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Abstract

It is sometimes claimed that because the resolution and sensitivity of visual perception are better in the fovea than in the

periphery, peripheral vision cannot support the same kinds of colour and sharpness percepts as foveal vision. The fact that

a scene nevertheless seems colourful and sharp throughout the visual field then poses a puzzle. In this study, I use a de-

tailed model of human spatial vision to estimate the visibility of certain properties of natural scenes, including aspects of

colourfulness, sharpness, and blurriness, across the visual field. The model is constructed to reproduce basic aspects of hu-

man contrast and colour sensitivity over a range of retinal eccentricities. I apply the model to colourful, complex natural

scene images, and estimate the degree to which colour and edge information are present in the model’s representation of

the scenes. I find that, aside from the intrinsic drift in the spatial scale of the representation, there are not large qualitative

differences between foveal and peripheral representations of ‘colourfulness’ and ‘sharpness’.

Keywords: computational modeling; contents of consciousness; perception; psychophysics; peripheral vision; colour

perception

Introduction

When looking at a scene one may get the feeling that a visual

experience is colourful and sharp across the full extent of one’s

visual field. Even a savvy observer who knows about the higher

objective resolution of foveal vision, or about the regular, rapid,

and involuntary movement of the foveae from one part of the

scene to another, is likely to get this feeling. However, it is fre-

quently argued that this feeling is illusory. Such arguments—

which tend to be part of larger philosophical or theoretical

accounts of vision (Dennett 2005; Schwitzgebel 2008; Cohen

et al. 2016; Lau and Brown 2019)—are always claimed to be based

on physiological or psychophysical facts about visual percep-

tion: cone density declines with retinal eccentricity (Curcio et al.

1990), acuity declines even more rapidly and more severely for

colour than for achromatic targets (Anderson et al. 1991), con-

trast sensitivity is poorer peripherally than foveally for most

spatial targets (Robson and Graham 1981; Pointer and Hess

1989), and declines more severely for colour targets (Anderson

et al. 1991). Therefore, it is argued, however, it seems (or seems

to seem) to us, peripheral vision just cannot support the kinds

of colour or sharpness percepts supported by foveal vision, and

the only explanation for our subjective feelings is that they are

illusory.

In contradiction of this argument, the present study shows

that human spatial vision permits nearly invariant representa-

tion of colour and sharpness across the visual field. To demon-

strate this invariance, I use a detailed model of human spatial

vision. The model is constructed to reproduce known psycho-

physical patterns of human contrast perception. Importantly,

the main feature of the model that allows it to reproduce these

patterns is that its local scale of encoding varies across the ex-

tent of its visual field; apart from this variation in local scale,

the structure of the model is independent of visual field posi-

tion. The model is able to closely simulate the same facts that

have sometimes been deployed to make claims about degraded

peripheral visual experience: its contrast sensitivity and acuity

decline with eccentricity, and much more severely for colour

stimuli. The analyses that I carry out on the outputs of this

model are therefore based directly in the empirical observations

that have driven some of the misconceptions at issue.

When discussing properties like colourfulness and sharp-

ness, I take these to be properties intrinsic to an observer’s
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visual experience. Of course, physical stimuli—which are differ-

ent kinds of things than perceptual representations—can evoke

visual representations like colour or sharpness via sensitive

mechanisms of perception. It should be clear that, if colour and

sharpness are representations intrinsic to an observer, they do

not need to depend on exactly what stimulus evoked them; sen-

sitivity may vary from mechanism to mechanism, but still the

same perceptual representation can be evoked by different

stimuli. Evidence for the intrinsic nature of colour includes the

dissociation of stimulus properties from perceptual colour expe-

riences as in colour constancy (Gegenfurtner et al. 2015), light-

ness and brightness illusions (Adelson 2000), colour afterimages

and hallucinations (McCollough 1965), colour phosphenes

(Dobelle and Mladejovsky 1974; Grusser 1995), and colour in

dreams (Kahn et al. 1962). Evidence for a corresponding view of

sharpness includes similar dissociations, such as in blur adap-

tation aftereffects (Webster et al. 2002), hallucinatory percepts

with clear detail (Richards 1971), sharp-textured phosphenes

(Nebel 1957; Tyler 1978), and experience of clear percepts in

dreams (Rechtschaffen and Buchignani 1992).

Although the data on which the model is based are not from

what we would typically consider studies of consciousness,

readers should consider the following in interpreting the

results. When a subject in a routine psychophysics task, such as

a contrast-detection task, reports seeing a (retrospectively)

suprathreshold target by selecting the correct response alterna-

tive, we reasonably assume that the subject was conscious of

that target (violations of this assumption, known as blindsight,

are difficult to obtain in normal vision). In consciousness stud-

ies, this assumption is usually confirmed by collecting more de-

tailed responses, for example having subjects also indicate their

confidence in having just consciously experienced a target. It is

well-known that confidence is strongly correlated with sensitiv-

ity (Fleming and Lau 2014), so it would seem natural to concep-

tually link model sensitivity to conscious visibility, and the

results of the present study may be interpreted in light of this

link. However, visual experience involves more than just spatial

qualities: we also experience the perceptual organization of

these qualities (Peterson and Kimchi 2013), and we may recog-

nize them as grounding or constituting objects. Whether or not

we experience spatial qualities in the absence of perceptual or-

ganization or recognition is a matter of debate (Block 2007;

Schwitzgebel 2007; Simons 2007; Lau and Brown 2019), and can-

not be addressed by the current study; in either case, the results

of the present study are relevant to the visibility, if not the con-

scious experience, of spatial qualities.

Methods

The spatial vision model was implemented in MATLAB (code

available at https://osf.io/8xf9w/). Empirical data used to set

model parameters, or for other purposes (e.g. the perceived blur

analysis in Section Attention), was extracted from the original

study papers using the online WebPlotDigitizer tool (Rohatgi

2017).

Properties of spatial vision

Listed below are psychophysical properties directly relevant to

the question of colour/sharpness perception across the visual

field (some ‘exemplar’ references are provided for each, but all

of these properties have been observed in numerous studies).

i. Contrast sensitivity is relatively independent between the

three opponent chromatic axes (the three ‘colour chan-

nels’: luminance-contrast, blue-yellow contrast, and red-

green contrast). Put another way, interactions between

same-channel patterns are much stronger than interac-

tions between different-channel patterns (Krauskopf et al.

1982; Buchsbaum and Gottschalk 1983; Mullen and

Sankeralli 1999).

ii. Spatial frequency acuity (the spatial frequency fa at which

contrast sensitivity is ¼ 1, i.e. minimal) is inversely propor-

tional to eccentricity plus a constant (E2):fa ¼ f * E2/(E þ E2)

(Strasburger et al. 2011).

iii. Foveal acuity is better for achromatic targets than for

chromatic targets, and the proportionality constant E2 is

higher (acuity declines less with eccentricity for achro-

matic than for chromatic targets) (Noorlander et al. 1983;

Anderson et al. 1991, 2002).

iv. The high-spatial frequency decline in contrast sensitivity

at any eccentricity is exponential (Yang et al. 1995): S(f) �

n�f. This holds over all colour channels (Fig. 10).

v. Contrast sensitivity for a target of any spatial frequency

declines exponentially with eccentricity, with a steeper

exponent for higher spatial frequencies (Pointer and Hess

1989; Anderson et al. 1991): S(E) � n�E. This also holds over

all colour channels (Fig. 10).

vi. The visual system is low-pass and sensitivity across the

visual field converges for very low spatial frequencies

(Pointer and Hess 1989).

vii. Contrast sensitivity (as d’) for targets of increasing con-

trast follows an expansive/compressive power function

(threshold-vs-contrast functions are dipper-shaped)

(Nachmias and Sansbury 1974; Legge and Foley 1980).

viii. ‘Contrast constancy’: In the absence of other interactions,

contrast responses converge at high contrasts, for mecha-

nisms tuned to different spatial frequency, orientation,

and/or eccentricity (Georgeson and Sullivan 1975; Cannon

1985; Swanson and Wilson 1985; Chen et al. 2000).

ix. Sensitivity for a low-contrast target of one orientation is

strongly impaired by a high-contrast overlaid mask of very

different orientation (‘cross-orientation masking’), while a

high-contrast target is relatively unaffected by a lower-

contrast mask (Foley 1994).

x. The combined perceptual response to contrast over multi-

ple frequency bands is a high-p-norm (less-than optimal

combination: M� ¼ 4) (Cannon and Fullenkamp 1991).

Threshold over eccentricity and scale

Properties i-x are interrelated in various ways. Of particular im-

portance, ii., iv. and v. (regarding relation of sensitivity with

scale and eccentricity) are distinct aspects of the scale-

sensitivity of the visual system, and they are modelled

compactly:

t f ; E
� �

¼ t0 exp
f

f0

 !

Eþ E2

E2

� �

 !

L f ; E
� �

(1)

This expression is in terms of threshold contrast (t). Here,

the exponential term captures the high-frequency limb of the

sensitivity function, while L(f, e) captures the low-frequency pla-

teau, which I take to be independent of eccentricity (vi.):
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L f ; E
� �

¼ 1þ
a

1þ f
�

f1

� �2
(2)

Regarding the high-frequency component of the function,

notice how the exponential declines of sensitivity with eccen-

tricity (E) and spatial frequency (f) are intertwined. There are

two constants: f0 captures the steepness of the decline in sensi-

tivity with increasing spatial frequency (decreasing scale) and

E2 captures the steepness of the decline in sensitivity with in-

creasing eccentricity. In the literature, these two parameters are

normally considered separately (see Watson 2018 for a recent

synthesis), but it is clear that they modify each other: if f0 is con-

sidered as constant, then E2 is effectively reduced as frequency

increases: the decline in sensitivity for some target (f) with ec-

centricity (E) becomes steeper for higher frequencies (Fig. 1A).

Conversely, if E2 is considered as constant, then f0 is effectively

reduced as eccentricity (E) increases, meaning that the decline

in threshold with frequency gets steeper (Fig. 1B).

This connection between the contrast sensitivity functions

for spatial frequency and eccentricity has an interesting conse-

quence for sensitivity across the visual field: it means that sen-

sitivity to some frequency F1 at some eccentricity E1 is usually

equal to sensitivity to a lower frequency F2 at a larger eccentric-

ity E2, and to a higher frequency F0 at some smaller eccentricity

E0. The extreme case of this is the acuity frequency: sensitivity

to this frequency is defined everywhere across the visual field

as a constant value (t¼ 1). There are, likewise, mechanisms

across the visual field with t ¼ 1=2, t ¼ 1=4, and so-on, with the

rule breaking down only at some very low (unknown) contrast.

Opponent colour channels

The three colour channels were implemented by transforming

RGB input images into the CIElab colour space, composed of a

luminance-contrast channel (Achr), a blue-yellow channel (B/

Y)1, and a red-green channel (R/G)—and using these as inputs to

the filter layer. The CIElab components are different from the

‘cone contrast’ components typically employed in colour psy-

chophysics, but they are close enough for present purposes

(McDermott and Webster 2012). CIElab is also widely available

in different code bases and is clearly documented in many sour-

ces, making the present results more easily replicable.

Filter structure

The model is framed in a rectangular array of visual field loca-

tions, with each location a 2d coordinate in degrees eccentricity

from a point of fixation. At each location a complement of filters

is assigned: filters tuned to each combination several spatial

scales, four orientations, and three colour contrasts. The filters

are created on a log-frequency/orientation domain (Equation 3).

The frequency profile is a Gaussian (Equation 4), and the orien-

tation profile is a raised cosine (Equation 5):

g f ; h
� �

¼ g f
� �

� g hð Þ (3)

g f
� �

¼ exp �
log2f � log2fpeak
� �2

2rf 2

 !

(4)

g hð Þ ¼
1

2
cos rh h� hpeak

� �	 


þ 1
� �

; if h� hpeak < rhp

0; if h� hpeak � rhp

8

<

:

(5)

Frequency bandwidths were fixed at 2rf ¼1.4 octaves for all

filters (Wilson et al. 1983). Orientation bandwidth was fixed at 45

degrees (rh ¼ 1=4p). In the space domain, these are quadrature fil-

ters, so they encode both amplitude and phase of content in

their pass band. The amplitude of each filter was adjusted so

that the linear response (dot-product) of the filter to a
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Figure 1. Two overarching properties of human contrast sensitivity. Contrast sensitivity declines with retinal eccentricity and with decreasing

scale. Black lines show the exponential relation of contrast sensitivity to eccentricity (left) and spatial frequency (right). An increase in either

parameter corresponds to decreased sensitivity. Dashed red lines show a more accurate model with a low-frequency plateau—only the lowest

spatial frequencies are meaningfully different.

1 This implementation of the B/Y channel ignores the fact that human

spectral sensitivity is far better for yellow spots than for blue spots

(Abramov & Gordon, 1977). The human visual system is not so simple

as to symmetrically encode blue and yellow, but the model is, so it

tends to underestimate yellow and overestimate blue contributions to

stimuli. A similar problem exists for the achromatic channel, in that

true human sensitivity to ‘dark’ spots is generally better than for

‘bright’ spots (Haun & Peli, 2013b; Whittle, 1992), while the model

makes these symmetrical. Psychophysically, green and red are rela-

tivelymore symmetric, though see point xxi in the appendix 1.
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full-contrast sinewave grating pattern at its preferred orienta-

tion and frequency would be unity (1.0), that is the linear re-

sponse of each filter was explicitly equated with the ‘contrast

energy’ (the phase-invariant Michelson contrast magnitude) of

a typical contrast sensitivity test stimulus.

The peak orientations of the filters, at every visual field loca-

tion and for each colour channel, were [0, 45, 90, 135] from verti-

cal. The peak frequencies depended on eccentricity and colour

channel. First, the contrast sensitivity function of Equation (1)

was fit to data sets for human sensitivity to achromatic (Pointer

and Hess 1989), red-green (Anderson et al. 1991), and blue-

yellow (Mullen and Kingdom 2002) contrast stimuli of variable

spatial frequency and eccentricity. Next, the ‘local scale’ of the

filters (Watson 1987) was set according to the objective acuity at

that eccentricity. The acuity frequency for each colour channel

as a function of eccentricity was derived by setting threshold t(f,

E) ¼ 1 and solving for spatial frequency f. The peak frequencies

(fpeak) of the filters for each channel at each eccentricity were

set to:

fpeak Eð Þ
n o

¼
f t ¼ 1;Eð Þ

3; 6; 12; 24f g
(6)

That is, the peak frequency of the finest filter at each loca-

tion was 1/3 of the acuity limit expected by the pattern of con-

trast sensitivity, and the coarser filters were spaced 1, 2, and 3

octaves below the finest filter. The low-pass residual from these

filters was then inserted to capture the low-frequency plateau

of the sensitivity function. This close packing of the frequency

bands allowed the filter complement to scale flexibly with ec-

centricity, avoiding most cases where the coarsest filters might

be too large for the test image. For the chromatic filters, three

rather than four bandpass filters scales were used along with

the low-pass residual.

Suprathreshold sensitivity

The aspects of contrast sensitivity relating to suprathreshold

contrasts (vii, viii and x), and the capacity of the model to fit ar-

bitrary threshold levels (i.e. the shape of the psychometric func-

tion for contrast detection or discrimination) are all captured

with the Foley transducer (Stromeyer and Klein 1974; Legge and

Foley 1980; Foley 1994). This transducer defines the signal-noise

ratio (d’) as a nonlinear function of contrast, with parameters

that depend on the linear filter characteristics:

d0h ¼ Rmax
gchð Þpþq

zp þ
P

h gcð Þp
(7)

The variable c is the linear response of a spatial filter to the

stimulus. In the current study, p, q, and Rmax are fixed. The

threshold parameter z varies with eccentricity, frequency and

colour. The linear gain g of each filter is a partial parameter that

ordinarily would be at unity and distributed between Rmax and z

(Haun 2009); it was considered separately here as it can account

in a computationally convenient way for significant differences

in sensitivity between colour channels, allowing other parame-

ters to be fixed. The summation in the denominator is over

other orientations of same-location, same-frequency, same-

colour filters, thus capturing cross-orientation masking (ix). The

threshold for each filter is set by transforming the detection

threshold functions defined in Equations 1 and 2, assuming a

fixed experimental d’ value (d’¼2 was used in all simulations in

this study):

zp ¼
Rmax

d0h
th

pþq � th
p (8)

Equation 8 is just a rearrangement of Equation 7, ignoring

the cross-orientation terms (basic contrast sensitivity functions

are established without masks) and setting contrast equal to an

empirical threshold value.

Fitting model to data

First, data were subjected to a curve-fitting procedure to set the

free parameters of the CSF model (Equation 7), with starting

parameters suggested by the papers where the model compo-

nents were introduced (Yang et al. 1995; Geisler and Perry 1998;

Watson and Ahumada 2005). The nonlinear contrast response

parameters (Rmax, p, q) were fixed at the outset to standard val-

ues (Legge and Foley 1980; Haun and Peli 2013b). The target data

were drawn from the studies listed in Table 1. I did not fit B/Y

contrast sensitivity data for the final model, and instead scaled

the high-s.f. decline constant (f0) of the achromatic sensitivity

function (see Table 2), and decreased the linear gain, to obtain a

good fit to the B/Y acuity data.

The model was tested by exposing it to actual stimulus

images. Each individual filter was convolved with a stimulus,

yielding a set of linear measures of contrast at each image loca-

tion. These linear measures were fed into the response nonli-

nearity. Responses across scale were combined with a high p-

norm R ¼
P

f Rðf Þ
M

� �1=M
, with M¼ 4; (Cannon and Fullenkamp

1991; Haun and Peli 2013b). The maximum response across the

remaining filter dimensions (orientation and colour) is the

‘cross-frequency response’ at each location, and it represents

the signal-noise ratio the observer has for making decisions in a

SDT task. I constructed achromatic and colour Gabor patch

stimuli of varying spatial frequency and centre eccentricity, to

(roughly) match the parameters of the exemplar experiments

(of Table 1). The contrast of each stimulus was adjusted itera-

tively (Newton’s method) to produce a peak cross-frequency re-

sponse equal to the ‘experimental’ d’¼2 (an unbiased yes/no

hit-rate of 84%)—this contrast was the model’s detection

threshold for the target stimulus.

Model thresholds are plotted in Fig. 3 against data from

Mullen (1991) and Pointer and Hess (1989). Also shown are acu-

ity estimates—these are obtained by extrapolating the contrast

Table 1. Data sets shown in Figure 3, used to fix the parameters of the contrast sensitivity model.

Data type Source

Achromatic contrast sensitivity by spatial frequency and eccentricity (Pointer and Hess 1989) Figs. 2, 3, and 12

Red/Green contrast sensitivity by spatial frequency and eccentricity (Mullen 1991) Figs. 3, 4

Achromatic and Red/Green acuity by eccentricity (Anderson et al. 1991) Fig. 5

Achromatic and Blue/Yellow acuity by eccentricity (Anderson et al. 2002) Fig. 3
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sensitivity curves to the spatial frequency where sensitivity ¼ 1.

In addition to these basic limits of contrast detection, the model

also captures suprathreshold aspects of contrast sensitivity.

Contrast discrimination (threshold-vs-contrast) functions

have the familiar ‘dipper’ shape, where increment thresholds

for just-detectable pedestals are smaller than the detection

threshold itself, while increment thresholds for suprathreshold

pedestals follow a compressive power function (Stevens’ law).

Cross-oriented masks elevate the dipper functions in the

expected way, though they are much more powerful masks

than they should be (since the cross-oriented inputs were not

realistically weighted).

In summary, the model generally comes very close to hu-

man performance. Whatever conclusions one might draw from

the empirical data should transfer well to the simulated data.

That is, if one believes (for example) that human colour or

sharpness representations must decline in quality due to the

observed pattern of contrast sensitivity, then the same belief

should apply to the representations of this model. Put another

way, the facts pertinent to claims about what a human observer

can and cannot experience at the level of contrast perception

are all effectively embodied by this model.

Application of the model to natural scenes

The central question in this study can be put this way: given

what we know about human contrast sensitivity, what can a

typical human observer see in a colourful natural scene? To an-

swer this question I used 100 colourful natural scene photos

(Fig. 4) as stimuli for the model. The scenes were all pulled from

the ‘Panorama’ section of the Wikipedia directory of featured

pictures (Various, 2019); these images are very high resolution,

minimally compressed, and full-colour, and they are of the

kinds of interesting vistas that might elicit naı̈ve claims about

the apparent vividness of a visual experience. The main selec-

tion criterion was that each image must have height and width

equal to or greater than 1536 pixels. Inputs to the model were

cropped to 1536 � 1536 pixels; if an image had least dimension

greater than 3072 pixels, it was cropped down to the nearest

multiple of 1536 and then resized down to 1536 � 1536. Some

subjective criteria were applied in selecting the scenes, includ-

ing that the central region of the scene should contain some

more ‘interesting’ content than just ground (or sea) and/or sky;

some content should be ‘near’, that is obviously telescopic

images were excluded; images should seem colourful (scenes

like pictures of the desert or of snowy mountains that seemed

effectively monochromatic were generally not included, though

some were); and a rough balance was sought between ‘natural’

and ‘artificial’ scenes (i.e. of scenes with and without obvious

human influence). The list of source images (URLs and photog-

rapher credits) is provided in the Appendix. I did not try to

match the ‘true’ visual angle of the scenes to the visual angle of

the model’s visual field—the necessarily information to recover

the true angle was not generally included with the images.

To ‘view’ the scenes, the model was given a 32� square visual

field (which would fit comfortably within the angle of view of

photographs not taken with wide-angle or long-focus lenses),

extending from 1� left of the fixation point to 31� right; and from

16� below to 16� above. The resolution of the field was 1536 �

1536 pixels. The model’s response (in the form of the maximum

cross-frequency response at each field location) to one stimulus

image is shown in Fig. 5. Right away we learn something about

natural scenes: they are composed of high contrasts, as far as

the visual system is concerned. Detection thresholds are rou-

tinely exceeded across the model visual field, as shown by the

very-high d’ values elicited across the scene. If we were doing

signal detection experiments with the image components evok-

ing these responses, an observer would respond perfectly (bar-

ring finger errors or attentional lapses) across thousands of

trials.

Results

Our original questions concern whether the content of natural

scene experiences is rightly characterized as ‘colourful’ and

‘sharp’ across the extent of the visual field. So, how do we eval-

uate these qualities? Colourfulness is the more straightforward

to address, so we start there.

Colourfulness

‘Colourfulness’ is an informal term, but in its informal usage it

is intended to imply either variegation (i.e. many distinct hues)

or vividness (i.e. the presence of a highly saturated colour) of

colours, or especially both. Here, I used the ‘hue-saturation-

value’ (HSV) representation of colour content to capture these

features (Smith 1978).

The ‘visible image’. HSV is a pixelwise representation of image

content, whereas the spatial vision model generates a high-

dimensional matrix of signal-noise ratios. However, it is

straightforward to translate the model’s response to an image

back into the form of a ‘visible image’, where we can make use

of HSV. To do this, we transform each filter’s signal-noise ratio

(d’) into the range [0,1], using this value to weight the positive

cosine phase of the filter, and adding all the weighted filters to

an output image. The appropriate transformation of d’ is the ‘ac-

curacy’ or ‘reliability’: the greatest difference between the yes/

no hit-rate and false-alarm rate:

Accuracy ¼ HR� FA ¼ U
R

2

� �

� U �
R

2

� �

(9)

Table 2. Parameters of the contrast sensitivity model.

Value Description

t0 Achr 0.0051 Overall sensitivity function am-

plitude (adjusted by g)B/Y 0.0051

R/G 0.0082

E2 Achr 6.22 Eccentricity-scaling constant

B/Y 6.22

R/G 1.82

a Achr 5.26 Low-s.f. threshold weight

B/Y 5.26

R/G 2.53

f0 Achr 4.51 High-s.f. decline constants

B/Y 4.51/6

R/G 5.37

f1 Achr 0.32 Low-s.f. decline constant

B/Y 0.32

R/G 0.94

g Achr 2.5 Linear (filter) gain

B/Y 1

R/G 2

Rmax 30 Nonlinear gain

p 2 Low-c response exponent

q 0.4 High-c response exponent
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Here, U is the cumulative normal distribution function, R is

the d’ elicited by the stimulus. This procedure maps near-zero d’

to near-zero accuracy, and higher d’ to accuracy approaching

one. The visible image is then composed of content only to the

degree that it elicits psychophysically accurate responses. That

is, if a filter response is highly likely to have been elicited by a

stimulus (a hit), and highly unlikely to have been due to intrin-

sic noise (a false alarm), then its contrast is considered ‘visible’

and composes a part of the output image.

The reconstructed image is in CIElab coordinates, and is

transformed to HSV coordinates by chaining the MATLAB

lab2rgb and rgb2hsv functions.

Sampling across the visual field. An example of a ‘visible image’

is shown at the bottom of Fig. 5. The image seems similar to the

original, except for its reduced peripheral resolution. Its colour-

fulness does not seem reduced across the model field’s extent,

but the eye is the wrong judge here (the ‘double-pass problem’:

cf. Peli 1996). This is where we make use of the HSV representa-

tion, and sample hue variation and saturation across the field.

What is the right way to do this? A human observer making a

judgment about some image property across the visual field

must be using spatial attention, and it is known that the size of

the spatial attention ‘spotlight’ varies with eccentricity, with a

radius r following a pattern much like the scaling of acuity

(Intriligator and Cavanagh 2001):

r ¼ k0 1þ E
�

E2

� �

þ kc (10)

Here, I followed Intriligator and Cavanaugh’s results

(Intriligator and Cavanagh 2001) and set k0 to 5minutes of arc,

and E2 to 0.34 degrees eccentricity; but since this results in fo-

veal windows just a few pixels across (which would result in se-

vere undersampling at the fovea of local quality values for the

measures described below) a constant kc of 1 degree was added

at all eccentricities. This eccentricity-scaled sampling rule

reflects the attentional constraints on the spatial sampling

strategy of a human observer tasked with investigating the local

spatial distributions of some visual quality like colour.

One could argue that the scaled sampling rule is biased with

respect to the central research question, so the scaled rule was

compared with an unscaled sampling rule, fixing r at 3.75

degrees. This is the median (from 0 to 31 degrees eccentricity) of

the scaled sample window, and is about the size of the parafo-

veal region. (It is also the radius of the round window made by

touching the tips of my thumb and forefinger at a viewing dis-

tance of about 40 cm).

Colourfulness over eccentricity. With these sampling rules, we

assess colourfulness of model-visible images at each position

(in 1-degree steps) along the horizontal midline as shown in

Fig. 6. Two measures capture colourfulness at any sample posi-

tion: first, there is the distribution of saturations, with high sat-

uration quantiles reflecting the most colourful parts of the

sample; second, there is the hue entropy, which reflects the var-

iegation of a sample (how many different hues are encountered

there). Intuitively, the hue entropy should be computed for sat-

urations that produce visible colours—for this demonstration a

relatively low bar of 0.2 saturation was set, since a higher bar

tended to reduce sample sizes to zero for many scenes, even

near the fovea (very saturated colours in natural images are rel-

atively rare; Long et al. 2006). Saturation quantiles are self-

explanatory, and hue entropy (H) is defined as:

H ¼ �
X

hues

p huejsat > 0:2ð Þ log2p huejsat > 0:2ð Þ (11)

The distribution p(hue j sat>lim) was defined over 256 HSV

hue bins. Maximum entropy—an even distribution of hues

across the full range—would be H¼ 8bits. Concentration of col-

our around particular hues appears as lower entropy.

Fig. 6C and D shows the upper quantiles of the saturation

distribution as a function of eccentricity for the different sam-

pling rules; Fig. 6E and F shows the hue entropy. For the scaled

rule, there is little dependence on eccentricity of the saturation
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Figure 2.Model of contrast perception. (A) At every point in the model visual field, there is a complement of filters. The scale of the complement

only increases with eccentricity. (B) Each filter complement is divided into three colour-opponent channels. (C) Each colour-opponent channel

is composed of filters tuned to each combination of four scales and four orientations. (D) Exposed to a stimulus, each filter yields a complex

output consisting of a contrast magnitude (C) and its phase. (E) Contrast magnitude is transduced to a signal-noise ratio (d’). The nonlinearity

depends on filter scale and eccentricity (Equations 7 and 8), and on local contrast at other orientations (Equation 9).
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distribution. For the fixed rule, there is a gradual decline with

eccentricity in the saturation of the highest quantiles. The rela-

tionship between eccentricity and hue entropy is similarly

muted: entropy increases slightly with eccentricity for the

scaled rule (for the scaled rule the average increase in entropy is

about 0.01 bits per degree), and decreases slightly for the fixed

rule (on average losing about 0.04 bits per degree). Entropy is

generally around 4bits in the investigated range.

Considering that the fixed-size sampling rule is unrealistic

and probably perceptually impossible, the slight declines in col-

ourfulness for that rule are not what we should expect a human

observer to report. At the same time, despite its relative ‘flatten-

ing’ by adding 1 degree of radius at each eccentricity, the

attention-scaled rule might impose too-rigid a frame to visual

field sampling: perhaps observers (especially expert observers)

are, with some effort, able to attend much smaller zones in the

periphery and much larger zones nearer the fovea, when they

are trying to ‘sample fairly’ across the visual field. So the scaled

rule might likewise overestimate the relationship in the oppo-

site direction. Left with a relationship somewhere in between a

slight increase and a slight decrease, it seems reasonable to de-

scribe the relationship between visible colourfulness and retinal

eccentricity as negligible.

Sharpness

There is no standard pixelwise measure of ‘sharpness’ analo-

gous to hue and saturation. What could be the response image

correlate of apparent sharpness? It is useful to define sharpness

negatively, as the absence of apparent blur: if a feature is seen

but does not appear blurry, then it appears sharp. The spatial

spread of ‘just detectable blur’ increases in proportion to eccen-

tricity in a similar way as acuity (Hess et al. 1989; Levi and Klein

1990; Wang and Ciuffreda 2005; Maiello et al. 2017). That is,

across the visual field, if the spatial spread of blur is less than

the acuity limit, a ‘blur percept’ will not be evoked; but if the

spread is larger, it will be. So, a simple model of sharpness

should capture whether or not content at some position in the

visual field (especially ‘feature’ content) extends all the way to

the acuity limit.

A measure applicable to the multiscale channel contrast

responses of our model can be derived from the ‘scale space’

notion of feature representation (Koenderink 1984; Witkin 1987;

Perona and Malik 1990; Georgeson et al. 2007). Fig. 7 uses this

concept to illustrate the distinction between physical sharpness

(e.g. ‘high resolution’) and perceived sharpness (‘perceptual

clarity’), and to explain how we can find a correlate of apparent

sharpness in the spatial vision model. These properties (physi-

cal and perceived sharpness) may often be conflated, but they

are just as distinct as, for example, reflectance spectrum and

perceived colour. The left two panels (A, C) show the scale-

space representation of a high-resolution edge: such an edge

exists, in physical terms, as a feature at a particular spatial re-

gion (on the x-axis) extending from coarse scales up to fine

scales. The right panels (B, D) show a low-resolution edge: this

edge exists as a feature that extends from coarse scales up to

only moderately fine scales. These are two physically different

features, but they do not determine perceptual qualities: per-

ceptual mechanisms also have to be taken into account. The

upper and lower panels contrast two different filter scales—a

Figure 4. Some of the images used as stimuli for the model.
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fine-scale ‘foveal’ filter set, and a coarse-scale ‘peripheral’ set.

The foveal filters distinguish between the two features in that

the lower-resolution edge does not elicit any response from the

smallest filters (Fig. 7B). So, the high-resolution edge elicits a

‘complete’ filter response, and the low-resolution edge elicits an

‘incomplete’ response. The peripheral filters do not distinguish

the two features: for this filter set, both edges elicit ‘complete’

responses.

The implication of the scale-space demonstration is that ‘ap-

parent sharpness’ is closely related to a complete filter re-

sponse, and is therefore distinct from the physical resolution of

a stimulus. This link between apparent sharpness (and blur)

and a cross-scale response has been proposed many times,

though always in different forms (e.g. Elder and Zucker 1996;

Wang and Simoncelli 2003; Georgeson et al. 2007), and usually in

reference to foveal perception (one exception is Anstis 1998).

Going by this way of thinking about apparent sharpness, we can

recruit the ‘response accuracy’ statistic of Equation (9) and de-

fine apparent sharpness as the cross-scale product of accuracies

at a given location:

FCh ¼
Y

f

Accuracy Rf ;h
� �

(12)

This ‘filter completeness’ measure (FC), approaches a value of 1

when all similarly oriented filters at some spatial position are

responding strongly, as would happen in the presence of an ori-

ented feature that is at least as finely resolved as the smallest filter.

Fig. 8 illustrates the application of this idea to the model

responses to natural cenes, taking filter completeness to be FCh

values greater than 0.96 (allowing that each of four filter

responses has accuracy �0.99)2. Here, I evaluate filter complete-

ness only for the luminance channel, since its smaller filter size

means that it must in any case be the driver of sharpness judg-

ments. The first panel (A) shows the visible luminance-contrast

image for a particular scene; the next panel (B) highlights the

regions of the image where the model response was ‘filter com-

plete’. Using the same two sampling rules as in the colourful-

ness analysis, the last panel (C) shows the average filter

completeness—the mean of FCh >0.96 within the sample re-

gion—as a function of (horizontal) eccentricity. This analysis is

insensitive to sampling rule, but there is a clear positive trend

with eccentricity of increasing filter completeness. Under the
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Figure 5. Top: Stimulus image exposed to the model. Middle: Model response image to the stimulus, collapsed across scale, orientation, and col-

our (using the M-norm for scale and winner-take-all for orientation and colour). Notice that most of the scene is taken up by very high d’ values

(shades of bright yellow): At these locations, content is easily visible. The colormap is batlow from Crameri (2020). Bottom: The ‘visible image’

according to the model response. This image is composed only of image contrasts that elicit ‘suprathreshold’ responses.

2 Why not tie apparent sharpness simply to the responsiveness of the

smallest filter at each position? There are some image features, espe-

cially fine-grained textures, that will not be judged as ‘sharp’ under

the FC metric, but would be if the metric were relaxed to extend only

over the finer (or finest) filter scales. However, the model would then

be inclined to judge features as sharp erroneously, such as when

white noise is added (as in (Kayargadde & Martens, 1996; Kurihara

et al., 2009)), even though adding white noise to edges in natural

scenes tends to reduce their apparent sharpness ((Kurihara et al.,

2009); perhaps as a consequence of ‘coarse-scale suppression’ as

reported in (Haun & Hansen, 2019; Haun & Peli, 2013b)). Considering

these issues, the broadband FC metric is the more conservative

choice: it should underestimate, rather than overestimate, apparent

sharpness.
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hypothesis that filter completeness underlies apparent sharp-

ness, the spatial vision model does not support the notion that

apparent sharpness should decline with eccentricity.

Apparent blur of visible content. Apparent sharpness does not

capture the whole story: if a feature does not appear sharp, then

it must appear blurry, and there is plenty of room for features to

appear more or less blurry depending on various circumstances.

Apparent blur, that is how blurry something appears to be (with

‘sharpness’ being the minimum of apparent blur), is usually

measured by perceptually matching the blur of one percept to

the blur of another. In a pair of studies especially relevant to the

central question of this study, Galvin et al. (1997, 1999) measured

apparent blur matches between foveal and peripheral stimulus

positions. They found that a blurred edge viewed peripherally

was subjectively matched to a less-blurred edge viewed foveally

(scattered symbols in Fig. 9C–G). They called this effect ‘sharp-

ness over-constancy’. They proposed that some mechanism cor-

rects for the lower resolution of peripheral vision. In their view,

peripheral stimuli appear sharper than they should: implicitly they

were taking ‘foveal appearance’ as the standard for how things

ought-to-look. The spatial vision model suggests a different in-

terpretation of their results. Fig. 9 replots data from Galvin et al’s

Experiment 1, along with perceived-blur matching functions

from the spatial vision model. ‘Apparent blur’ does not have

an easy implementation in the scale space model, so I

adapted the simple ‘response slope’ model of Elliott et al.

(2011) and Haun and Peli (2013a). In their model, apparent blur

is equated to the rate of decrease (m) of the perceptual re-

sponse (here R) as the log filter scale decreases (as log center

frequency f increases):

R f
� �

¼ m ln f
� �

þ b (12)

This model was originally designed to explain perceived blur

of a special class of stimuli (blurred by steepening the amplitude

spectrum slope; Elliott et al. 2011; Haun and Peli 2013a), and it

performs very badly (i.e. non-monotonically for increasing blur

levels) for gaussian-blurred stimuli. However, I found that adjust-

ing the slope term by the local response (theM¼ 4 norm R) yields

blur estimates that monotonically increase with stimulus blur

(Fig. 6a), so the ‘apparent blur’ term b is:

b ¼
m

R
(13)
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Figure 6. Colourfulness statistics as a function of eccentricity, for eccentricity-scaled (A) and fixed (B) sample areas. (C, D) Saturation distribu-

tions. Each grey line is the mean HSV saturation, over eccentricity, for one image. The black lines trace the average upper quantiles (0.5, 0.75,

0.9, 0.95, and 0.99) over all images. (E, F) Hue entropy. Each grey line is the average hue entropy, over eccentricity, for one image. The black lines

trace the average entropy over all images. The vertical bars are upper and lower entropy quartiles (0.25, 0.75) over all images.

10 | Haun

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/n
c
/a

rtic
le

/2
0
2
1
/1

/n
ia

b
0
0
6
/6

2
9
0
4
3
8
 b

y
 g

u
e
s
t o

n
 2

0
 A

u
g
u
s
t 2

0
2
2



When there is similar response across filter scale (as would

be ideally evoked by the large edge stimuli of the Galvin et al.

study), b will be near zero—when response declines with in-

creasing filter scale, b will be negative. b can also run to positive

values (‘oversharpness’) when there is relatively more fine-

scale than coarse-scale content, as with a fine-grained texture.

This perceived-blur model (as with most or all others pro-

posed) has been tested only with foveal psychophysics data,

and it fits the matching Galvin data only roughly (Fig. 9C–G).

However, notice how it fails: held to a foveal standard, the spa-

tial vision model behaves as though peripheral content, espe-

cially at larger eccentricities, is perceived as even less blurry

than Galvin et al. found it to be (Fig. 9E–G). That is, rather than

sharpness over-constancy, there may be an under-constancy at

work in human peripheral vision. One possible culprit here is

crowding (Rosenholtz 2016): a subject’s relative inability to

judge the qualities of content in peripheral vision, despite the

psychophysical availability of the necessary information, might

contribute to judgments of apparent blur (does a crowded dis-

play feel more blurry?). Or, it could be that observers have some

natural knowledge that the objective resolution of peripheral vi-

sion is less than that of foveal vision, and they are injecting that

knowledge into their decisions about apparent peripheral blur.

Finally, the model of Equations 12 and 13 might simply be inad-

equate. At any rate, the spatial vision model does not predict

that peripheral stimuli should be judged as blurrier than foveal

stimuli, or indeed as blurrier than human observers themselves

tend to judge them.

Apparent blur and sharpness of natural scenes. The apparent

blur model of the previous section is straightforward to apply to

the natural scene contrast responses underlying the analyses in

previous sections. This analysis requires the obvious caveat

that, as shown in Fig. 9, the apparent blur model is a rough fit to

the one available data set (Galvin et al. 1997). Also, except for the

example of Fig. 9, the model has never been validated on local

image patches, only on ‘whole image’ statistics (Elliott et al.

2011; Haun and Peli 2013a). However, the model is not that far

off the Galvin et al. results—it closely matches data at smaller

eccentricities, and is at least monotonic with the psychophysi-

cal patterns.

Fig. 10 shows how the apparent blur parameter b, as evoked

by the scene images, varies with eccentricity: it does not vary

much at all, averaging a positive value at every eccentricity. If,

in viewing a panorama, normal human observers are compar-

ing some statistic like b across their visual fields, they should

find that the distribution of apparent blurs is not obviously
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Figure 7. The ‘scale space’ model of edge sharpness and blur. Two kinds of physical stimulus are illustrated: a high-resolution (physically sharp)

feature at left, and a low-resolution (physically blurred) feature at right. These are represented as lines indicating existence of content across a

range of scales, at a single spatial position: the high-resolution edge has content across a broad range of scales (A, C), while the low-resolution

edge is missing the fine-scale content (B, D). The high-resolution edge evokes a complete response in a set of fine-scale filters like those found in

the fovea (A), corresponding to perceptual sharpness, while the low-resolution edge evokes an incomplete response (B)—some of the filters do not

respond—corresponding to perceptual blurriness. However, both features evoke complete responses for a set of coarser-scale filters like those

found in the periphery (C, D).
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dependent on retinal position. In fact, if the intrinsic blur statis-

tic is anything like b, they should find that a typical scene (that

is, one viewed at optical infinity, as with most of our sample

scenes) does not contain much blur at all.

Attention

The target data on which the model is constructed and tested

were all collected under conditions where the stimulus was the

sole focus of the observer’s spatial attention. So, the findings

would seem to hold for, at a minimum, judgments about

attended colour and sharpness qualities. What happens to col-

ourfulness and sharpness when spatial attention is withdrawn

from a region of the visual field?

The effects of spatial attention are complex (involving shift-

ing tuning for individual neurons, changes to perceptual organi-

zation and recognition, and surprising phenomena like

inattentional blindness) and, in general, its mechanisms are

poorly understood. However, at the level of early spatial vision,

we have some idea of what is happening. Neural and psycho-

physical measures seem to agree that spatial attention corre-

sponds to enhancement of contrast response (Buracas and

Boynton 2007; Herrmann et al. 2009; Reynolds and Heeger 2009;

Bressler et al. 2013; Guo et al. 2020); so, withdrawal of spatial at-

tention means reduced contrast sensitivity, reduced perceived

contrast (but see Schneider and Komlos 2008), and attenuated

neural response. A crude implementation of this enhancement

(or of its withdrawal) in the model would be to vary the ampli-

tude (Rmax in Equation 9) of the contrast response function. If

the main model reflects the enhanced response state of an

attended region, we can implement the withdrawal of attention

by reducing Rmax. Reducing this parameter would mirror the

kinds of reductions seen in neural contrast response functions

(Luck et al. 1997; Gandhi et al. 1999; Buracas and Boynton 2007),

and would also reduce contrast sensitivity and perceived con-

trast judgments (assuming that perceived contrast is strongly

linked to contrast response magnitude) in similar ways to what

is observed psychophysically (Foley and Schwarz 1998; Carrasco

et al. 2000, 2004; Huang and Dobkins 2005; Carrasco and Barbot

2019).

I repeated the colourfulness and sharpness analyses using a

version of the model with Rmax reduced by 25% (Fig. 11A, Rmax ¼

22.5; this reduction is consistent with the magnitude of atten-

tional effect on fMRI BOLD response). This is a significant reduc-

tion that produces psychophysical effects in a similar range to

what has been observed in numerous studies, reducing sensi-

tivity by around 20% (Fig. 11B and C), depending on the default

sensitivity of each mechanism, but I did not try to fit the reduc-

tion to any particular data set (see Lee et al. 1997 and Carrasco

et al. 2000 for similar effects; many other effects of similar mag-

nitude are reviewed in Carrasco (2011).

Fig. 11 also compares the original perceptual quality meas-

ures of the ‘attended’ scenes with measures of the ‘unattended’

scenes. The changes to colourfulness are modest: unattended

regions have reduced saturation (99th percentile saturations, on

average, drop from 0.54 to 0.51; Fig. 11D) and slightly reduced

hue entropy (from 4.31 to 4.25 bits; Fig. 8E). The changes to

sharpness are larger (Fig. 11F): edge density (averaged over ec-

centricity) drops from around 0.27 to around 0.21, roughly pro-

portional to the change in response amplitude. Interestingly,

the apparent blur metric (b) increases slightly with inattention

(Fig. 11G)—while decreasing Rmax would reduce the slope esti-

mates underlying the blur metric, the normalizing factor, being

decreased by the same factor, over-compensates for the reduc-

tion. If we think that apparent blur should change similarly to

edge density, we can suppose that the visual system ‘knows’

about the inattentional reduction of Rmax, and takes this reduc-

tion into account by reducing R-based statistics by the same

proportion: basically, we multiply the original b by the reduction

factor. The dotted line in Fig. 11G shows this adjusted b is simi-

larly reduced to the reduction in edge density.

These attentional effects on visible qualities are not very

dramatic, but they are real. If the actual effects of withdrawing

attention on contrast sensitivity are larger than what is mod-

elled here, then the effects on perceptual qualities would be cor-

respondingly larger. Overall, this may support a weak version of

the so-called ‘refrigerator light illusion’ (Block 2001), which is

the notion that unattended properties of visual experience may

be somewhat different from attended properties—but that we

would not notice the difference, since whenever we check we

find the attended versions of those properties.

Why, if the contrast response (and sensitivity) is changed so

significantly, are visible qualities not more dramatically af-

fected? The answer is that saturated colours or sharp details are

evoked by high physical contrasts that yield (in the attended

case) very high signal-noise ratios; halving these ratios will gen-

erally still result in a suprathreshold response (e.g. going from

d’¼8 to 4). If halving the contrast response results in a large de-

cline in the accuracy of a feature, then the attended response

must already have been rather weak (e.g. from d’¼2 to 1). In

terms of accuracy (Equation 9), the reduction of contrast

A
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Visible contrasts

Eccentricity
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E
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g
e

 d
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High-accuracy ‘sharp’ features

Figure 8. (A) The visible image of a scene’s luminance contrast. (B)

The regions of the scene where responses are filter complete (FCh

>0.96) are coloured cyan. Note how ‘sharp’ features are themselves

progressively larger in angular size, with increasing eccentricity

(from left to right). (C) The proportion of FCh >0.96 pixels (‘Edge den-

sity’) within the sampling window positioned at each horizontal ec-

centricity. Grey lines are measures for each scene (N¼ 100), black

lines are the mean and upper/lower quartiles over all scenes for the

scaled sampling rule. Dotted lines are for the fixed sampling rule

(they do not differ appreciably from the scaled rule). The average

was not taken for windows extending outside the model field.
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response magnitude only has meaningful consequences for fea-

tures whose attended response was in the range [0,�4].

Responses in this range already contribute only marginally to

colourfulness and sharpness (this is almost by-definition: of

course low contrasts do not contribute much to judgments of

sharp edges or vivid colour). The effects of attentional enhance-

ment of contrast response are on the faint and hard-to-see,

rather than on the vivid and easy-to-see.

Discussion

According to standard techniques for measuring human vision,

basic capacities of visual perception (sensitivity and resolution)

decline significantly with increasing retinal eccentricity. These

facts have led some to conclude that perceptual qualities must

therefore degrade with eccentricity. To the contrary, however,

the present study shows that, given the sensitivity and resolu-

tion of the normal human observer, one would expect percep-

tual qualities to be rather stable across the visual field (Fig. 12).

This demonstration requires only that we take an intrinsic per-

spective on spatial vision: that the visual system can only know

about what it can represent; it cannot know about what it can-

not represent. This idea was expressed particularly well by

Anstis in his 1998 paper on understanding peripheral acuity:

“Why does the whole visual field normally look equally sharp all

over, when there is clearly an enormous degradation of the visible

detail in peripheral vision? This is an ill-posed question. After all,

if our acuity were 1000 times better than it is, we could throw

away our microscopes, yet our ’limited’ foveal acuity which pre-

vents us from seeing bacteria with the naked eye never looks like

any kind of subjective blur! The same applies to our limited pe-

ripheral acuity. A channel cannot signal anything about stimuli to

which it is not tuned, so peripheral retinal channels must remain

silent in the presence—or absence—of high spatial frequencies to

which they are blind.” (Anstis 1998)

This way of understanding visual perception might seem

straightforward, but an ‘extrinsic’ perspective on vision may be

closer to the mainstream of cognitive science, since it fits well

with overarching theories of computation and information-

processing, and notions of veridicality and intentionality (some

distinct recent critiques of the extrinsic perspective include,

Lehky et al. 2013; Hoffman and Prakash 2014; Brette 2019). That

is, we tend to see perception—and perceptual experience, spe-

cifically—as a process involving an external signal, an internal

response or representation, and mechanisms linking the two.

Under this perspective, it may seem intuitive that, because

there are small image features that can be seen foveally but not

peripherally, peripheral vision is actually blurry in comparison
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Figure 9. (A) Stimuli used for the replication of Galvin et al (1997). Eleven levels of gaussian blur were applied to a monochrome vertical edge.

The stimuli are illustrated to scale: the image is 10.67 degrees wide. (B) The ‘apparent blur’ statistic b for a simple edge stimulus convolved

with a gaussian with the scale constant on the x-axis (scale constant is in minutes of arc, i.e. 1�/60). The apparent blur metric is explained in

the text. Each line is a Gaussian fit to the blur metric as a function of stimulus blur, for each of six stimulus eccentricities. (C-G) Apparent blur

matched between a fixed-blur peripheral stimulus and an adjustable-blur foveal stimulus. Model matches between the foveal and peripheral

blurs were computed numerically using the gaussian curves fitted in (B). Veridical matches would be on the main diagonal, and matches above

the main diagonal mean that the peripheral stimulus appears sharper (less blurry) than it would if it were viewed foveally. Symbols are data

from Galvin et al (1997)’s first experiment (replotted from their Figure 2). As eccentricity increases, the model becomes less accurate, over-esti-

mating perceived sharpness of peripheral content. The model judges peripheral edges to be even sharper than the human observers judged

them to be. Over the five test eccentricities f8.3, 16.7, 24, 32, ana 40g the average difference between model and data is small but consistently

negative: f0.2, �1.0, �1.1, �2.0, and �1.9g arcmin, respectively.
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to foveal vision. The fact that it does not seem this way then pro-

duces an excitingly counterintuitive thesis: that the visual field

does not really feel the way it seems to feel, and introspective

judgments about visual qualities are not to be trusted. However,

perceptual experience is, by most accounts, intrinsic to the ob-

server, and cannot involve the stimuli per se: if there are stimu-

lus properties that are not represented in experience, their

absence does not figure in the experience. Rather, the experi-

ence is entirely a matter of the structure of the representation.

Because the structure of edge representation in the periphery

and the fovea is similar, they may well be experienced in very

similar ways, despite the fact that they can be evoked by differ-

ent stimuli.

It has also been pointed out before that colour perception is

largely independent of retinal position, when targets are scaled

to match the local scale of the visual field (Noorlander et al.

1983; Block 2007; Tyler 2015; Haun et al. 2017). One counterargu-

ment to this is that objects in natural scenes, as opposed to

eccentricity-scaled experiment stimuli, do not change size

when they fall at different retinal eccentricities, and so the size

dependence of colour perception across the retina is not rele-

vant to natural vision (Van Gulick 2007; Burnston 2018).

However, natural scenes are scale invariant (Burton and

Moorhead 1987; Ruderman and Bialek 1994), meaning that, on

average, any location within a scene may contain spatial con-

tent at all scales. So, a neuron with a large colour-opponent re-

ceptive field in the periphery is as likely as one with a small

foveal receptive field to find a stimulus that excites it.

Caveats and conclusion

The spatial vision model I have used in this study is not unique.

There are many alternate formalisms for sensitivity across the

visual field (e.g. Watson and Ahumada 2016; Schütt and

Wichmann 2017; Watson 2018), sensitivity to different levels of

contrast (e.g. Lu and Dosher 1999), and colour vision. There are

Eccentricity

A B C

D E F

Eccentricity Eccentricity

Contrast Spatial frequency (cpd) Spatial frequency (cpd)

CRFs (r=30)

CRFs (r=22.5)

C
o

n
tr

a
s
t

s
e
n

s
it

iv
it

y
(1

/t
)

U
n

a
tt

e
n

d
e
d

/A
tt

e
n

d

e
d

th
re

s
h

o
ld

S
a
tu

ra
ti

o
n

E
n

tr
o

p
y

(b
it

s
)

E
d

g
e

d
e
n

s
it

y

attended

unattended

T
h
re

s
h
o
ld

e
le

v
a
ti
o
n

R
e
d
u
c
e
d

s
a
t.

attended

unattended

R
e
d
u
c
e
d

F
ilt

e
r

c
o
m

p
le

te
n
e
s
s

attended

unattended

Eccentricity

attended

unattended

unattended

(adjusted)

A
p

p
a
re

n
t

b
lu

r/
s
h

a
rp

n
e
s
s

G

R
e

s
p

o
n

s
e

 (
d

’)

Figure 11. Simulating the effects of attention on visibility of colour and sharpness. (A) Attended (Rmax ¼ 30) and unattended (Rmax ¼ 22.5) contrast

response functions for a range of z-values (threshold parameters). (B) Unattended (solid line) contrast sensitivity is reduced relative to attended

(dashed line) sensitivity. The sensitivity curve here is for foveal luminance contrast before the linear gain parameter (gach). (C) Plotted as

threshold elevation, the difference between unattended and attended thresholds tends to around 20%. (D) There is some reduction of visible

saturation for the unattended condition. (E) Visible hue entropy is not affected by the attention manipulation. (F) Visible edge density is re-

duced in the unattended condition. (G) Apparent sharpness (positive values of the apparent blur metric) is increased by inattention. The thick

dotted line shows an adjusted metric that assumes knowledge of the inattentional reduction in response amplitude.
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Figure 10. (A) The ‘apparent blur’ measure over eccentricity for the

scene stimulus set. Unlike the simple edge stimuli of Figure 6, natu-

ral scenes typically evoke positive apparent blur scores, which we

may interpret as ‘apparent sharpness’. In general, regions of a natu-

ral scene at optical infinity (as in our stimulus set) will evoke these

positive scores; negative scores generally correspond to featureless

regions, usually sky, where most content is in a very low-frequency

gradient.
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also many alternate models of blur perception, only some of

which would be compatible with the contrast response model I

have presented (e.g. Field and Brady 1997). I selected the compo-

nents of this model for their simplicity and compatibility. The

important thing for my purposes is that these different models

are generally psychophysically equivalent. That is, I expect that

an alternate spatial vision model could be constructed, but as

long as it fits the psychophysical properties listed in points i-x

(Section Methods), the ensuing statistical analyses will be the

same. So, I do not believe that the results of this study are the

consequence of some peculiar modelling choices.

I hope the scope of these findings is clear. The familiar psy-

chophysical patterns of exponential decline in sensitivity with

eccentricity and spatial frequency, and the steeper decline for

chromatic channels, do not mean that peripheral vision is inca-

pable of representing colour or sharpness in the same way as

foveal vision. This is not to say that capacity for visual qualities

must be represented in the same way across the visual field. The

main analyses of colourfulness and sharpness are merely de-

scribing the informational relationship between the visual sys-

tem and complex scene stimuli. How the visual system uses

this information to form higher-level representations is a ques-

tion that could be addressed with the suprathreshold regime of

a model like what I have presented, but except for the perceived

blur model, I have not tried to do it in this study (for reasons de-

tailed in the Appendix, I expect the model would need more

work).

Even given that the visual system has the necessary informa-

tion for representing colourfulness and sharpness across the vi-

sual field, there are other processes that may interfere. Crowding

is an obvious difference between foveal and peripheral vision,

but it is unknown how crowding interacts with apparent colour-

fulness or sharpness. Attention is another obvious difference be-

tween the foveal and peripheral fields, since it naturally resides

at the foveal field, but this has already been addressed to some

extent (Section Sharpness): withdrawing attention from a region

of the visual field does not result in a collapse of our capacity to

represent colour and contrast. Rather, withdrawing attention

results in a modest decrement in that capacity. The phenome-

non of inattentional blindness, where unattended objects or fea-

tures (or their absence) go completely unnoticed, might have

little to do with the effects of attention on low-level visual per-

ception. Instead, the phenomenon might be more similar to inat-

tentional agnosia than blindness (Simons 2000; Koivisto and

Revonsuo 2008): just as an individual with object agnosia experi-

ences colours and textures without experiencing the object those

qualities compose (Farah 2004), we might routinely experience

the spatial qualities of an unattended peripherally viewed scene,

without recognizing what they compose. Given that the known

effects of attention on contrast perception are rather moderate, I

take this to be a simpler alternative than supposing that atten-

tion might be necessary, through the action of some as-yet un-

known mechanism, for the experience of colour (as considered

in e.g. Cohen et al. 2020). However, the present results are not evi-

dence against such a mechanism, and such a powerful ‘refrigera-

tor light phenomenon’ would be, by definition, very difficult to

test experimentally.

A goal of this study was to dispel the notion that peripheral

experience of colour and sharpness must be illusory because

the periphery is unable to support such percepts. Given the

results of the current study, is there still any sense in which the

qualities of peripheral vision might be thought of as illusory? I

think there certainly is. In one study (Balas and Sinha 2007), it

was found that observers judge rapidly presented scenes to be

in full-colour even when a significant portion of the scene area

is fully desaturated. If we take this result at face value, suppos-

ing that the local spatial structure of the scene actually became

colourful as a result of, for example, some top-down influence,

it is a proper visual illusion: the scene appears one way, even

though the stimulus would have been expected to elicit a differ-

ent appearance. The ‘uniformity illusion’ (Otten et al. 2017) is

similar, except with textures rather than colours: parts of the

display appear one way, though the stimulus is a very different

way. These are illusions in that the percept is at odds with the

stimulus (or with our expectations of how it should appear).

That the appearances are real, that they feel the way they seem

to, is well-within the capacities of the visual system. If ‘illusion’

is taken to mean that one believes one experiences something

that one cannot experience, then there is nothing obviously illu-

sory about the apparent colourfulness and clarity of a natural

scene that fills the visual field.

Supplementary Materials

Code implementing the spatial vision model, references to the

scene images used in this study, and other materials are found

online at https://osf.io/8xf9w/.

Supplementary data is available at NCONSC Journal online.
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Figure 12. A summary of the main results. Colour qualities and sharpness qualities, as assessed against contrast responses to colourful pano-

ramic scenes, do not differ dramatically between parafoveal and peripheral visual fields. The values here are the arithmetic means of values

below 5 degrees (for a ‘parafoveal’ measure) and above 15 degrees (for a ‘peripheral’ measure) for data shown in Figs. 6, 8, and 10.
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Appendix

Some notable spatial vision properties left out of the

model

These properties are perhaps pertinent to the question of colour

and sharpness percepts across the visual field, but they are left

out of the model in this paper. Many of these amount to aggre-

gations of contradictory interactions (i.e. of facilitation and sup-

pression), so we can think of them as ‘washing out’ (e.g. xii, xiii).

Others are factors that, by their omission, mean the model is

probably underestimating rather than overestimating sensitiv-

ity (e.g. xvii, xix, xx). And some are just too complex and would

not yield worthwhile returns on the questions at hand (e.g. xxi).

However, these are significant aspects of spatial vision psycho-

physics that touch on the questions at hand, and their inclusion

would improve the model, so their omission should be

acknowledged:

xi. The temporal aspect of contrast sensitivity is ignored. The

model’s sensitivity is effectively based on the typical 100–500

ms pulse-windowed targets in many traditional trial-based psy-

chophysics tasks (i.e. temporally broadband and generally low-

pass or low-frequency-biased). This can be reasonably linked

(as in Haun and Peli 2013b) to the typical duration of fixations

between saccades (Henderson 2003).

xii. Orientation anisotropies [oblique effects and horizontal

effects (Essock et al. 2009) and radial anisotropies (Westheimer

2003), and so on, of various types are small and ignored here.

xiii. Surround-modulation and other lateral-interaction effects

(Yu et al. 2003; Chen and Tyler 2008) are ignored.

xvi. Interactions between the colour channels (e.g. Kim and

Mullen 2016) are ignored.

xv. Contrast adaptation effects are ignored.

xvi. The low-spatial-frequency plateau in contrast sensitivity

has a form that I did not attempt to match closely.

xvii. Cross-orientation masking is dependent on stimulus

parameters and is usually weaker than self(same-orientation)-

masking (Foley 1994; Meese and Holmes 2007), but I set it to

have constant strength equivalent to the strength of a filter’s

self-masking, i.e. ¼1. Thus, the model always overestimates the

strength of cross-orientation masking.

xviii. Cross-frequency interactions are captured only by the

cross-frequency norm (Methods), ignoring specific patterns of

interaction that suggest that the visual system works to reduce

the representation of lower frequency content in the presence

of higher frequencies (Haun and Essock 2010; Haun and Peli

2013b).

xix. Contrast sensitivity is known to improve on virtually every

dimension when the scene’s luminance is increased, and natu-

ral scenes generally have far higher luminances than experi-

mental contrast displays; the current model is fixed to the low-

luminance, but still photopic, experimental context (so sensitiv-

ity may generally be underestimated by the model).

xx. Binocularity adds many complexities to spatial vision. The

contrast sensitivity data that the model is fitted to was all col-

lected monocularly; binocular sensitivity and discrimination is
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generally better than monocular (Campbell and Green 1965;

Legge 1984), so the estimates of sensitivity can generally be con-

sidered underestimates on this point.

xxi. When we look closely, colour perception across the visual

field has much more inhomogeneity across the visual field than

the model would suggest. For example, in many - but not all -

observers ‘green’ percepts are gradually attenuated towards the

periphery (Stromeyer et al. 1992), while R/G contrast sensitivity

paradoxically continues to follow the expected pattern. There

are also reports that colour stimuli can appear more saturated in

the periphery than at the fovea (e.g. Vanston and Crognale

2018). Also, in the fovea there are no S-cones and so foveal sen-

sitivity to blue spots is very poor (Wald 1967), although foveal

blue percepts still are possible (Magnussen et al. 2001). See also

footnote 1 in Section Filter Structure regarding asymmetries

within each colour channel; in my model, each colour is

encoded symmetrically with its opponent, which is a nontrivial

simplification.
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