sse
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TABLE I. Some analyses of thepN partial waveP11 as listed in the Review of Particle Physics@9#. The
resonance parameters are denoted bymR for the mass andG for the width of the resonance. The residue
parametrized byreif. The numbers in brackets give the error in the last digit. For analyses~f!, ~g!, and~h!
the abbreviations CMB@7#, VPI @40#, and KA @1# indicate for which partial wave solution the speed plot
calculated.

mR G Pole Residue (r ,f)
~MeV! ~MeV! ~MeV! r in MeV, f in deg Ref.

~a! 1467 440 13462 i88 (42,2101) @2#

~b! 1456 428 13612 i86 (36,278) @3#

~c! 1462~10! 391~34! @8#

~d! 1471 545 13702 i114 (74,284) @34#

~e! 1479 490 13832 i158 @6#

~f! 1375~30! 180~40! @52(5),2100(35)# @39# CMB
~g! 1360 252 (109,293) @39# VPI
~h! 1385~9! 164~35! ~40,–! @39# KA
~i! 1371 167 ~41,–! This work
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@34# but, compared to the partial wave analysis of t
Karlsruhe@1# and the VPI@2,3# groups, the decay width o
the Roper should be much smaller. In addition, none of
decay models include any kind of meson-baryon final s
interaction or coupled-channel effects@29#, although there
are indications that these could lead to large shifts of
energy levels and mixing effects between states@28,35#. A
consistent investigation of higher Fock states, such asq4q̄, is
missing @16#, although there are investigations ofq4Q̄ sys-
tems, whereQ5s @36# or Q5c,b @37,38#.

At this stage a closer look at the different partial wa
analyses may help us to understand the problem in m
detail. In Table I we have listed the mass, width and p
position of the Roper resonance as extracted from sev
partial wave analyses ofpN scattering data. The first five
lines correspond to models that either get the mass,mR , and
width, G, of the Roper resonance by fitting a Breit-Wigne
like resonance to thepN data or derive the position of th
resonance pole in the complex energy plane. This pole p
tion can be related to the mass and width of the resonanc

mR5Re~Pole!, G522 Im~Pole!, ~1!

which, in fact, is the origin of the denominator in a Bre
Wigner parametrization of a resonance. By comparing
mass and width parameters of the analyses~a!–~e! to the
position of the pole as found in~a!, ~b!, ~d!, and~e! one can
see large discrepancies. The mass, as extracted from the
lies typically '100 MeV belowmR . Something similar can
be seen by comparing the widths: here a ra
2G/Im(Pole)'5 is found instead of the expected value
2. For an undistorted resonance, such as theND13

* (1520), the

mass and width from the Breit-Wigner parametrization a
the pole position are essentially the same within a few M
@9#. This observation shows already that the Roper resona
is substantially influenced by strong meson-baryon ba
ground interactions and/or effects from nearby thresho
Höhler suggested the use of the pole position as sourc
information on the mass and width of a resonance, since
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pole has a well-defined meaning inS-matrix theory@41#. If
we do so, the QMs use the wrong values for the mass
width of the Roper resonance. Compared to the pole posi
values ofmR andG @calculated using Eq.~1!#, the relativized
QM @16# overestimates the mass of the Roper by about
MeV and thepN decay width of the Roper resonance
overpredicted too.

Another remarkable difference between theN* (1520)
and theN* (1440) is seen in examination of the partial wa
amplitudes~displayed as phase shiftd and inelasticityh) in
Fig. 1. TheN* (1520) causes a nice change in the phase s
of the partial waveD13 up to 180° and crosses 90° at'1520
MeV. This is also the position of the maximum in the inela
ticity. After passing the resonant phase of 90°, the amplitu
goes back to being almost elastic. The situation is comple
different for theN* (1440). Here the phase shift in theP11
increases slowly, which corresponds to a very broad re
nance, but the inelasticity opens very rapidly~almost as fast
as in theD13) and remains inelastic over a very large ener

FIG. 1. Phase shift and inelasticity in the partial wavesP11 and
D13. Data are taken from Refs.@2# ~SM95! and @42,1# ~KA84!. In
addition, the single-energy analysis from@2# ~SE-SM95! is shown.
The vertical lines are drawn atE51440 MeV (P11) andE51520
MeV (D13) and correspond to the suggested values of the reson
masses as given in Ref.@9#.
7-2
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range. Furthermore, the suggested resonance position omR
51440 MeV does not correspond tod590°. The shape of
the P11 partial wave amplitude in the region of the Rop
resonance also looks very different from a typical Bre
Wigner resonance. To summarize, the Roper appears n
fit into our picture of Breit-Wigner-like resonances.

A series of different methods can be found in the lite
ture that try to extract information on the Roper resona
from pN scattering. The ones displayed in Table I can
summarized as follows.

Analyses~a! and ~b! are combined analyses of all ava
ablepN scattering data. Two methods are used in or
to extract parameters of resonances. First, a coup
channelK-matrix approach, additionally constrained b
fixed t dispersion relations, allows a continuation of t
partial wave amplitudes into the complex energy pla
where the poles of the resonances can be found. Sec
fits to single-energy partial wave solutions using gene
ized Breit-Wigner parametrizations are performed, wh
lead to the values ofmR andG.
Manley and Saleski~c! use a combination of Breit
Wigner resonances and a phenomenological paramet
tion of the background, which is unitarized in aK-matrix
approximation. They included experimental data of t
reactionpN→ppN into their fitting procedure.
The group of Cutkosky~d! used a separable couple
channels resonance model. The dressed propagator o
intermediate resonances is a solution of the Dyson eq
tion and the vertices are generalized Breit-Wigner ver
functions. Backgrounds are parametrized as resona
contributions with a resonance position below thresho
Analysis ~e! is an extended version of the model used
~d!. Input data are the partial wave solutions of the V
group @2# and the transition cross sectionspN→hN and
pN→ppN.
In ~f!, ~g!, and~h! Höhler and Schulte use the speed p
method for determining resonance parameters. We
scribe this method in more detail in Sec. IV. The spe
plot analysis uses other partial wave solutions as in
and therefore is not a partial wave analysis ofpN scat-
tering, but an alternative way of extracting resonance
rameters.
Line ~i! represents our results, which will be discussed
detail in Sec. IV.

All of these analyses agree in the need for a pole in
partial waveP11 and all of them but our work assume a sm
background interaction. However the aim of analysis~a!–~h!
is not to determine the structure of a resonance. This w
pointed out in a recent extension of the CMB model
Vrana, Dytman, and Lee@6#. Rather, these analyses seek
discover whether there is a resonance or not. They do s
providing the poles demanded by data as input. The num
of poles as well as their parameters are then obtained
means of ax2 fit.

In addition to these analyses there are many theore
models forpN scattering up to the energies of the firstN*
resonances. They can be divided into two classes.

Separable potential modelssuch as@43,44#. In these mod-
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els the potential V of a coupled-channel Lippmann
Schwinger equation~LSE! is assumed to be of the separab
form V(k8,k)5 f (k8)l f (k), where k (k8) is the relative
momentum of the initial~final! state. The form factorf is
parametrized differently for each partial wave, and t
strength factorl, together with the parameters of the for
factor, is adjusted to fit data. Since the parameters of
form factors do not have a clear physical meaning, the in
pretation of these parameters in terms of resonances
backgrounds is not possible. Nevertheless, one can still le
about effects of opening thresholds of coupled channels.

K-matrix approximations, such as the models introduce
in Refs.@5,45#. These use a microscopic potential,V, as input
to a LSE, which is solved in theK-matrix approximation. In
general, a LSE~written in a symbolic notation!

T5V1V
1

E2H01 i e
T ~2!

can be decomposed into a set of equations

K5V1V
P

E2H0
K, ~3!

T5K2 ipKd~E2H0!T, ~4!

where we have introduced theK-matrix @46,47# and P de-
notes the principal value. TheK-matrix approximation now
simplifies this set of equations by settingK5V. This reduces
the integral equation~2! to an algebraic equation~4!. The
K-matrix approximation does not allow for virtual interme
diate states. One consequence of this is that the diffe
channels only contribute above their production thresho
Of course this truncates the strength of the virtual states a
consequentially, the strength of the multiple scattering c
tributions. This can also be found in a slightly more form
way: The Heitler equation, Eq.~4!, introduces the unitary cu
to theK-matrix so that theT-matrix contains this unitary cu
and the poles present inK. The rescattering of virtual state
is described completely by theK-matrix, Eq.~3!. Since this
is a Fredholm type of integral equation, it can be solved
iteration

K5V1V
P

E2H0
V1V

P
E2H0

V
P

E2H0
V1•••. ~5!

This series may be divergent,1 which introduces~besides the
poles inV) additional poles due to rescattering. These po
are not present if theK-matrix equation is approximated b
cutting off the series~5! at a finite order. Even if no pole is
generated by the infinite sum, there may still be mu
strength in higher order iterations, which are eliminated
approximatingK5V. With this in mind, it is clear that the

1It is when there is a bound state at the energy at which
equation is solved.
7-3
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K-matrix approximations discussed above do not find
namical poles such as bound states.

It has long been known that the poles of the two-bo
S-matrix ~as a function of a complex energy variable! are not
only resonance poles, but can also be bound state pole
coupled-channel poles@48#. A bound state is generated by
strongly attractive interaction between two particles, wher
a coupled-channel pole can be realized by a coupling
tween two reaction channels. Prominent examples of bo
states of two hadrons are thef 0(980), which is found to be a

KK̄ molecule in the pp/KK̄ system @49,50# and the

L(1405) asK̄N bound state in thepS/K̄N system@51,52#.
An example of a coupled-channel pole can be found in

ph/KK̄ system, where thea0(980) can be generated by th
coupling between these two channels@50#. It is, however, not
always easy to distinguish between these two types of po

The situation we have presented so far can be summar
as follows: The QM calculations do not give us a clear p
ture of the structure of the Roper resonance, even by stu
ing electromagnetic processes or decay widths. Yet we kn
that in many analyses ofpN scattering the need of a reso
nance has been found. The aim of these analyses was n
determine the structure of the resonance, but to determ
resonance parameters, such as masses, widths, and bran
ratios. The coupled-channel models ofpN scattering for en-
ergies under consideration work in theK-matrix approxima-
tion, in which part of the strength due to virtual intermedia
states is truncated. Furthermore theppN states in these
models are not treated consistently; rather, the mass of s
effectiveppN channel is adjusted differently in each part
wave@45#, or an unphysical scalar-isovectorpp state is used
@5#.

A model for pN partial wave amplitudes as solution of
full LSE up to energies of 1.9 GeV is missing. Our aim
therefore to construct such a model in order to investig
whether or not it is possible to describe the Roper resona
as a dynamically generated resonance. We use the mod
Ref. @53# as a starting point. This model is able to descr
thepN partial waves up to energies of 1.6 GeV by coupli
the channelspN,sN,pD, andhN and has proven its ability
to analyze the structure of a resonance in the partial waveS11
andP11. We have improved this model in several significa
ways.

We have included therN reaction channel into the
coupled-channel calculation in order to complete the eff
tive description ofppN states. This channel improves th
description in the partial wavesP13 and P31 and leads to
large contributions in the partial waveS11 in the region of the
N* (1650).

In Ref. @2# t channelp exchange diagrams were omitte
in order to avoid double counting. By dropping these ter
also the coupling strength between thepN and thesN chan-
nel is weakened. We have included these diagrams@Figs. 4~j!
and 5~a!# explicitly and avoid the double counting proble
by modifying theNN̄→pp amplitudes~see Sec. II for more
details!. This results in a large coupling between thepN and
sN(rN) channels, which was not present in@53#.
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The rules of time ordered perturbation theory were a
plied with care, which leads to additional contact interactio
~see the appendix for more details!. In @54# these contact
terms are found to be large corrections and we also
strong contributions of these additional interactions, e.g.
the p exchange diagrams.

In the next section our model is described in greater
tail. In Sec. III we shall discuss the results of this model
compared to the amplitudes of partial wave analyses
some transition cross sections. Section IV will be dedica
to an investigation of the structure of the Roper resonan
The last section summarizes our results.

II. pN SCATTERING IN A MESON EXCHANGE MODEL

In the introduction we argued that a detailed investigat
of the Roper resonance goes along with an understandin
pN scattering over a rather large energy region—fro
threshold (E5As51077 MeV! up to energies well above
the resonance under investigation~e.g., 1.9 GeV!. Further-
more, we have to use a realistic interaction between the
son and the baryon. Such an interaction is provided by
meson exchange model, which has successfully been us
many different reactions such as theNN interaction@47#, the
elasticpN interaction,@55–61#, theKN interaction@62#, the
K̄N interaction@52# and thepp interaction@50#, to name
just a few. Before we go into the details of the interactio
we wish to specify the reaction channels we will need in o
description.

From Fig. 1 it is clear that thepN interaction above en-
ergies of 1.3 GeV is very inelastic. The decay modes of
nucleon resonances in the energy range under consider
show that the dominant decay@besidespN andhN for the
N* (1535)# is theppN channel@9#. Since a three-body cal
culation is much too complicated for realistic potentials, w
must reduce theppN channel into effective two-body chan
nels. In doing this we are guided by studying strong inter
tions between two-body clusters of the three-bodyppN
state. The dominant clusters are theD in thepN interaction,
the r in the vector isovectorpp interaction and the strong
correlation in the scalar-isoscalarpp interaction, which
we call s. Therefore—besides thepN and hN channels,
which are needed for a complete description of t
N* (1535)(S11)—our model includes the reaction channe
pD, sN, andrN.

We have then to solve the coupled-channel scatte
equation@52#

Tmn
I ~kW8,l3 ,l4 ;kW ,l1 ,l2!

5Vmn
I ~kW8,l3 ,l4 ;kW ,l1 ,l2!

1(
g

(
l18 ,l28

E d3qVmg
I ~kW8,l3 ,l4 ;qW ,l18 ,l28!

3
1

E2Wg~q!1 i e
Tgn

I ~qW ,l18 ,l28 ;kW ,l1 ,l2!, ~6!
7-4
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wherel i ,l i 12 ,l i8 ,(i 51,2) are the helicities of the baryo
and meson in the initial, final, and intermediate state,I is the
total isospin of the two body system, andm,n,g are indices
that label different reaction channels.Wg(q)5Aq21Mg

1Aq21mg where mg(Mg) is the mass of the meso
~baryon! in the channelg, respectively. We work in the
center-of-momentum~c.m.! frame andk(k8) are the mo-
menta of the initial~final! baryon, respectively.

The pseudopotentialV ~i.e., the interaction betwee
baryon and meson! that is iterated in Eq.~6! can be con-
structed from an effective Lagrangian. Our interaction L
grangian~see Table II! is based on that of Wess and Zumin
@63#, which we have supplemented with additional terms
including theD isobar, thev, h, a0 , f 0 meson, and thes.
We also have included terms that characterize the coup
of the resonancesN* (1535), N* (1520), andN* (1650) to
various reaction channels. The full interaction is built up
the diagrams shown in Figs. 2–5, where we also introd
our notation. Expressions for the matrix elemen

^kW8l3l4uVI ukWl1l2& can be found in the Appendix.
In our approach the correlatedpp exchange replaces th

exchange of fixed-massr ands mesons. The construction o
these potentials is explained in detail in Ref.@64#. However
double counting will arise when correlatedpp exchange and
the p exchange diagrams in thepN→s(r)N transition po-
tential are taken into account@53#. For this reason Schu¨tz
et al. @53# left out thep exchange contributions. But thes
diagrams are important contributions to thepN→s(r)N po-
tential and therefore have to be included in our model.
avoid the double counting, which arises by iterating thep

exchange diagrams~see Fig. 6! by modifying theNN̄→pp
amplitudes. Since we have a microscopical model for
NN̄→pp T-matrix @65#, we are able to subtract the bo
diagram displayed in Fig. 6~c! from these amplitudes. Whe
using the subtracted amplitudesTcorr, double counting is
avoided. The subtraction of the box diagram hardly infl
ences ther partial waves in theNN̄→pp amplitudes,
whereas it reduces thes channel by'20%. By solving the
double counting problem in this way we can keep the imp
tantp exchange diagrams in thepN→s(r)N transition am-
plitudes.

After a standard partial wave decomposition@66#, the
scattering equation~6! can be reduced to a one-dimension
integral equation that can be solved by standard meth
@67–69#. A unitary transformation relates the helicity stat
we have used in Eq.~6! to the so calledJLS states@70,71#.
In theJLSbasis theT-matrix is directly related to the partia
wave amplitudes@71,72#

tmn
IJLSL8S852pArmrnTmn

IJLSL8S8 , ~7!

where the densitiesrg are given by

rg5~qon
g /E!Eg~qon

g !vg~qon
g !,

with Eg(k)5Ak21Mg
2, vg5Ak21mg

2, and

qon
g 5A@E22~Mg1mg!2#@E22~Mg2mg!2#/2E.
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TABLE II. The effective Lagrangian.

Vertex Lint

NNp 2
fNNp

mp
C̄g5g mtW]mpW C

NDp
fNDp

mp
D̄mTW†]mpW C1H.c.

rpp 2grpp(pW 3]mpW )rW m

NNr 2gNNrC̄Fg m2
kr

2mN
smn]nGtWrWmC

NNs 2gNNsC̄Cs

spp
gspp

2mp
]mpW ]mpW s

sss 2gsssmssss

NNrp
fNNp

mp
grC̄g5g mtWC~rWm3pW !

NNa1 2
fNNp

mp
ma1

C̄g5g mtWCaWm

a1pr 2
gr

ma1

@]mpW 3aW n2]npW 3aW m#@]mrW n2]nrW m#

1
gr

2ma1

@pW 3~]mrWn2]nrWm!#@]maWn2]naWm#

NNv 2gNNvC̄Fg m2
kv

2mN
smn]nGvmC

vpr
gvpr

mv
emaln]

arWm] lpW vn

NDr 2i
fNDr

mr
D̄mg5gnTW †rWmnC1H.c.

rrr
gr

2
~rWm3rWn!rW

mn

NNrr
krgr

2

8mN
C̄smntWC~rWm3rWn!

DDp
fDDp

mp
D̄mg5gnTWDm]npW

DDr 2gDDrD̄tSg m2i
kDDr

2mD
smn]nDrWmTWDt

N* (S11)Np igN* NpC̄N* tWCpW 1H.c.
N* (S11)Nh gN* NhC̄N* Ch1H.c.

N* (S11)Nr gN*NrC̄N*g5Fg m2
kN*Nr

2mN*
smn]nGtWrWmC1H.c.

NNh 2
fNNh

mp
C̄g5g mtW]mpW C

NNa0 gNNa0
mpC̄tWCaW 0

NN f0 gNN f0
mpC̄tWCaW 0

pha0 gpha0
mphpW aW 0

hh f 0 ghh f 0
mphh f 0

N* (D13)Np i
fN*Np

mp
2

C̄g5gntWCN*
m ]n]mpW 1H.c.
7-5
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HereJLS are the usual total angular momentum, orbital a
gular momentum, and total spin quantum numbers and
prime denotes final state quantities. For the partial wave
plitudes in which we are mostly interested in this wor
namely thepN amplitudes, the total spinS and orbital an-
gular momentumL are conserved (L85L, and S85S51/2
for m5n5pN) in Eq. ~7!. The phase shift and inelasticit
are then calculated from the partial wave amplitude in
standard way@72#.

Mesons and baryons are not pointlike particles, but hav
finite size. Therefore the interaction verticesmmmandmBB
(m5meson,B5baryon) also have finite sizes which, in o
model, are parametrized by the following form factors,
which qW is the three momentum transfer carried by the
changed particle.

For meson and baryon exchange

F~q!5S L22mx
2

L21qW 2D n

. ~8!

We use monopole form factors (n51) except for theD ex-
change, for which the convergence of the integral in Eq.~6!
requires a dipole form factor (n52).

For the nucleon exchange at thepNN vertex

F~q!5
L22mN

2

L22„~mN
2 2mp

2 !/mN…
21qW 2

. ~9!

This choice ensures that the nucleon pole and nucleon
change contribution cancel each other at the Cheng-Da
point, which is needed for a calculation of theS term @1#.

For N, N* , andD Pole diagrams

F~q!5
L41mR

4

L41„Eg~q!1vg~q!…4
. ~10!

The correlatedpp exchange is supplemented by the for
factor

F~ t,t8!5S L22t8

L22t
D 2

, ~11!

which appears inside thet8 integration@71#.
For the contact interaction in the Wess-Zumino Lagra

ian @63#

TABLE II. ~Continued!.

Vertex Lint

N* (D13)Nh
i
fN*Nh

mp
2

C̄g5gnCN*
m ]n]mh1H.c.

N* (D13)Dp fN*Dp

mp
C̄N*nTWg mDn]mpW 1H.c.

N* (D13)Nr
2i

fN*Nr

mr
C̄N*

m gntWrWmnC1H.c.
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F~p2 ,p4!5S L21m4
2

L21pW 4
2

L21m2
2

L21pW 2
2D 2

. ~12!

All of our effective ppN states~i.e., pD, sN, andrN)
are composed of a stable and an unstable particle. In ord
include effects of the width of these unstable intermedi
states we have modified the two-body propagator, which w
be motivated in the following. Since in the Schro¨dinger
equation,

HuC&5EuC&, ~13!

the Hamilton operator acts on Hilbert states describing a p
ticle R as well as two particles 12 into whichR→12 can
decay, we introduce Feshbach projectors

P5uR&^Ru, Q5u12&^12u, with P1Q51,

P25P, Q25Q ~14!

in order to split these two spaces@73,74#. By applying these
operators to the eigenvalue equation~13!, one can derive an
equation for the particles inP space

S E2HPP2HPQ

1

E2HQQ
HQPD uCP&50, ~15!

where uCP&5PuC& and HXY5XHY. By introducing the
self-energy

S5HPQ

1

E2HQQ
HQP ~16!

Eq. ~15! can be rewritten as

~E2H02S!uCP&50. ~17!

The self-energy term takes the decay of the unstable par
into account. As such it introduces an energy-depend
width and a mass shift. Our two-particle intermediate st
propagator forpD, sN, andrN must therefore be replace
by

FIG. 2. Contribution to the elasticpN interaction.
7-6



m-
elf-
in

-
d

WHAT IS THE STRUCTURE OF THE ROPER RESONANCE? PHYSICAL REVIEW C62 025207
1

E2Wg~q!
→ 1

E2Wg~q!2Sg~Esub!
, ~18!

where

Esub5E2vp~q!2„A~MD
o !21q22MD

o
… for theD,

Esub5E2EN~q!2„A~mr
o!21p22mr

o
… for r 5r,s

~19!

is the energy of the decaying cluster at rest@2#. After con-
structing models for the self-energiesS, the bare massesMD

o

FIG. 3. Additional contribution in coupling to thehN channel.

FIG. 4. Additional diagrams for coupling to thepD and sN
channels.
02520
and mr
o ~as free parameters within these models! are deter-

mined by fitting the models to experimental data. For si
plicity we use separable interactions for calculating the s
energy. For theD and thes this has already been done
Ref. @2#, from which we take the self-energiesSg(g
5D,s). For ther we use the vertex function

vrpp
0 ~q!5

grpp

2pA3

q

vp~q!Avm
r
0~q!

Lr
21mr

2

Lr
214„vp~q!…2

~20!

with the parameters

FIG. 5. The potential for the coupling to therN channel.

FIG. 6. Double counting in the correlatedpp exchange arises
from iteration of thep exchange diagram~a!, because that gener
ates the box diagram~b!, which is already included in the correlate
pp exchange@Fig. 2~c!#. In order to avoid double counting we

remove the diagram~c! from theNN̄→pp amplitudes.
7-7
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grpp
2

4p
52.9, Lr51.8 GeV, mr

05911 MeV. ~21!

With this vertex function the self-energySr can be calcu-
lated in the same way as outlined for thes in Ref. @2# @see
also Eq.~30! below#. Figure 7 shows our separable intera
tion for ther decay compared withpp scattering data.

This completes our model. ThepN partial wave ampli-
tudes are calculated by solving the LSE~6! with the propa-
gator~18! for unstable intermediate states. The pseudopo
tial V is derived from the Lagrangian of Table II. It
parameters are the coupling constants and cutoffs for e
vertex that we have listed in Table III.

III. DESCRIPTION OF pN DATA

Having described our model, we turn now to compari
its results to the experimental data. In fitting the partial wa
amplitudes for J, 5

2 we have varied only the boldfac
printed values in Table III. Most of the coupling constan
have been taken from other sources. The coupling const
of the pole diagrams are constrained by values determ
from their decay widths, for which we take the estimates
Ref. @9#. The free values are then strongly constrained by
data—especially for the nonresonantt andu channel contri-
butions, which act simultaneously in many partial waves.
completeness, Table IV contains the masses of the part
used in this model. Our description of the partial waves w
I 5 1

2 is shown in Fig. 8; the partial wave amplitudes forI
53

2 are shown in Fig. 9.
In order to constrain the parameters of thepN→rN tran-

sition potential, we have also considered thepN→rN tran-
sition cross section~Fig. 10!. These data severely constra
the p exchange@Fig. 5~a!#, which dominates this cross se
tion and produces a large background to the resonant pa
the D13. Without constraining thep exchange contribution
a dynamical pole can be generated in theD13. This result
was also obtained by Aaronet al. @86,87#. With this dynami-
cal pole our model overestimates thepN→rN cross section
by almost an order of magnitude, and a good description
other pN partial waves is not possible. This demonstra
that only a combined analysis of many partial waves a
cross sections can give reliable information about re

FIG. 7. Phase shift in the partial waveIJ511 of thepp inter-
action. The solid line is the result of the self-energy calculation
the r meson. Data are taken from Refs.@75–77#.
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nances. The details of this calculation will be presented e
where@88#.

Our model is able to describepN data very well up to
energies of about 1.9 GeV. Only in the partial waveS31 does
our model deviate from the data, and that is because we h
not yet included the resonanceD(1620). Our model does no
give significant contributions to the inelasticity in this parti
wave. The description of theS11 needs the coupling to the
hN channels via theN* (1535) resonance and nonresona
a0(980) exchange@2,45#. The resonanceN* (1650) is taken
into account in addition and leads to the rapid variation
the partial wave amplitude around 1.65 GeV. The inclus
of the rN channel improves the description of the part
wavesP13 and P31 as compared to the model used in Re
@2#, which results in a perfect description of theP31,
whereas in theP13 a large background to the resonan
N* (1720) is produced. These results will be discussed
more detail elsewhere@88#.

The model is then a good starting point for an investig
tion of the Roper resonance.

IV. THE STRUCTURE OF THE ROPER RESONANCE

Let us begin this section with a description of our proc
dure for investigating the structure of a resonance. We s
by using nonresonant interactions only; i.e., we do not
clude a pole diagram into our interaction. If we are able to
data in all partial waves without pole diagram, the resona
under consideration doesnot have a three-valence-quar
structure. Rather, it is created dynamically by the nonre
nant meson-baryon interaction. If we need to include a p
diagram, we conclude that the resonance is dominated
quark gluon dynamics, which are not included in our mod

As can be seen in Figs. 1 and 8, our model results i
very good description of theP11, without including a Roper
pole diagram. The rise of the phase shift and the openin
the inelasticity is generated by the coupling to the inelas
channels. In Fig. 11 we show how the different reacti
channels contribute to theP11. The potential of the elastic
model~i.e., wherepN is the only reaction channel! is attrac-
tive due to ther exchange, and leads to a rising phase s
without generating a resonant behavior. Including thepD
channel hardly improves the situation for the phase shift
leads to some inelasticity, which starts at about 1.4 GeV.
soon as we couple to thesN channel, a resonant shape of th
phase shift is generated. The inelasticity opens at 1.3 G
and reproduces the rapid rise of the experimental data. S
the reaction channelsrN andhN scarcely contribute to the
P11, decoupling thepD channel from the full model leave
us basically with apN/sN model, which does not differ
much from the full result. Only at higher energies does
pD channel contribute to the inelasticity.

As we have not included a Roper pole diagram into o
model, we cannot determine any Breit-Wigner paramet
from the parameters in our model. Ho¨hler and Schulte@39#,
however, were able to determine resonance parameters
several partial wave solutions by calculating the spe
which is defined by

r
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TABLE III. The parameters of our model. Only the boldface printed values are varied in fitting the
The coupling constants are taken from the cited references. All masses and cutoffs are given in Me

Vertex Process Coupling const. Ref. CutoffL

Correlated 2p- r-channel 1200

exchange s-channel 1100

NNp N exchange
fNNp
2

4p
50.0778 @78# 1300

NNp N pole,mN
0 51032.33

fNNp
(0) 2

4p
50.0633 1200

NDp N exchange
fNDp
2

4p
50.36 @78# 1300

NDp D exchange
fNDp
2

4p
50.36 @78# 1800

NDp
D pole,

mD
051405

f NDp
(0) 2

4p
50.21 1650

DDp D exchange
fDDp
2

4p
50.252 @79,80# 1800

NDr r exchange
fNDr
2

4p
520.45 @78# 1300

DDr r exchange
gDDr

V 2

4p
54.69, @79,80# 1300

gDDr
T

gDDr
V

56.1 @79,80#

ppr r exchange
grpp

2

4p
52.90 @50# 1300

NNs N exchange gNNs
2

4p
513 @81# 1500

NNp p exchange ;fNNp 600

pps p exchange
gpps

2

4p
50.25 @82# 600

NNs s exchange ;gNNs 2300

sss s exchange
gsss

2

4p
50.625 2300

NNh N exchange
fNNh
2

4p
50.00934 @53# 2500

NNa0 a0 exchange
gNNa0

gpha0

4p
58.0 2500

pha0 a0 exchange 2500

NNr N exchange
gNNr

2

4p
50.84 @78# 1200

k56.1 @78#

NNrp contact term ; f NNpgNNr 1100

ppr p exchange
gppr

2

4p
600
025207-9
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TABLE III. ~Continued!.

Vertex Process Coupling const. Ref. CutoffL

NNv v exchange
gNNv

2

4p
511.0 @78# 1100

vpr v exchange
gvpr

2

4p
510.0 @83,84# 700

NNa1 a1 exchange ; f NNp 1500
a1pr a1 exchange ;gNNr 1500
NNr r exchange gNNr ,k 1400
rrr r exchange ;gNNr 1400
NNrr contact term ;gNNr

2 k 1200

NN1535
* S11p N* pole,mN*

0
51660

gNN*p
2

4p
50.0015 3000

NN1535
* S11h N* pole

gNN*h
2

4p
50.30 3000

NN1650
* S11p N* pole,mN*

0
51852

gNN*p
2

4p
50.08 3000

NN1650
* S11r N* pole

gNN*r
2

4p
50.05 3000

NN1520
* D13p N* pole,mN*

0
52100

fNN*p
2

4p
50.0006 2000

NN1520
* D13r N* pole

fNN*r
2

4p
50.20 2000

DN1520
* D13p N* pole

fDN*p
2

4p
50.017 2000

NN1520
* D13h N* pole

fNN*h
2

4p
50.0008 2000
re
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SpIJLS~E!5Udt IJLS

dE U, ~22!

and gives some information about the time delay in the
action @89,90#. A resonance causes a large time delay a
will, therefore, form a peak in a diagram in which the spe
is plotted against the energyE ~the so-called speed plot!. The
height and width of this peak can be related to the ma
width, and residue of the resonance@39#.

TABLE IV. Masses of the mesons and baryons~in MeV!. Thes
in thesN t-channel exchange is a parametrization of correlatedpp
exchange@81#. This is the reason for the differents masses.

Mesons Baryons Exchanged mesons

mp 138.03 mN 938.926 ms 650.0a

mh 547.45 mD 1232.0 mv 782.6
ms 850.0a 1520.0 mf 0

974.1
mr 769.0 ma0

982.7
ma1

1260.0

aThe s mass in thes-channelpp interaction corresponds to th
energy at which the phase shift reaches 90°.
02520
-
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The speed plot calculated with our model is displayed
Fig. 12. It agrees very well with the speed plot from t
partial wave solutions KA84@42,1# and SM90@40#. From the
height and width we determine the following resonance
rameters@see also Table I~h!#:

mR51371 MeV, ~23!

G5167 MeV, ~24!

r 541 MeV. ~25!

The phase of the residue is lost in taking the absolute va
in Eq. ~22! and cannot be determined without making furth
assumptions. In Table I our result~i! is compared to the
parameters from the speed plot analyses of Ho¨hler and
Schulte@~f!–~h!#. The agreement in mass is very good. B
sides the width and residue of the VPI speed plot analysis~f!,
our values agree with the other speed plot analyses.
agreement with the pole position of the two recent VPI s
lutions @3,2# is also very good.

The pole of theP11 amplitude coincides withpD thresh-
old ('1371 MeV51232 MeV1139 MeV), neglecting
the width of theD. The question arises whether this is a pu
7-10
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coincidence or whether a branch point due to thepD channel
is the reason for the resonant behavior seen in the speed
The simplest way to answer this question is to remove
pD channel from the calculation and repeat the speed an
sis. The result of this investigation is shown by the dash
line shown in Fig. 12. The resonance position is pushed u
1.39 GeV, and the width is increased to 0.18 GeV. T
finding shows that thepD channel does not play a domina
role in theP11 partial wave.

In the present model, there is an attraction between
nucleon and the interacting two-pion pair with scala
isoscalar quantum numbers which leads to a resonant be
ior. Indeed, a recent Breit-Wigner fit to the Saturne re
nance seen ina2p scattering by Morsch and Zuprans
finds the resonance parametersM51.39 GeV andG50.19
GeV and suggests a strong partial cross section to two p
in a relatives-channel~see Fig. 8 of Ref.@11#! which is
compatible with the structure suggested in our model.

We now turn to a discussion of how the new features
our model improve the theoretical understanding of thepN

FIG. 8. The real part~left panel! and the imaginary part~right
panel! of the pN partial wave amplitudes for the isospinI 5

1
2 . In

addition, the analyses KA84@42,1# and SM95@2#, as well as the
single-energy analysis SE-SM95@2# are shown.
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data. By switching off several contributions in the potenti
we have found thep exchange in the transitionpN→sN
@Fig. 4~j!# to be very important for the energy dependence
the P11 phase shift. This is demonstrated in Fig. 13, whe
we show the model withoutp exchange in comparison to th
full solution. This contribution is responsible for a larg
amount of attraction, especially at higher energies. In c
trast, the inelasticity stays large at higher energies even w
out p exchange, but reaches its maximum at 1.6 GeV~the
maximum of the full model is located at 1.45 GeV!. In an
earlier version of this model@2# this contribution was miss-
ing. The attraction that is needed for a good description
the P11 was generated by a strong coupling to thesN chan-
nel via the nucleon exchange and a stronger coupling to
pD reaction channel. However, the energy dependence
the pD channel leads to a maximum in theP11 phase shift
near 1.6 GeV and the phase shift decreases again at h
energies. Therefore the model@2# was restricted to energie
below 1.6 GeV.

So far we have demonstrated that our model generat
dynamical pole in theP11, which is associated with the
Roper resonance. The phase shift and inelasticity can be

FIG. 9. The partial wave amplitudes forI 5
3
2 . The notation is

the same as in Fig. 8.
7-11
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scribed as well as in other models that include a bare re
nance explicitly, and the resonance parameters from a s
plot analysis are in good agreement with the speed
analyses of other partial wave solutions. We also found
the sN and thepD channels are important in theP11. In
order to investigate the role of these channels in more de
we construct a simplified model that contains the basic f
tures of the full model used so far. We restrict the simplifi
version to the reaction channelspN, sN, andpD. A major
simplification is achieved by replacing the microscopic p
tential Vmn(k,k8) by a separable potential of the form2

Vmn~k,k8!5 f m~k!
1

E2m0
f n~k8!, ~26!

wherem0 is a free parameter which~if positive! allows for a
pole in the energy dependence@92,93#. The vertex functions
f m(k) are given by

f Np5A3

8

1

p

f Np

mp
kS 11

vp~k!

EN~k!1mN
DNpN~k!, ~27!

f Ns5
gNs

A8p
NsN~k!, ~28!

f Dp5
f Dp

mp

k

A6p

ED~k!vp~k!

mD
NpD~k!, ~29!

where Ng(k)5A@Eg(k)1Mg#/Eg(k)vg(k). The coupling
constantsf Np ,gNs , and f Dp are also free parameters in th
fit to theP11 partial wave amplitude. All vertex functions ar

2Although the microscopic character of the interaction is lost,
can still draw conclusions concerning the role of different react
channels.

FIG. 10. The transition cross sectionpN→rN. The solid line
shows the reactionp2p→r0n, the dashed line the reactionp2p
→r2p, and the dot-dashed line the reactionp1p→r1p. The ex-
perimental data are taken from Ref.@85#.
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supplemented by a common form factor of the type~10! with
a cutoffL52.0 GeV. ThepN T-matrix can be calculated in
the following way@94#:

First we calculate the self-energy

S~E!5(
g
E q2 dq

u f g~q!u2

E2Wg2Sg~Esub!
, ~30!

where the modified propagator~18! is used for thepD and
sN channel. With this self-energy, thepN T-matrix can be
calculated:

e
n

FIG. 11. Phase shift and inelasticity in the partial waveP11.
The curves are calculated using the full model~solid line!, the chan-
nels pN/sN/pD ~dotted line!, pN/pD ~long-dashed line!,
pN/sN ~short-dashed line!, and the elastic model~dot-dashed line!.
The common parameters are the same in all five cases.

FIG. 12. Speed plot in the partial waveP11. The symbols are
showing speed plots from Ref.@39# ~open circles! and Ref.@91#
@full circles ~KA84 @42,1#! and diamonds~SM90 @40#!#. The calcu-
lation performed with the full model is given by the solid line. Th
result obtained after the removal of thepD channel is represente
by the dashed line.
7-12
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T~k8,k!5
f Np~k8! f Np~k!

E2m02S~E!
. ~31!

We have fitted theP11 phase shift and inelasticity with th
three different sets of parameters shown in Table V. S
only couples the reaction channelspN andsN whereas sets
II and III only couplepN andpD. The results for the dif-
ferent parameter sets are shown in Fig. 14. ThepN/sN
model describes theP11 almost as well as the full model. In
particular, the inelasticity opens at the right energy and
model results in a continuous rise of the phase shift. In c
trast, thepN/pD model ~sets II and III! is not able to de-
scribe the inelasticity. The inelastic contributions from t
pD channel start to open at higher energies as compare
set I and do not lead to (12h2)'1. By increasing the cou
pling to thepD channel~in going from set II to set III! the
maximum in the inelasticity can be increased, but it s
opens at'1.37 GeV.3 So even by increasing the coupling
the pD channel, the onset of inelasticity is not shifted dow
in energy. Furthermore the larger coupling~set III! leads to
an overestimation of the phase shift in the energy region
1.4–1.6 GeV. A good description of theP11 partial wave
amplitude with this coupled-channelpN/pD model is not
possible.

We have also performed a least-squares fit, letting
three coupling constants and the massm0 vary freely. The
minimizing procedure always resulted in a negligible co
pling to thepD channel. The resulting parameters only diff
slightly from the parameter set I and the curve is almost
same as the solid one in Fig. 14.

The common feature of the full model discussed at
beginning of this section and the simplified version intr
duced here is the use of the modified propagator~18! for the

3This problem is also present in the separablepN/pD model of
Blankleider and Walker@43#, whereas in the separable model
Fuda@44# the mass of theD is adjusted in each partial wave sep
rately in order to describe the inelasticities correctly.

FIG. 13. The partial waveP11 calculated with~dashed line! and
without ~solid line! p exchange in thepN→sN transition poten-
tial, using the same parameters.
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pD andsN states, as introduced in Sec. II. This allows us
conclude that a proper treatment of the decay widths of
intermediate states in the form presented here is very im
tant for the description of the Roper partial wave. The se
energy term in the modified propagator~18! smears out the
threshold of thesN state over a rather broad energy regio
Furthermore it introduces an additional imaginary part in
the amplitude, which originates from the~energy dependent!
decay width of thes. This results in an onset of inelasticit
at the correct position. The strong coupling between thepN
and thesN channel, as mediated by thet channelp ex-
change, generates large contributions from the rescatterin
virtual sN states and produces the attraction seen in theP11.

The present model does not consider the s-channel
diagram in thepN→sN transition explicitly. The following
calculations show that the effect of this diagram is indirec
included in the renormalization of the nucleon mass and c
pling constants. The iteration of a nucleon pole diagram s
tering equation—together with nonpole backgrou
contributions—leads to a dressing of the nucleon. Theref
the pole part of the bare potential has to be evaluated w
bare constants. For the single channel case, this is well
derstood and applied in many models of, e.g.,pN scattering
@1,61#.

We now generalize the renormalization procedure to
multichannel case. We abbreviate the individual chann
such aspN,sN, . . . , bysmall greek lettersa,b, . . . .

The pole partVab
P of the bare potential is a product of th

bare vertex functionsf a
0 , f b

0 and the bare propagatord0, with
d0

215E2mN
0 :

TABLE V. Parameters of the separable coupled-channel mod

Set
f Np

2

4p

f Ns
2

4p

f Dp
2

4p
m0 ~in MeV!

I 0.024 20.21 0 2840
II 0.024 0 0.17 3950
III 0.018 0 0.20 4100

FIG. 14. Results of the simplified model. The solid line w
calculated using parameter set I of Table V, the dashed and
dashed curves are obtained using sets II and III, respectively.
the solid line onlypN andsN are coupled, whereas for the dash
and dot-dashed lines the only channels arepN andpD.
7-13
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Vab
P 5 f a

0d0f b
0† . ~32!

An explicit expression forf 0 can be found in Ref.@71#. The
nonpole part of the bare potential,Vab

NP , combines all the
other diagrams so that the bare potential can be divided
two parts:

Vab5Vab
P 1Vab

NP . ~33!

The nonpole part of theT-matrix is defined by iterating the
nonpole part of the bare potential:

Tab
NP5Vab

NP1(
g

Vag
NPGgTgb

NP . ~34!

The pole part of theT-matrix is given by the product o
the dressed vertex functionsf and the dressed propagatord:

Tab
P 5 f a d fb

† ,

with

d215d0
212S,

S5(
a

f a
0†Ga f a ,

f a5 f a
01(

b
Tab

NPGb f b
0 ,

f a
†5 f a

0†1(
b

f b
0†GbTba

NP , ~35!

whereS is the self-energy.
The pole part of theT-matrix must have a pole at th

physical nucleon mass and the residue at the pole de
mines the physical coupling constants, see, e.g.,@94#,

gdr
a gdr

b

gb
agb

b
5

f b f a
†K

f b
0 f a

0†
, ~36!

whereK5(12S1)21;S15(]/]E)S(E)uE5mN
.

The bare massm0 is obtained from the relation

m05mN2S~E5mN!. ~37!

In solving Eq.~36! for the bare couplings attention has to
paid to the vertex functionsf and the self-energyS, which
still contain bare couplings in a nonlinear way. So we int
duce vertex functions which do not contain any coupli
constants:Fa

0
ª f a

0/gb
a . We now simplify our consideration

by observing that channels such asrN,pD, and hN are
found to have small contributions to the dressing and can
neglected. So we include only thepN and sN channels in
our dressing scheme. The coupledpN,sN self-energy and
vertex functions read explicitly:
02520
to

r-

-

e

S5~gb
p!2@Fp

0†GpFp
0 1Fp

0†Gp~Tpp
NPGpFp

0 !#

1~gb
s!2@Fs

0†GsFs
01Fs

0†Gs~Tss
NPGsFs

0 !#

1gb
pgb

s@Fp
0†Gp~Tps

NPGsFs
0 !1Fs

0†Gs~Tsp
NPGpFp

0 !#,

f a5gb
aFa

01gb
pTap

NPGpFp
0 1gb

sTas
NPGsFs

0 ,

f a
†5gb

aFa
0†1gb

pFp
0†GpTpa

NP1gb
sFs

0†GsTsa
NP . ~38!

Inserting these expressions into Eq.~36! results in a system
of equations for the bare couplings. Solving this system
termines the bare couplings. The bare mass is calculated
ing Eq. ~37! and the self-energy from Eq.~38!. These are
then used in a calculation ofpN scattering observables.

The dressed values are fixed to bef pNN
2 /4p50.0778 and

gsNN
2 /4p513.0 at the nucleon pole (E5mN) @81#. The re-

sulting bare parameters are

~ f pNN
0 !2

4p
50.0777 ~0.0633!,

~gsNN
0 !2

4p
519.25,

m051010.1 MeV ~1032.3 MeV!.

The bare values from the single channel dressing scheme
given in brackets.

Next, we compute the phase shifts and inelasticities of
partial waveP11 in the coupled channel model, including th
pole diagram in thepN→sN transition. The results are
shown in Fig. 15. One finds that the early onset of the
elasticity is reproduced. The omission of thes-channel tran-
sition pole diagram leads to a simplification of the renorm
ization and is found to be justified.

FIG. 15. The partial wave amplitudeP11 including the coupled
channel dressing of the nucleon.
7-14
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V. SUMMARY

We have presented a coupled-channel model forpN scat-
tering in the energy region from threshold up to 1.9 Ge
The model is based on an effective Lagrangian and leads
good description ofpN partial wave amplitudes. We hav
used this model for an investigation of the Roper resonan
We found that our full solution of the relativistic Lippmann
Schwinger equation generates the Roper resonance dyn
cally, i.e., without needing aq3 core. We have calculate
resonance parameters by using the speed plot method
these are consistent with other analyses. As source of
dynamical pole we have identified thesN channel, which we
have used together with thepD andrN channel as effective
description ofppN states. Furthermore, we have shown th
t channelp exchange in thepN→sN transition potential
and a proper treatment of the decay width of unstable p
ticles in the quasi-two-bodyppN states are important to
explain the early onset of the inelasticity in thepN channel.
These results call for a reinvestigation of the Roper re
nance in the quark model, where attention to the role
meson-baryon states, orq4q̄ configurations, has to be paid
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APPENDIX A: THE PSEUDOPOTENTIAL

In this appendix we give all expressions for the pseu
potential, which we use in our coupled-channel model
pN scattering. Let us start with defining some shortha
notation: The on-mass-shell energies for meson and ba
are

v i5ApW i
21mi

2,

Ei5ApW i
21mi

2, ~A1!

with the notation as given in Fig. 2. A common factor

k5
1

~2p!3
Am1m3

E1E3

1

A2v22v4

~A2!

is present in all potentials, which originates from the norm
ization of fields and the relation

Sf i5d f i22p id4~pf2pi !Tf i ~A3!

between the standardS-matrix and theT-matrix @46#. We use
time-ordered perturbation theory~TOPT! in this work @97#;
therefore all intermediate particles are on their mass s
~i.e., pi

25mi
2 for i 51, . . . ,4). As aconsequence the energ

is, in general, not conserved at a vertex, but the total ene
TABLE VI. Additional isospin factors.

Reaction channel Process IF (I 51/2) IF (I 53/2)

pN→pN s exchange 1 1
r exchange 2 21

ND13
* pole graph 3 0

pN→rN N exchange 21 2
NNpr contact graph 22i i

p exchange 22i i
v exchange 1 1
a1 exchange 22i i
D exchange 4

3
1
3

NS11
* ,ND13

* pole diagrams 3 0
rN→rN N exchange 21 2

NNrr contact graph 22i i
r exchange 2i 2 i
D exchange 4

3
1
3

NS11
* ,ND13

* pole diagrams 3 0
pN→sN p exchange A3 0
pN→pD ND13

* pole diagram 2A6 0
pD→pD ND13

* pole diagram 2 0
pN→hN ND13

* pole graph A3 0
hN→hN ND13

* pole graph 1 0
7-15
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in the reaction, and the three momentum at each vertex
conserved, as they must be. In TOPT, a Feynman diagra
represented by two time orderings~and a possible contac
term, which we shall discuss later!. The second time ordering
can be constructed out of the first by replacing the fo
momentumq of the intermediate particle with the mome
tum q̂, which differs only in its 0th component fromq: q̂0

52vq for meson exchange andq̂052Eq for baryon ex-
change. The pseudopotential is then a sum of both time
ders.

The inclusion of theD isobar as an exchanged partic
leads to fundamental difficulties in TOPT. We have theref
chosen the same pragmatic way of including theD as taken
02520
re
is

-

r-

e

in Refs.@1,2#. Since theD exchange contributions play onl
a minor role in the investigations of this paper, this pra
matic approach is justified.

In the following expressions for the pseudopotential, t
isospin is separated. The potentials have to be multiplied
the isospin factorsIF , as given in Ref.@2#. Since some
contributions—and therN channel—were not included in
Ref. @2#, we give the additional relevant isospin factors
Table VI. The contributions can be evaluated in the c.
frame by settingpW 15kW52pW 2 , pW 35kW852pW 4.

The contributions to the pseudopotenti
Vmn

I (kW8,kW ,l1 ,l2 ,l3 ,l4) are given by the following expres
sions.
1. pN\pN

Nucleon pole diagram@Fig. 2~a!#

k
f NNp

2

mp
2

ū~pW 3 ,l3!g5p\ 4

1

2mN
0 S q\ 1mN

E2mN
0

1
q̂\ 1mN

E2mN
0 2E12E32v22v4

D g5p\ 2u~pW 1 ,l1!IF Ns~ I !. ~A4!

Nucleon exchange@Fig. 2~b!#

k
f NNp

2

mp
2

ū~pW 3 ,l3!g5p\ 2

1

2Eq
S q\ 1mN

E2Eq2v22v4
1

q̂\ 1mN

E2Eq2E12E3
D g5p\ 4u~pW 1 ,l1!IF Nu~ I !. ~A5!

Correlatedpp exchange in thes channel@Fig. 2~c!#

16k~2p2m
p4

m!E dt8
Im„f 1

0 ~ t8!…

~ t822mp
2 !~ t824mN

2 !
P~ t8!ū~pW 3 ,l3!u~pW 1 ,l1!IF st~ I !, ~A6!

whereP(t8)5(1/2v t8)„@1/(E2v22E32v t8)#1@1/(E2v42E12v t8)#…, v t85Aq21t8, and f is a Frazer-Fulco amplitude
@95,64#.

Correlatedpp exchange in ther channel@Fig. 2~c!#

212kFQm~P11P3!m

2mN
E dt8 Im„G2~ t8!…P~ t8!ū~pW 3 ,l3!u~pW 1 ,l1!

2E dt8 Im„G2~ t8!1G1~ t8!…P~ t8!ū~pW 3 ,l3!Q\ u~pW 1 ,l1!G IF rt~ I !, ~A7!

whereG1(t)52(mN /pt
2)@ f 1

1 (t)2(t/4A2mN) f 2
1 (t)#, G2(t)5(mN /pt

2)@ f 1
1 (t)2(mN /A2) f 2

1 (t)#, andQ5 1
2 (p21p4).

D pole diagram@Fig. 2~d!#

k
f NDp

2

mp
2

ū~pW 3 ,l3!p4m

Pmn~q!

~E2mD!~E1mD!
p2n

u~pW 1 ,l1!IF Ds~ I !. ~A8!

D exchange@Fig. 2~f!#

k
f NDp

2

mp
2

ū~pW 3 ,l3!p2m
Pmn~q!S 1

2Eq~E2Eq2v22v4!
1

1

2Eq~E2Eq2E12E3! D p4n
u~pW 1 ,l1!IF Du~ I !. ~A9!

N* (S11) pole diagram@Fig. 2~g!#
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kgN* Np
2 ū~pW 3 ,l3!

1

2mN*
0

q\ 1mN
0

E2mN*
0 u~pW 1 ,l1!IF N* s~ I !. ~A10!

N* (D13) pole diagram@Fig. 2~g!#

k
f N* Np

2

mp
4

ū~pW 3 ,l3!g5p\ 4p4m

1

2mN*
0

Pmn~q!

E2mN*
0 g5p\ 2p2n

u~pW 1 ,l1!IF N* s~ I !. ~A11!

The tensorPmn is given by

Pmn~p!5~p”1M !F2gmn1
1

3
gmgn1

2

3M2
pmpn2

1

3M
~pmgn2pngm!G , ~A12!

whereM is the mass of the exchanged baryon.

2. pN\rN

p exchange@Fig. 5~a!#

2kgrpp

f NNp

mp
ū~pW 3 ,l3!g5gmu~pW 1 ,l1!S qm~p22q!n

2vq~E2vq2E32v2!
1

q̂m~p22q̂!n

2vq~E2vq2E12v4!
D e* ,n~pW 4 ,l4!IF p~ I !, ~A13!

whereen(pW 4 ,l4) is the polarization vector of a massive spin 1 particle with momentump4 and helicityl4 @96#.
a1 exchange@Fig. 5~b!#

2kgr

f NNp

mp
ū~pW 3 ,l3!g5gmu~pW 1 ,l1!S 2gmn1

qmqn

ma1

2

2vq~E2vq2E32v2! F S p21
q

2D
t

p4
ten* ~pW 4 ,l4!2S p21

q

2D t

et* ~pW 4 ,l4!p4nG

1@~p21q̂/2!tp4
ten* ~pW 4 ,l4!2~p21q̂/2!tet* ~pW 4 ,l4!p4n

#

2gmn1
q̂mq̂n

ma1

2

2vq~E2vq2E12v4!
D IF a1

~ I !. ~A14!

v exchange@Fig. 5~c!#

kgNNv

gvpr

mv
ū~pW 3 ,l3!S Fgt2 i

kv

2mN
stnqnG 1

2vq~E2vq2E32v2!

1Fgt2 i
kv

2mN
stnq̂nG 1

2vq~E2vq2E12v4! Du~pW 1 ,l1!emaltp4
ae* ,m~pW 4 ,l4!p2

lIF v~ I !, ~A15!

with e0123521.
Nucleon exchange@Fig. 5~d!#

2 ikgNNr

f NNp

mp
ū~pW 3 ,l3!g5p\ 2S q\ 1mN

E2Eq2v22v4
1

q̂\ 1mN

E2Eq2E12E3
D

3
1

2Eq
Fe\ * ~pW 4 ,l4!2 i

kr

2mN
smnp4n

em* ~pW 4 ,l4!Gu~pW 1 ,l1!IF Nu~ I !. ~A16!

NNpr contact graph@Fig. 5~e!#

2kgr

f NNp

mp
ū~pW 3 ,l3!g5e\ * ~pW 4 ,l4!u~pW 1 ,l1!IF ct~ I !. ~A17!

N* (S11) pole diagram@Fig. 5~f!#
025207-17
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kgN* NrgN* Npū~pW 3 ,l3!g5Fgm2 i
kN* Nr

2mN*
smnp4nGem* ~pW 4 ,l4!

1

2mN*
0

q\ 1mN*
0

E2mN*
0 u~pW 1 ,l1!IF N* s~ I !. ~A18!

N* (D13) pole diagram@Fig. 5~f!#

ik
f N* Np f N* Nr

mp
2 mr

ū~pW 3 ,l3!„p\ 4e* ~pW 4 ,l4!2p4m
e\ * ~pW 4 ,l4!…

Pmn~q!

2mN*
0

~E2mN*
0

!
p2n

g5p\ 2u~pW 1 ,l1!IF N* s~ I !. ~A19!

Since we are using time ordered perturbation theory@97#, which is a formalism based on the Hamiltonian instead of
Lagrangian, we must transform the Lagrangian to the Hamiltonian via the Legendre transformation

H5(
j

dL
dḞ j

Ḟ j2L, ~A20!

whereF j are the fields inL. This transformation introduces additional terms into the interaction, which, in our case, are
form of contact interactions@54#. In TOPT all particles are on the mass shell, so that the 0th component of the exch

particle, (q05AqW 21mX
2), is quite different from the one in covariant perturbation theory~e.g.,q05p1

02p3
0 for a t-channel

exchange!. Therefore the potential is different in the two approaches as soon as a time derivative acts on the field
exchanged particle. Since both approaches ultimately must lead to the same on-shell potential, the role of the a
interactions is to restore the equivalence between TOPT and covariant perturbation theory@54#.

Since both thepNN and thepra1 Lagrangians contain a time derivative on thep and thea1, there are additional term
for thep and thea1 exchange contributions, which have to be added to Eqs.~A13! and~A14!, respectively. Forp exchange
this term is

kgr

f pNN

mp
ū~pW 3 ,l3!g5g0u~pW 1 ,l1!e0* ~pW 4 ,l4!IF p~ I !, ~A21!

and fora1 exchange it is

2kgr

f pNN

mp

1

ma1

2
ū~pW 3 ,l3!g5g0u~pW 1 ,l1!@p2mp4

me0* ~pW 4 ,l4!2p2
mem* ~pW 4 ,l4!p40

#IF a1
~ I !. ~A22!

3. rN\rN

r exchange@Fig. 5~g!#

2 ik
gr

2

2 S ū~pW 3 ,l3!Fgm2 i
kr

2mN
smnqnGu~pW 1 ,l1!

1

2vq~E2vq2E32v2!

3@et~pW 2 ,l2!et* ~pW 4 ,l4!~2p42p2!m1~q1p4!tet~pW 2 ,l2!em* ~pW 4 ,l4!1~p22q!tet* ~pW 4 ,l4!em~pW 2 ,l2!#

1@et~pW 2 ,l2!et* ~pW 4 ,l4!~2p42p2!m1~ q̂1p4!tet~pW 2 ,l2!em* ~pW 4 ,l4!1~p22q̂!tet* ~pW 4 ,l4!em~pW 2 ,l2!#

3ū~pW 3 ,l3!Fgm2 i
kr

2mN
smnq̂nGu~pW 1 ,l1!

1

2vq~E2vq2E12v4! D IF r~ I !. ~A23!

Nucleon exchange@Fig. 5~h!#

kgNNr
2 ū~pW 3 ,l3!Fgm1 i

kr

2mN
smnp2nGem~pW 2 ,l2!

1

2Eq
S q\ 1mN

E2Eq2v22v4
1

q̂\ 1mN

E2Eq2E12E3
D

3Fgt2 i
kr

2mN
stnp4nGet* ~pW 4 ,l4!u~pW 1 ,l1!IF Nu~ I !. ~A24!

NNrr contact graph@Fig. 5~i!#
025207-18
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kgNNr

f NNr

2mN
ū~pW 3 ,l3!smnem~pW 2 ,l2!en* ~pW 4 ,l4!u~pW 1 ,l1!IF ct~ I !. ~A25!

N* (S11) pole diagram@Fig. 5~j!#

kgN* Nr
2 ū~pW 3 ,l3!g5Fgm2 i

kN* Nr

2mN*
smnp4nGem* ~pW 4 ,l4!

1

2mN*
0

q\ 1mN*
0

E2mN*
0 g5Fgm1 i

kN* Nr

2mN*
smnp2nGem~pW 2 ,l2!u~pW 1 ,l1!IF N* s~ I !.

~A26!

N* (D13) pole diagram

k
f N* Nr

2

mr
2

ū~pW 3 ,l3!„p\ 4em* ~pW 4 ,l4!2p4m
e\ * ~pW 4 ,l4!…

Pmn~q!

2mN*
0

~E2mN*
0

!
„p\ 2en~pW 2 ,l2!2p2n

e\ ~pW 2 ,l2!…u~pW 1 ,l1!IF N* s~ I !.

~A27!

The rNN coupling from Table II contains a time derivative of ther field, which causes an additional term in th
Hamiltonian. On-shell, this term cancels theqmqn term of the spin-1 propagator, which is also approximately true off-sh
Therefore we can mimic the additional contact term in TOPT by using the reduced spin-1 propagator,

2gmn

E2vq2E32v2
1

2gmn

E2vq2E12v4
. ~A28!

We have checked numerically that the exact procedure leads only to tiny differences in the off-shell potential. We have
this reduced spin-1 propagator to ther exchange contribution~A23! above.

4. pN\pD

Due to relative signs in our Lagrangian~Table II!, the nucleon,D, andr exchange contributions from Ref.@2# must be
multiplied by a minus sign. In addition, we have included theN* (D13) pole diagram@Fig. 4~d!#:

2k
f N* Np f N* Dp

mp
3

ūm~pW 3 ,l3!p\ 4

Pmn~q!

2mN*
0

1

E2mN*
0 p2

ng5p\ 2u~pW 1 ,l1!IF N* s~ I !. ~A29!

5. pD\pD

The nucleon andD exchange can be taken from Ref.@2#. Here we do not use a Gordon decomposition for ther exchange
@Fig. 4~g!#, which therefore has the form

ikgDDrgrppūt~pW 3 ,l3!Fgm2 i
kDDr

2mD
smnqnGut~pW 1 ,l1!

1

2vq
S 1

E2vq2v22E3
1

1

E2vq2v42E1
D ~p21p4!mIF r~ I !,

~A30!

and we have used the reduced spin-1 propagator from Eq.~A28!. We have also included theN* (D13) pole diagram@Fig. 4~h!#

k
f N* Dp

2

mp
2

ūm~pW 3 ,l3!p\ 4

Pmn~q!

2mN*
0

1

E2mN*
0 p\ 2un~pW 1 ,l1!IF N* s~ I !. ~A31!

6. pN\sN and sN\sN

We take over the contributions from Ref.@2#, but additionally use ap exchange contribution for thepN→sN transition
@Fig. 4~j!#

ik
f NNp

mp

gspp

mp
ū~pW 3 ,l3!

1

2vq
S g5q\ qm

E2Eq2v22E3
1

g5q̂\ q̂m

E2Eq2v42E1
D p2

mu~pW 1 ,l1!IF p~ I !, ~A32!

which again must be supplemented by the additional term
025207-19
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ik
f pNN

mp

gspp

mp
ū~pW 3 ,l3!g5g0p2

0u~pW 1 ,l1!IF p~ I ! ~A33!

resulting from the Legendre transformation~A20!.

7. The hN reaction channel

The coupling to thehN channel~Fig. 3! can be taken from Ref.@2#. The additional coupling of theND13
* (1520) can be

constructed from theD13 pole diagram of the directpN interaction by replacing one (pN→hN) or two ~direct hN) N* Np
coupling constants by theN* Nh coupling, respectively.
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