
INTRODUCTION

DISCOVERING TREATMENTS TO FIGHT EFFICIENTLY
AGAINST EXCESSIVE DAYTIME SLEEPINESS IS A CHAL-
LENGE FOR BOTH SLEEP MEDICINE AND BASIC SCI-
ENCE. Indeed, sleep disorders are increasingly prevalent, and
their association with significant morbidity has become a public
health concern.1 Numerous disorders and diseases lead to exces-
sive somnolence, but 80% of individuals who present with these
symptoms have sleep apnea, narcolepsy, or idiopathic hypersom-
nia.2 Many people with these disorders find controlling excessive
sleepiness to be crucial to maintaining the ability to interact in
their social, professional, and family lives. Primary treatments
for sleepiness associated with these disorders are based on psy-
chomotor stimulants, which are known for exerting an efficient
wake-promoting effect. However, their high potential for abuse
and side effects represent a limitation for their prescription and
use. For the last decade, modafinil has become an increasingly
popular wake-promoting medication used for the treatment of
narcolepsy because little or no addiction potential has been
shown with the consumption of this compound.

Interestingly, problems of excessive daytime sleepiness are not
exclusively linked to sleep disorders or diseases. In industrial
societies, work efficiency and productivity have become a pri-
mary goal that has contributed to mass consumption of psycho-
stimulants, the wake-promoting properties of which allay fatigue
and enhance attention, sometimes to counterbalance excessive
nighttime wakefulness. Amphetamine and cocaine consumption

are marginal compared to caffeine and nicotine, considered as the
most widely consumed psychostimulants in the world. The
impact of the intake of these psychoactive substances on public
health is a growing concern that should not be underestimated.

The aim of this review is to summarize the neuropharmacolo-
gy of the most commonly used stimulants and wake-promoting
medications by examining their effects on sleep, molecular and
cellular mechanisms of action, and undesirable side effects. To
comprehend the molecular and cellular aspects of this review, a
succinct presentation of basic sleep-waking mechanisms is nec-
essary. Briefly, sleep-waking regulation involves reciprocal inter-
actions between two opponent processes, one promoting arousal
and inhibiting sleep, and the other promoting sleep and inhibiting
wakefulness. Wake-promoting agents act through different mech-
anisms, but ultimately they all stimulate the waking system, slow
down the sleep-promoting system, or both. Neuropharmacologic
mechanisms for the wake-promoting effects of stimulants then
will be discussed with a focus on interactions with wake- and
sleep-promoting systems. Finally, the role of dopamine in pro-
moting arousal associated with the use of psychostimulant drugs
will be explored, and particular attention will be given to other
mechanisms of action that could lead to new wake-promoting
treatments in the near future. 

PHYSIOLOGIC BASIS OF SLEEP-WAKE REGULATION

The Monoaminergic and Cholinergic Control of Sleep 

An early report of a wake-promoting system appeared with the
description of a brainstem-ascending reticular-activating system
that regulates the level of forebrain wakefulness.3 Wakefulness
currently is described as the expression of a complex neuronal
network4,5 characterized by electroencephalogram desynchro-
nization. The waking executive network is composed of two
pathways, both originating from the midbrain reticular formation
and mainly composed of glutamatergic neurons, the electrophys-
iologic activity of which depends on cholinergic and monoamin-
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ergic tone. One of these pathways innervates the thalamus, and
the other extends to the hypothalamus and basal forebrain (Figure
1). The primary origin of the thalamic projection from the brain-
stem has been identified as the cholinergic pedunculopontine and
laterodorsal tegmental nuclei. Three structures can be considered
as key relays between the midbrain reticular formation and the
cortex: the posterior hypothalamus, thalamus, and basal fore-
brain.6 In this model, cholinergic projections to the thalamus are
crucial to electroencephalogram activation, complementing
cholinergic projections from the basal forebrain to the cortex that
are involved in the maintenance of arousal.7 The synchronization
of thalamocortical circuits results in the expression of sleep spin-
dles or slow-wave activity during so-called slow-wave sleep.
These sleep spindles are considered to be essential to blocking
sensory input during sleep.4,5 Sleep oscillates between rapid eye
movement (REM) sleep, and light and deep slow-wave sleep,
also referred to as non-REM sleep. The regulation between these
two sleep-states has been attributed to reciprocal monoaminer-
gic-cholinergic interactions in the brainstem.8-10 In this model,
serotonergic (in the dorsal raphe nuclei), noradrenergic (in the
locus coeruleus), and histaminergic (in the tuberomammillary
nucleus) neurons fire fastest during wakefulness, slow down dur-
ing non-REM sleep, and nearly stop firing entirely during REM
sleep. In contrast, brainstem cholinergic activity (in the lat-
erodorsal/pedunculopontine tegmental nuclei) is high during
wakefulness and REM sleep (Figures 1 and 2).

The Hypothalamus: A Key Structure Regulating the Switch 
Between Sleep and Wakefulness

The importance of the preoptic hypothalamus in the generation
of slow-wave sleep has long been recognized. Electrophysiologic
recordings have identified slow-wave sleep-active neurons in this
area where lesions produce insomnia in animals and humans.
More recently, it has been shown that a subgroup containing γ-
aminobutyric acid (GABA)-ergic and galaninergic cells in the
ventrolateral preoptic area (an anterior hypothalamic cell group)
projects to all monoaminergic systems,11 and especially to the
tuberomammillary nucleus, a posterior hypothalamic cell
group.12 The relationship between the ventrolateral preoptic area
and the major monoamine groups appears to be reciprocal. The
ventrolateral preoptic area is innervated by histaminergic axons
from the tuberomammillary nucleus and receives inhibitory
inputs from noradrenergic, serotonergic, and cholinergic waking
systems.13 When neurons in the ventrolateral preoptic area fire
rapidly during sleep, they inhibit monoaminergic cell groups,
thus disinhibiting and reinforcing their own firing. Conversely,
when monoamine neurons fire at a high rate during wakefulness,
they inhibit the ventrolateral preoptic area, thereby disinhibiting
their own firing (Figure 2). To summarize, sleep-waking regula-
tions are orchestrated by reciprocal interactions between wake-
and sleep-promoting neurons that inhibit each other.6

The Hypocretins/Orexins: A System That Orchestrates Arousal

Since their discovery14,15 hypocretin/orexin peptides have been
implicated in sleep-wake regulation, energy homeostasis, and
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Figure 1—Vigilance is orchestrated by the ascending arousal system,
which projects from the brainstem to the thalamus and the hypothala-
mus, two key structures dispatching the cortical activation. The
hypothalamus is considered to be the sleep/wake switch where recipro-
cal interactions between opponent processes (one promoting waking,
the other promoting sleep) regulate the oscillation between sleep and
wakefulness. The thalamus relays sensory input from the brainstem to
the cortex during wakefulness. When inhibitory influences dissipate,
sleep spindles appear and block sensory input during sleep. Neurons of
the laterodorsal tegmental nucleus and pedunculopontine tegmental
nucleus (LDT/PPT), those of the dorsal raphe nucleus (DRN) and those
of the locus coeruleus (LC) send cholinergic (Ach), serotonergic (5-
HT) and noradrenergic (NA) fibers, respectively. Neurons of the
tuberomammillary nucleus (TMN) and those of the lateral hypothala-
mus (LH) send histaminergic and hypocretinergic fibers, respectively,
to maintain arousal. Sleep-waking neurons of the ventrolateral preoptic
nucleus (VLPO) contain GABA and galanin. EEG refers to electroen-
cephalogram.

Figure 2—Hypocretin neurons in the lateral hypothalamus project to
the main components of the ascending arousal system and participate in
wakefulness consolidation. Neurons from the ventrolateral preoptic
nucleus innervate also the same structures. Switching off the arousal
system is a critical step before sleep can be induced. Abbreviations: BF,
basal forebrain; Ach, acetylcholine; LH, lateral hypothalamus; Hcrt,
hypocretin; VLPO, ventrolateral preoptic nucleus; GABA, γ-aminobu-
tyric acid; Gal, galanin; TMN, tuberomammillary nucleus; His, his-
tamine; LDT/PPT, laterodorsal tegmental and pedunculopontine
tegmental nuclei; DRN, dorsal raphe nucleus; 5-HT, serotonin; LC,
locus coeruleus; NA, noradrenaline.
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neurocrine and cardiovascular function.16 Their wide projection
in the brain17 and their interaction with autonomic, neuroen-
docrine, and neuroregulatory systems18-25 strongly suggest they
act as neuromodulators in a wide array of neural circuitry. They
also have been implicated in the modulation of noradrener-
gic,20,26-28 cholinergic,29 serotonergic,30,31 histaminergic,32 and
dopaminergic systems,33,34 as well as in the regulation of the
hypothalamic-pituitary-adrenal axis.35-37 A key contribution in
the etiology of narcolepsy was provided by several studies link-
ing the hypocretin/orexin system to this disease. First, two dif-
ferent animal models with an impaired hypocretin/orexin sys-
tem—genetic narcoleptic dogs with a mutation in the Hcrt recep-
tor 2 gene,38 and mice with a null mutation of the prepro-
hypocretin gene that produces Hcrt-1 and Hcrt-2 peptides39—
showed symptoms of narcolepsy, suggesting that impairment of
the hypocretin/orexin system may underlie the syndrome of
human narcolepsy. It then was confirmed that human narcoleptic
patients exhibit a drastic reduction (85%-95%) in hypocretin-1 in
the cerebrospinal fluid40 and in the number of hypocretin neu-
rons,41,42 leading to the hypothesis that narcolepsy could be relat-
ed to ongoing loss of hypocretin neurons.43 In the current models,
the hypocretin/orexin system stabilizes the firing of brainstem
neurons that control wakefulness and REM sleep (cholinergic in
the laterodorsal/pedunculopontine tegmental nuclei, noradrener-
gic in the locus coeruleus, serotonergic in the dorsal raphe nucle-
us, and histaminergic in the tuberomammillary nucleus; Figure
2). Interestingly, hypocretins also have a strong and direct exci-
tatory effect on the cholinergic neurons in the basal forebrain that
contribute to cortical arousal, but they have no effect on GABA
sleep-promoting neurons within the ventrolateral preoptic area.44

Furthermore, the arousal effect of the hypocretin-1 neuropeptide
seems to depend on activation of the histaminergic system.45 In
conclusion, the hypocretin/orexin system may be considered as a
key regulator that integrates sensory inputs and orchestrates the
arousal threshold.16 Absence of hypocretin/orexin peptides or
specific components of their signaling system may cause desta-
bilization of the boundaries between sleep states that are found in
narcolepsy.

Adenosine: Mediator of Sleepiness After Prolonged Wakefulness

The sedative properties of adenosine were first studied during
the 1950s in the cat and were confirmed in the dog 20 years
later,46 without eliciting any appreciable scientific interest.
Attention returned to adenosine when it was established during
the early 1980s that caffeine was able to bind to adenosine recep-
tors and therefore block its endogenous action.47 Currently, it is a
well-accepted hypothesis that adenosine acts as a mediator of
non-REM sleep.48,49 Indeed, adenosine is derived from the break-
down of adenosine triphosphate,50 the main cellular energetic
reserve in nervous tissue. During prolonged arousal, cerebral
activity leads to the consumption of adenosine triphosphate and a
concomitant adenosine accumulation.51-53 Extracellular concen-
tration of adenosine doubles in the basal forebrain after sleep
deprivation and returns to baseline upon sleep recovery.54

Adenosine A1 receptor density also doubles with prolonged
arousal.55 Adenosine binds to A1 receptors on cholinergic neurons
in the basal forebrain, decreasing the firing of these neurons,56

thereby contributing to a reduction of cortical arousal. Adenosine
also may decrease GABAergic neuronal activity within the same

area, disinhibiting neurons in the preoptic/anterior hypothalamus
that promote sleep.48,57 Thus, the transition from wakefulness to
slow-wave sleep could be promoted by the accumulation of
adenosine within the forebrain, leading to (1) the inhibition of
cholinergic neurons that activate cortical arousal and (2) the inhi-
bition of GABAergic neurons projecting to the preoptic/anterior
hypothalamus and inhibiting sleep-promoting neurons there.

Dopamine: A Potential Role in Arousal?

Multiple neurotransmitters—noradrenaline, serotonin, acetyl-
choline, histamine, adenosine, and hypocretin/orexin—have been
studied closely for their relationship to the behavioral arousal
state (see above). In contrast, the role assigned to dopamine in
sleep-wake regulation has been relatively limited, mainly
because the dopamine neuron firing rate varies little between
sleep and wake states.58,59 However, lesions of dopamine cell
groups in the ventral tegmentum that project to the forebrain have
been shown to induce a drastic reduction in behavioral arousal in
rats,60 and patients with Parkinson disease, who exhibit consis-
tent dopamine lesions, experience severe sleep disorders.61,62

More recently, dopamine D1 and D2 receptors have been clearly
implicated in the induction of hyperarousal,63 and the existence
of sleep-state-dependent dopaminergic neurons have been report-
ed in the ventral periaqueductal gray.64 Interestingly, it has been
shown that dopamine neurons in the primate fire in response to
salient events in the environment, particularly those that predict
reward.65-67 Finally, it has been suggested that presynaptic activa-
tion of dopamine transmission is a key pharmacologic property
mediating the wake-promoting effects of stimulants.68,69

Therefore, despite a complex pattern, there is growing evidence
that emphasizes dopamine’s role in arousal. 

The accurate role of dopamine release in the neuropharmacol-
ogy of wake-promoting agents remains unclear; however, the aim
of this review is to point out that, despite partially different mech-
anisms of action, the most powerful stimulant agents (ie,
amphetamine-like stimulants) as well as those that are thought to
possess a nondopaminergic mechanism of action (eg, modafinil,
caffeine, nicotine), all have in common the property of inducing
dopamine release.

AMPHETAMINE-LIKE STIMULANTS

Introduction

Psychomotor stimulants are drugs that produce behavioral acti-
vation, usually accompanied by increases in arousal, motor activ-
ity, and alertness. One of the most commonly known psychos-
timulants, cocaine, is derived from the coca plant (Erythroxylon
coca) and has a long history as a stimulant. It has been used for
centuries in tonics and other preparations to allay fatigue.70,71

One class of stimulants, amphetamines, was synthesized origi-
nally as possible alternative drugs for the treatment of asthma and
was the principal component of the original benzedrine asthma
inhaler. They were used (and are still used) by the United States
military as antifatigue medications, and they currently are legal-
ly available for medical use as adjuncts for short-term weight
control, in attention-deficit/hyperactivity disorder, and in nar-
colepsy. Oral and intravenous doses of amphetamines increase
systolic and diastolic blood pressure and stimulate heart rate,
although high doses may induce a reflex slowing of the heart rate.
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Amphetamines produce bronchial and pupillary dilation as well
as decreases in glandular secretion, all effects observed after acti-
vation of the sympathetic nervous system. Beneficial effects
reported include increased alertness, improved coordination,
increased strength and endurance, and increased mental and
physical activation, with mood changes of boldness, elation, and
friendliness.72 The nature of the stimulant effects of cocaine and
amphetamines depends on the route of administration.
Intravenous (8-16 mg of cocaine, 10 mg of D-amphetamine) or
inhaled freebase preparations (30 to 50 mg) produce marked,
intense, pleasurable sensations characterized as a “rush” that has
been likened to sexual orgasm and is thought to be a powerful
motivation for the abuse of these drugs. Intranasal doses of 20 to
30 mg of cocaine also produce euphoria, increased confidence
and talkativeness, a sense of well-being, and fatigue reduction for
approximately 30 minutes. Cocaine has less powerful effects
administered orally, presumably due to a markedly slower
absorption. Intranasal or oral administration of D-amphetamine
in the dose range of 2.5 to 15 mg produces stimulant effects sim-
ilar to those of cocaine. Intranasal absorption is faster with more
intense effects than oral administration, and the stimulant effects
of amphetamines last considerably longer than those of cocaine
(up to 4 to 6 hours).

Amphetamine has a relatively long half-life, in the range of 8
to 16 hours.73 Cocaine is rapidly metabolized; its half-life ranges
from 48 to 75 minutes.74 Methylphenidate, an indirect sympath-
omimetic commonly used for the treatment of narcolepsy,2
decreases fatigue but not appetite as much as D-amphetamine,
and has a half-life of 2 to 4 hours.75

Effects on Sleep

Amphetamine-like stimulants are known and consumed espe-
cially for their activity-sustaining effects (increased alertness,
strength, and endurance). Their wake-promoting properties are
obvious, but objective studies have clearly established their
effects on sleep. In rats, cocaine (6 mg/kg, orally and intraperi-
toneally administered) has been shown to induce a significant
increase in sleep latency and a reduction in total sleep time,
including a decrease in both slow-wave sleep and REM sleep.76

In humans, cocaine, amphetamines, and methylphenidate also
produce decreases in sleepiness, an increased latency to sleep,
and a drastic decrease in REM sleep associated with an increased
latency to the onset of this particular vigilance state.77-80

Molecular and Cellular Action of Amphetamine-like Stimulants in
the Brain

Amphetamine, methylphenidate, and cocaine are known to act
neuropharmacologically by enhancing the amount of
monoamines available within the synaptic cleft of monoamine
synapses in the central nervous system. They block the reuptake
and also enhance the release of norepinephrine, dopamine, and
serotonin.81-85 There is considerable evidence suggesting that the
primary neuropharmacologic action responsible for their psy-
chostimulant effects is on the dopamine system in the central ner-
vous system.86,87

The brain dopamine system can be divided into two major
pathways that originate in the midbrain and project to the fore-
brain and appear to be responsible for different aspects of psy-

chomotor stimulant actions. The mesocorticolimbic dopamine
system originates in the ventral tegmental area and projects to the
ventral forebrain, including the nucleus accumbens, olfactory
tubercle, septum, and frontal cortex. The nigrostriatal dopamine
system arises primarily in the substantia nigra and projects to the
corpus striatum and represents 80% of brain dopamine. Whereas
the mesocorticolimbic dopamine system has been hypothesized
to be involved in incentive motivational processes and in the
reinforcing properties of psychostimulants,88-90 the nigrostriatal
dopamine system has been primarily involved in the elaboration
and control of movements. Degeneration of the latter dopamine
system is at the origin of the severe motor disturbances of
Parkinson disease, including tremor, dystonic involuntary move-
ments, and akinesia.91

At the molecular level, several different dopamine receptors
have been identified both by pharmacologic and molecular bio-
logic techniques.92 Five dopamine receptors have been cloned93-

96 and to date, D1,97 D2,98,99 D3,100 D4,101 D5102,103 and dopamine
transporter (DAT)104-107 knockout mice exist and have been sub-
jected to challenges with psychomotor stimulants. D1, D2, and
DAT-mutant mice, but not D3 and D4 knockout mice, show a
blunted response to psychostimulants, the latter ones exhibiting
supersensitivity to psychostimulants. All the mutant mice are
hyperactive, but D2 knockouts also exhibit severe motor deficits.
Low doses of D1 and D2 dopamine-receptor antagonists108 and
intravenous cocaine self-administration109 potently block
amphetamine-induced locomotion.  It has been shown that while
D2 dopamine-receptor activation is not necessary for the induc-
tion of locomotor sensitization to amphetamine, D1 dopamine
receptors located in the ventral tegmental area play a critical role
in the development of behavioral sensitization.110,111 In line with
this observation, it has been reported that the overall locomotor
responses to cocaine and amphetamine administration of D1-
receptor mutant mice were significantly reduced compared to
those of wild-type mice.112

The exact mechanisms by which amphetamine-like stimulants
induce their wake-promoting effects remain to be elucidated. The
participation of noradrenergic mechanisms has been suggested to
explain such effects on sleep113,114; nevertheless, the wake-pro-
moting effect of amphetamine is maintained after severe reduc-
tion of brain norepinephrine.115 It has been demonstrated recent-
ly that amphetamine-like compounds require the DAT for their
wake-promoting effects, given that DAT knockout mice were
totally insensitive to the wake-promoting properties of classical
stimulants.116 Thus, amphetamine-like drugs may promote wake-
fulness primarily by increasing dopaminergic tone. Accordingly,
it has been found that intracerebroventricular infusion of D1 and
D2 dopamine-receptor agonists in sleeping rats induces a dose-
dependent increase in waking time measured by electroen-
cephalographic and electromyographic indexes of arousal.63 A
recent study has shown that amphetamine infusions directly with-
in basal forebrain sites initiate and maintain alert waking by
involving most likely a participation of norepinephrine,
dopamine, and serotonin neurons in a region of the medial basal
forebrain encompassing the medial septum/nucleus accumbens
shell and the preoptic area of the hypothalamus.117 Interestingly,
this site appeared to be distinct from sites previously associated
with amphetamine-induced locomotion. Finally, considerable
evidence has shown that acute psychostimulant administration
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produces a stress-like activation of the hypothalamic-pituitary-
adrenocortical axis,118 leading to increased plasma corticosterone
in rats and plasma cortisol in humans, both known to promote
wakefulness.119,120

Undesirable Side Effects

Amphetamines and cocaine have high abuse potential and are
now well documented to produce substance dependence (addic-
tion) by most modern definitions.121 However, most users (85%)
do not become addicted to the drug.122,123 Indeed, estimates of
stimulant abuse in patients being treated for sleep disorders are
low. Clinical observations indicate that controlled use often shifts
to more compulsive use, either when there is increased access to
the drug or when a more rapid route of administration is
employed. Compulsive use results in an exaggeration of the
binge stage, with chronic intake of the drug every 10 minutes,
usually lasting for an average of 12 hours, and sometimes for up
to 7 days. Following a binge, the abstinence syndrome has been
characterized by an exaggeration of the dysphoria stage and con-
sists of major decreases in mood and motivation, including limit-
ed interest in the environment and a limited ability to experience
pleasure.121,124

High doses of amphetamines and cocaine also can lead to sig-
nificant behavioral pathologic behaviors. Amphetamine abusers
show stereotyped behaviors in which they persist in repetitive
thoughts or acts for hours (repetitively cleaning the home or
items such as a car, bathing in a tub all day, endlessly dismantling
or putting back together small objects such as clocks or radios,
and so on). Amphetamines also are well documented to produce
paranoid psychotic episodes in chronically abusing individuals,
or even by taking large doses acutely.70 In a study of otherwise
healthy volunteers, repetitive oral administration of 5 to 10 mg of
D-amphetamine produced paranoid delusions, often with blunted
affect in all subjects when a cumulative dose range of 55 to 75
mg was reached.125 This paranoid psychosis induced by stimu-
lants in its severest form can produce actual physical toxicity in
which subjects believe that bugs under their skin need to be
gouged out (“crank bugs”). This stereotyped behavior and psy-
chosis associated with high-dose stimulants may also contribute
to the cycle of abuse associated with these drugs.

Nevertheless, psychosis and hallucinations are rare in nar-
coleptics treated with stimulants, and the reported frequency of
side effects of stimulants in clinical practice and in clinical trials,
although extremely variable, has shown limited perturbations,
including notably headaches, irritability, nervousness or tremors,
anorexia, insomnia, gastrointestinal complaints, dyskinesias, and
palpitations.2

Summary

Amphetamine-like stimulants promote wakefulness by
enhancing the amount of dopamine available within the synaptic
cleft of dopamine synapses in the central nervous system. An
extended region of the medial basal forebrain, demarcated ante-
riorly by the anterior portion of the medial septal area and poste-
riorly by the posterior fraction of the preoptic area of the
hypothalamus has been hypothesized to be a possible candidate
to explain the action of amphetamines to initiate and maintain
alertness. Whether or not other systems (eg, norepinephrine,

serotonin, or the hypothalamus-pituitary-adrenal axis) could par-
ticipate in these wake-promoting effects is still a matter of
debate, but clearly amphetamine-like compounds require the
DAT for their wake-promoting effects.

MODAFINIL

Introduction

Management strategies for daytime sleepiness traditionally
have included lifestyle changes and the use of psychostimulants
(amphetamine, methylphenidate, pemoline) which have been
shown to efficiently enhance arousal.2 Despite this efficacy, some
patients or physicians may not be satisfied with psychostimulant
therapies, usually because of tolerance or, more often, adverse
events. For the last decade, modafinil has become a first-line
wake-promoting medication and a useful therapeutic alternative
to psychostimulant medications for the treatment of excessive
daytime sleepiness.126-129 Modafinil-mediated wake promotion
initially was reported to be the result of central α1-adrenoceptor
stimulation,130 but recent studies have linked this stimulant effect
to the selective activation of hypothalamocortical pathways (see
below) involved in the physiologic regulation of sleep and wake-
fulness.131 Modafinil is not a direct or indirect dopamine-receptor
agonist132-134 and has a low potential for abuse.135-138

Effects on Sleep

It has been shown that modafinil prolongs wakefulness in sev-
eral species, apparently without associated behavioral excitation,
and its waking effect is not followed by any obvious sleep
rebound in the cat.130,133,139,140 In humans, modafinil is efficient
and well tolerated,141 with no evidence of tolerance developing
during 40 weeks of treatment.142 Nevertheless, a study based on
maintaining alertness and performance during sleep deprivation
has shown equivalent performance- and alertness-enhancing
effects after a single dose of either modafinil or caffeine, leading
to the conclusion that modafinil does not appear to offer advan-
tages over caffeine (which is more readily available and less
expensive) for improving performance and alertness during sleep
loss in otherwise normal, healthy adults.143

Molecular and Cellular Action of Modafinil in the Brain

The wake-promoting mechanism of action of modafinil
remains uncertain, despite numerous reports of its neuropharma-
cologic action in the brain. Early studies highlighted the absence
of an interaction between modafinil and the dopamine sys-
tem.132,134,144 It also was established that the dopamine D1/D2

antagonist haloperidol did not block the arousal effect of
modafinil, whereas it consistently decreased the amphetamine-
induced increase in wakefulness.133 Finally, modafinil showed a
low affinity for dopamine reuptake sites.145 It has been suggest-
ed, therefore, that the arousal effects of modafinil could be relat-
ed to noradrenergic neurotransmission, given that the arousal
produced by modafinil was blocked by α1 and ß adrenergic
receptor antagonists,133 and that modafinil affected the firing of
locus coeruleus noradrenergic neurons.132 Using c-Fos immuno-
cytochemistry in cats, it has been shown that amphetamine and
methylphenidate do not share with modafinil the same pattern of
c-Fos activation in the brain.146 Indeed, whereas the use of
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amphetamine and methylphenidate induced labeled neurons
mainly in the cortex and the striatum, modafinil-induced wake-
fulness was associated mainly with activated neurons in the ante-
rior hypothalamus, emphasizing therefore that modafinil induces
wakefulness by mechanisms distinct from those of amphetamine
and methylphenidate. Despite a confirmation of c-Fos
immunoreactivity in the anterior hypothalamus in modafinil-
treated rats,147 a recent study involving c-Fos labeling in
modafinil-treated rats highlighted Fos activation mainly in the
tuberomammillary nucleus and in hypocretin/orexin neurons of
the perifornical area (and to a lesser extent, in the central nucle-
us of the amygdala, the striatum, and the cingulate cortex).131

Thus, these authors concluded that modafinil may exert its stim-
ulant effects via an activation of these two regions implicated in
the promotion of normal wakefulness. 

However, modafinil is efficient in promoting wakefulness even
in narcoleptic patients, whereas it has been demonstrated that
narcoleptic patients exhibit a drastic reduction in hypocretin-1 in
the cerebrospinal fluid40 and in the number of hypocretin neu-
rons.41,42 Such a discrepancy might be explained by the fact that
modafinil may also generate waking by increasing both dopamin-
ergic and serotonergic neurotransmission in the cortex, and by
increasing noradrenergic release in the hypothalamus.148 An early
study had also suggested that modafinil could induce dopamine
release in the rat nucleus accumbens, but this study did not
demonstrate a role for dopamine release per se in the waking
effect of modafinil.149 Finally, using DAT-knockout mice, it has
been reported recently that both amphetamine-like compounds
and modafinil require the DAT for their wake-promoting
effects,116 leading one to question the hypothesis that modafinil
does not exert its waking effects via the dopaminergic system and
that modafinil induces wakefulness by mechanisms distinct from
those of amphetamine. Interestingly, it has been shown that both
hypocretin/orexin and amphetamine act within the basal fore-
brain to promote waking and suppress sleep.117,150 It therefore can
be hypothesized that both the hypocretin/orexin and dopaminer-
gic systems act in concert in the basal forebrain to promote wake-
fulness, but further studies are needed to clarify this hypothesis.

Undesirable Side Effects

No obvious side effects have been observed in the usual range
of use and prescription of modafinil (200 mg/day), leading sev-
eral authors to suggest switching patients to modafinil from psy-
chostimulants such as methylphenidate.151 Though it has been
shown that modafinil was able to affect mood in humans,152-154

modafinil does not appear to possess any addiction potential in
drug-naive individuals. It has been suggested from studies with
animal models that modafinil possibly could have reinforcing
effects in cocaine-experienced individuals. Nevertheless, the
reinforcing and discriminative stimulus effects of modafinil
required very high doses (up to 256 mg/kg intraperitoneally in
rats), and modafinil was more than 200 times less potent than D-
amphetamine.155,156

Summary

Modafinil is an increasingly popular wake-promoting medica-
tion used for the treatment of narcolepsy due to its safety profile
and given that no obvious side effects have been reported. The

main advantage of modafinil over amphetamine-like stimulants
is that this compound does not possess any addiction potential,
although growing evidence shows that its mechanism of action in
the brain may involve more interaction with some component of
the dopaminergic system than has been thought for the last
decade.

CAFFEINE 

Introduction

Caffeine is the most widely consumed psychoactive substance
in the world.50,157 As a component of tea, coffee, and soft drinks,
caffeine is the most commonly ingested methylxanthine.
Caffeine consumption per capita in the United Kingdom,
Sweden, and Finland is estimated to be between 100 and 400 mg
per person per day, with peak consumption, where caffeine intake
comes predominantly from tea and coffee, respectively. Peak
plasma caffeine is reached between 15 and 120 minutes after oral
ingestion in humans at doses of 5 to 8 mg/kg. The caffeine half-
life for these corresponding doses ranges from 0.7 to 1.2 hours in
rodents, 3 to 5 hours in monkeys, and 2.5 to 4.5 hours in humans.

Effects on Sleep

There is consensus that caffeine produces an enhanced vigi-
lance performance on psychomotor tasks158 and concomitant
negative side effects on sleep, particularly when taken at bedtime.
Generally, more than 100 to 150 mg of caffeine is needed to sig-
nificantly affect sleep.159 The most prominent effects are pro-
longed sleep latency, shortened total sleep time with increases in
the light sleep stages at the expense of the later deep ones and
REM sleep, numerous shifts between sleep stages, and even agi-
tation with higher doses.160-162 Electroencephalographic studies
have shown that sleep is of a lesser quality in the 3 to 4 hours fol-
lowing ingestion of caffeinated coffee, which corresponds to the
time required for the liver to metabolize caffeine. It has been sug-
gested that subjects who are sensitive to the side effects of coffee
might metabolize caffeine more slowly than others.163 However,
some people seem to have no sleep troubles despite drinking reg-
ular evening coffee, which could be attributed to tolerance to its
psychoactive effects. In rats, caffeine (12.5-25 mg/kg) decreases
the overall duration of sleep and lengthens sleep latency,164,165

whereas when chronically administered to cats (20 mg/kg), caf-
feine initially shortens the total sleep duration, but then sleep
amounts returned to baseline with repeated exposure.166

Molecular and Cellular Action of Caffeine in the Brain

Although caffeine is known to mobilize intracellular calcium,
to inhibit phosphodiesterase activity,167 and to increase in vitro
serotonin and norepinephrine concentrations in the brain-
stem,168,169 it is now widely accepted that the vigilance mecha-
nism of action of caffeine (in the dose range produced by volun-
tary caffeine intake) is via the antagonism of adenosine receptors.
The caffeine-induced increase of cortical acetylcholine release is
dose dependent, and the increased cortical cholinergic activity,
resulting from the blockade of A1 receptors, may provide a basis
for the psychostimulant effects of caffeine.170 Caffeine’s wake-
promoting effects also could be due to the blocking of adenosine
receptors on GABA neurons, which reinforces the inhibition of
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neurons in the preoptic/anterior hypothalamus that are specifical-
ly active during sleep.48 Thus, by blocking the firing-rate cessa-
tion normally induced by adenosine, caffeine reinforces arousal
by two different and complementary mechanisms: (1) stimulation
of cholinergic neurons in the basal forebrain and (2) reinforce-
ment of the inhibition exerted on sleep-promoting neurons.

Despite the ability of caffeine to increase vigilance, which is an
important reason why people consume caffeine, it has been sug-
gested that the dopaminergic system also could contribute to the
widespread consumption of caffeine-containing beverages.167

However, while it has been clearly shown that caffeine induces
dopamine and glutamate release in the shell of the nucleus
accumbens,171 these actions are not thought to contribute to its
psychoactive effects.172-174 Furthermore, whereas DAT-knockout
mice are unresponsive to the normally robust wake-promoting
action of methamphetamine, these mice are hypersensitive to the
wake-promoting effects of caffeine.116

Actually, the adenosine A1 and A2a receptors seem to be pri-
marily involved in the effects of caffeine on vigilance states,
whereas A2b and A3 receptors seem to play only a minor role
given that the inhibition of the actions of adenosine at this recep-
tor level is incompatible with caffeine activity under physiologic
conditions.50 Adenosine A1 receptors are present in almost all
brain areas, with the highest levels in the hippocampus, cerebral
and cerebellar cortices, and certain thalamic nuclei.175,176 Only
moderate levels have been observed in the caudate putamen and
nucleus accumbens.177 Adenosine A2A receptors are found to be
concentrated in dopamine-rich regions of the brain and are colo-
calized with D2 receptors in rat striatum.178,179 Whereas caffeine
affects transmitter release and neuronal firing rates via actions on
adenosine A1 receptors, the effects of  caffeine on dopaminergic
transmission are exerted mainly via actions on adenosine A2A

receptors.50 This indirect interaction of caffeine with the
dopamine system is through the opposite actions of adenosine A2a

receptors with dopamine D2 receptors.180,181 Indeed, it has been
shown that stimulation of adenosine A2a receptors opposes the
effect of dopamine at striatal output cells.182 Notably, dopamine
administered in the striatum has been shown to block release of
GABA in the globus pallidus183 and this effect is reduced by
endogenous adenosine. In line with this observation, it has been
observed that adenosine A2a receptor stimulation blocks the
inhibitory effect of a dopamine D2-receptor agonist on acetyl-
choline release from striatal slices.184 Finally, it has been sug-
gested that a therapeutic potential exists for the use of A2a antag-
onists in the treatment of Parkinson disease.181This observation is
in line with the potential wake-promoting effect of A2a antago-
nists that could counterbalance the sleepiness usually observed in
Parkinson disease patients.

Undesirable Side Effects

Tolerance develops to some, but not all, effects of caffeine in
humans and experimental animals.50 For example, tolerance to
the psychostimulant and cardiovascular effects of caffeine usual-
ly develops within a couple of days. High-dose caffeine intake
has been reported to elicit symptoms of nervousness, agitation,
anxiety and insomnia, a syndrome called caffeinism. The majori-
ty of patients suffering from caffeinism develop a variety of ner-
vous, gastrointestinal, or cardiac symptoms after consumption of

differing quantities of caffeine, usually more than 250 mg.185

Acute states of confusion also have been associated with very
high levels of caffeine intake, more than 1000 mg per day.186

Anxiety and somatic abnormalities have been observed in regu-
lar coffee drinkers even after absorption of small quantities of
caffeine (< 250 mg), but these people most likely were very sen-
sitive to caffeine effects.187 Caffeinism also has been associated
with delirium, psychoses, and anorexia nervosa.188,189 Finally,
several cases of death have been reported following intravenous
and oral absorption of an excessive amount of caffeine (5-10 g).
Symptoms observed in caffeine poisoning are agitation, anxiety,
convulsions, tachycardia, and coma, with death by pulmonary
edema, ventricular fibrillation, and cardiopulmonary arrest.190-194

Summary

Caffeine, the most widely consumed psychoactive substance in
the world, increases wakefulness by stimulating neurons (notably
cholinergic) involved in the maintenance of arousal, by inhibiting
neurons (notably GABAergic) involved in the promotion of
sleep, and possibly by an indirect modulation of dopamine post-
synaptic receptors. The postsynaptic interactions of adenosine
receptors and dopamine receptors may be involved in caffeine’s
stimulant activity and could play a role in the arousal and
decreased sleep induced by the motivation for drinking caffeine-
containing beverages.

NICOTINE

Introduction

There are over 4000 chemicals in cigarette smoke, but it is well
accepted that nicotine is a major component in tobacco smoke
responsible for addiction.195,196 Daily smokers smoke cigarettes
to maintain nicotine levels in the brain (cigarettes usually contain
between 0.5 and 1.5 mg of nicotine) and presumably a certain
level of arousal; hence, nicotine acts as a stimulant similar to
amphetamine and caffeine. Withdrawal from nicotine is associat-
ed with both somatic and affective symptoms, and avoiding the
aversive effects of withdrawal is a further motivating factor for
smoking in dependent animals.196

Effects on Sleep

Like caffeine, nicotine is thought to have some potential for
enhancing attention and arousal.197,198 Cigarette smoking also has
been associated with sleep disturbance, both during regular
intake and after withdrawal.199-201 Qualitative analysis indicates
that smoking induces a characteristic psychostimulant profile
involving increases in alpha power and peak alpha frequency at
the expense of delta and theta power spectra.202 Sleep fragmenta-
tion has been reported in patients who wake up during their reg-
ular sleep time in order to smoke a cigarette before going back to
sleep. This symptom has been explained by decreasing levels of
nicotine in the brain during sleep, which result in nicotine crav-
ing.203 This aspect is not linked to the wake-promoting effect of
nicotine but, rather, to a profound dependence on this compound.

In humans, a transdermal nicotine delivery system (nicotine
patch) induces a significant reduction in total sleep time and
sleep efficiency, prolonged sleep latency, and decreased REM
sleep.204 In rats, a sleep-suppressant effect has been reported after
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an acute administration of nicotine (0.5 and 1.0 mg/kg, subcuta-
neously), an effect reversed by repeated administration of nico-
tine (0.1 mg/kg), suggesting that compensatory mechanisms are
triggered by chronic treatment.205

Molecular and Cellular Action of Nicotine in the Brain

In rats, it has been shown that the effects of nicotine on sleep
can be prevented by pretreatment with the nicotinic-receptor
antagonist mecamylamine (0.5 mg/kg, intraperitoneally) suggest-
ing that the effects of nicotine on sleep are modulated by nico-
tinic receptors.205 Although systemic administration of nicotine
stimulates all neuronal systems involved in the maintenance of
arousal,206 one can legitimately surmise that nicotine promotes
wakefulness by stimulating cholinergic neurotransmission in the
basal forebrain. Nicotine also has been shown to stimulate the
hypothalamic-pituitary-adrenal axis in rodents, leading to elevat-
ed plasma levels of adrenocorticotropic hormone and corticos-
terone,207,208 known to exert a wake-promoting effect.119

However, studies with humans have shown that only intense
smoking is able to activate the hypothalamic-pituitary-adrenal
axis.209,210 It also is well known that repeated injections of nico-
tine produce progressively larger increases in locomotor activity,
an effect referred to as behavioral sensitization. This effect has
been clearly associated with an increase in dopamine release, and
the striatum and the nucleus accumbens may play a major role in
nicotine-induced behavioral sensitization.211-213 This effect
appears to be mediated in part by nicotinic receptors located in
the ventral tegmental area in the mesolimbic dopamine system,214

most likely via the α4 nicotinic acetylcholine receptors located on
dopaminergic neurons,215 and also requires the activation of both
D1 and D2 dopamine receptors.216

Undesirable Side Effects

Though smoking cigarettes does not appear to induce an acute
intoxication state, considerable evidence has established the high
abuse potential of nicotine. Therefore, cigarette smoking is the
most preventable cause of cardiovascular morbidity and mortali-
ty. Smoking cigarettes leads to a dependent state, and smoking
cessation usually induces a withdrawal syndrome comprising
somatic and affective symptoms.196 Briefly, the most common
somatic symptoms include bradycardia, gastrointestinal discom-
fort, and increased appetite. Affective symptoms primarily
include craving, fatigue, depressed mood, dysphoria, anxiety,
irritability, and attention deficit.

Summary

Nicotine enhances attention and vigilance likely by directly
stimulating cholinergic neurotransmission in the basal forebrain
responsible for cortical arousal. Interestingly, this observation
provides a biochemical explanation for the wake-promoting asso-
ciation for coffee and cigarettes. Nicotine stimulates cholinergic
neurotransmission and concomitantly enhances arousal, and caf-
feine limits the effects of sleepiness induced by increasing levels
of adenosine. Again, it can be hypothesized that the dopamine
system could play an indirect role in the wake-promoting proper-
ties of nicotine by mediating the enhanced motivational compo-
nents of arousal.

OTHER TREATMENTS FOR SLEEP DISORDERS

The effects of gammahydroxybutyrate (GHB) on sleep have
been investigated for more than 25 years.217,218 GHB has some
effectiveness on narcolepsy,219-222 but it is not a psychostimulant.
In laboratory animals, as well as in humans, GHB is rapidly
absorbed, freely crosses the blood-brain barrier, and induces a
short-lasting central nervous system depression.223,224 At low
doses, GHB is anxiolytic and myorelaxant, and at intermediate
doses, it increases REM sleep and slow-wave sleep. At higher
doses, GHB is still used as an anesthetic adjuvant. The mecha-
nisms of GHB action are still unclear.225 However, the current
hypotheses suggest that GHB prevents sleepiness during the day-
time in narcoleptic patients by increasing their sleep continuity at
night. However, despite an absence of misuse or tolerance in nar-
coleptic patients,226 GHB users may be at risk for addiction, char-
acterized by repeated consumption, tolerance, craving, compul-
sive drug-seeking, and withdrawal.223,224 Interestingly, GHB has
been shown to have an effect on dopamine systems in the brain,
notably by inhibiting dopamine release224; no evidence to date
supports the hypothesis that decreased dopaminergic transmis-
sion could mediate the hypnotic properties of GHB.

The histaminergic system has a key role in waking, and the
effectiveness of histamine H3-receptor antagonists to promote
wakefulness has been clearly established in rats.227-229 More
recently, H3-receptor blockade has been shown to enhance cogni-
tion in rats,230 and their action on cortical desynchronization has
been clearly established.231 However, no clinical trial has yet
been published showing that H3 antagonists to promote wakeful-
ness in humans.  

Finally, recent data have demonstrated a key involvement of
the hypocretin/orexin system in the etiology of narcolepsy (see
above). Thus, a hypocretin agonist should be able to compensate
for hypocretin deficiency and, therefore, should be efficient in
promoting wakefulness.232 However, no available clinical data so
far support the effectiveness of this approach in treating sleep dis-
orders.

CONCLUSIONS

Excessive sleepiness is thought to result from the lack of main-
tenance of the arousal threshold, which, ultimately, alleviates the
inhibition exerted on the sleep-promoting system during wake-
fulness. Wake-promoting agents reinforce wakefulness by stimu-
lating the release of neurotransmitters involved in the mainte-
nance of the arousal threshold and, therefore, counterbalance the
inhibitory inputs from the sleep-promoting system to the wake-
promoting one. Nicotine stimulates the cholinergic neurons in the
basal forebrain that lead to cortical activation. Caffeine partici-
pates to the cortical activation by blocking adenosine receptors
located on cholinergic neurons in the basal forebrain. Caffeine
also blocks adenosine receptors located on GABAergic neurons,
thus reinforcing the inhibition exerted on neurons in the preop-
tic/anterior hypothalamus that are involved in sleep induction and
may indirectly increase dopamine neurotransmission. Modafinil
may promote waking via activation of the tuberomammillary
nucleus and hypocretin neurons, which leads to an activation of
the ascending arousal system. The fact that either amphetamine-
like stimulants or modafinil have failed to exert any waking
effect on DAT knockout mice suggests that the dopamine system
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may play a role in the wake-promoting properties of these com-
pounds. Understanding how wake-promoting drugs interact with
different components of the dopamine system to induce arousal
remains a challenge for future research to establish new stimulant
treatments. 
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