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What limits fire? An examination of drivers of burnt area
in Southern Africa
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Abstract

The factors controlling the extent of fire in Africa south of the equator were investigated

using moderate resolution (500m) satellite-derived burned area maps and spatial data on

the environmental factors thought to affect burnt area. A random forest regression tree

procedure was used to determine the relative importance of each factor in explaining the

burned area fraction and to address hypotheses concerned with human and climatic

influences on the drivers of burnt area. The model explained 68% of the variance in burnt

area. Tree cover, rainfall in the previous 2 years, and rainfall seasonality were the most

important predictors. Human activities – represented by grazing, roads per unit area,

population density, and cultivation fraction – were also shown to affect burnt area, but

only in parts of the continent with specific climatic conditions, and often in ways counter

to the prevailing wisdom that more human activity leads to more fire. The analysis found

no indication that ignitions were limiting total burnt area on the continent, and most of

the spatial variation was due to variation in fuel load and moisture. Split conditions from

the regression tree identified (i) low rainfall regions, where fire is rare; (ii) regions where

fire is under human control; and (iii) higher rainfall regions where burnt area is

determined by rainfall seasonality. This study provides insights into the physical,

climatic, and human drivers of fire and their relative importance across southern Africa,

and represents the beginnings of a predictive framework for burnt area.

Keywords: climatic control, dry season, fire regimes, fuel, human control, ignitions, predictive model,

regression tree, weather
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Introduction

A prolonged annual dry season combined with rela-

tively rapid rates of fuel accumulation create conditions

conducive to frequent vegetation fires in southern Afri-

ca. Indeed, fire is considered a major determinant of the

ecology and distribution of Africa’s savanna and grass-

land vegetation types (VanWilgen & Scholes, 1997;

Higgins et al., 2000; Bond et al., 2005). The fraction of

the landscape that burns varies greatly across the re-

gion. Understanding the causes of this variation is not

simple because the propensity to burn is influenced by

weather conditions, the presence of ignition sources,

and the amount, type, and arrangement of the available

fuel, all of which change across space and through time.

Satellite data products and spatially explicit environ-

mental data are increasingly becoming available, and

continental-scale information on many environmental

factors, including fire, is now relatively easy to obtain.

Quantitative methods can now be applied to address

scientific questions that previously relied on anecdotal

information or localised studies; in particular, how the

various drivers of fire interact to result in characteristic

fire regimes. These questions have become increasingly

important in the context of global change. Fire is both an

important determinant of vegetation community struc-

ture (Bond & Van Wilgen, 1996), and a globally signifi-

cant source of greenhouse gas emissions (Patra et al.,

2005; Williams et al., 2007). Fire patterns will almost

certainly change in response to population, land use,

and climatic changes in Africa (Boko et al., 2007), and an

understanding of the drivers of such changes will be

needed to predict their consequences.
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A century of experimental and descriptive research

has provided a good understanding of the physical

factors controlling the ignition and spread of both

grass-fuelled and forest fires (see in particular Byram,

1959; Luke & McArthur, 1978; Trollope et al., 2002;

Viegas, 2004). The challenge is to determine which

factors dominate under different conditions, and to

predict the outcome of the interaction of several, often

antagonistic, influences. For example, areas of high

population density have been shown to be associated

with an increase in the number of fires (Keeley et al.,

1999), but increased population densities also result

in more intensive land use, reduced fuel loads, and

fragmentation of landscapes, which act to reduce the

spread of fire (Frost, 1999). Similarly, although fuel

production generally increases with rainfall, so

too do factors with negative effects on fire, such

as fuel moisture (Scholes et al., 1996; Spessa et al.,

2005). Thus, it is the relative importance of contrasting

influences acting under different circumstances that

determines the characteristic fire regime of a particular

region.

This paper aims to investigate the factors controlling

the annual fraction of the landscape that burns across

Africa south of the equator. The fire regime of an area is

defined by several variables, including the intensity,

season, and type of fire (Gill, 1975). The average

period between fires, often confusingly referred to as

the ‘fire frequency’ is fundamentally important. In this

paper, we analyse the annual burnt area fraction, which

is usually regarded as the reciprocal of the fire return

time (Frost, 1999). Burned area fraction is also important

in its own right. For example, it is necessary for calcu-

lating greenhouse gas emissions (Crutzen & Andreae,

1990).

Information on the relative importance of various

environmental factors affecting burnt area in southern

Africa is currently lacking. Further, there is little agree-

ment over how much influence people have, relative to

abiotic factors such as climate, in controlling fires

(see Heyerdahl et al. (2001); Keeley & Fotheringham

(2001); Moritz (2003); Dickson et al. (2006); Westerling

et al. (2006) for a recent north American discussion on

this). Human population data have been incorporated

into mechanistic fire models (Thonicke et al., sub-

mitted; Venevsky et al., 2002), but in Africa fundamental

assumptions on the extent to which human activities

constrain or promote fire are yet to be tested over

large areas. Rather than modelling fire processes

mechanistically, we adopt a statistical modelling ap-

proach. This research provides new, continental scale

insights into the physical, climatic, and human drivers

of fire and the relative importance of these across

southern Africa.

Hypotheses

The majority of fires in southern Africa are surface fires,

fuelled by grass and litter. Given sufficient rainfall, this

fuel can regrow rapidly after the fire, and can cure and

be ready to burn after only a few weeks of dry weather

(Stott, 2000). Current theoretical understanding of the

drivers of fire in southern Africa is synthesised in Fig. 1.

Rainfall and soil nutrients positively affect grass pro-

duction, and therefore grass fuels; however, high tree

covers and high grazing pressure will reduce grass fuels

(Trollope, 1984; VanWilgen & Scholes, 1997). The dura-

tion of the dry season will determine the amount of time

that fuel is dry and available to burn and, combined

with weather conditions on the day of burning, deter-

mine fuel moisture (Spessa et al., 2005; Russell-Smith

et al., 2007). Variations in lightning frequencies and

human population densities are likely to affect ignition

frequencies (Keeley et al., 1999), and land management

may affect both the ignition and suppression of fires

(Frost, 1999). Fuel continuity is impacted both by the

landscape morphology – highly dissected, variable

landscapes will prevent the spread of large fires (Dick-

son et al., 2006; Russell-Smith et al., 2007); and by human

activities – building of roads and transformation of land

through cultivation and urban expansion may break up

the landscape and prevent fire spread. Removal of fuel

for building, domestic cooking, and heating purposes,

may also reduce fire spread (Saunders et al., 1991; Frost,

1999).

All the factors illustrated in Fig. 1 vary spatially, and

burnt area is unlikely to be controlled by the same

combination of factors in different parts of the subcon-

Fig. 1 Theoretical model of the factors affecting burnt area.

Items in upper case are components of a fire regime, items

underlined are direct drivers of fire. The rest (list of items on

the left) are the indirect drivers of fire, which can be measured.

Many of these factors covary: rainfall affects tree cover, popula-

tion density is correlated with grazing density.
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tinent. This paper aims to determine which environ-

mental and human drivers are important in affecting fire

regimes in different areas of southern Africa; and speci-

fically, to test whether human population densities have

a positive or a negative effect on burnt area. Humans can

affect fire regimes directly, by altering the ignition

regime, and indirectly, by reducing fuels and fragment-

ing the landscape, thus reducing fuel continuity. Thus,

increasing human densities could be predicted both to

increase the incidence of fire, and decrease the extent of

fire, and it is unclear which effect would be more

important in determining total burnt area.

Similarly, areas with high rainfall have high fuel loads

but also would have many perennial rivers, which

might act as barriers to fire spread; and shorter dry

seasons, which might limit the number of fires that

could occur. We aim to find out whether, and under

what circumstances, factors that decrease fire ignition

and spread outweigh the positive effects of increased

grass biomass.

Moreover, there are questions concerning the impor-

tance of fire management. Commercial farmers prepare

fire breaks, actively suppress unplanned fires, and try to

burn at certain times of year with set return periods

(VanWilgen & Scholes, 1997). Fire management in com-

munal land is more varied; fires are lit for a variety of

reasons and it is not common to suppress actively

burning fires (Mendelsohn, 2002; Verlinden & Laama-

nen, 2006). Early-season burning in communal areas is

commonly undertaken, which could break up fuel loads

for later fires and reduce total burnt areas (Frost, 1999;

Laris, 2005). We aim to investigate whether land tenure

differences have any apparent effect on burnt area.

Ultimately, we want to determine whether human or

climatic influences are more important in driving fire

regimes in southern Africa, so as to gain insights into

how global change – both human and climate induced –

will affect fire regimes. This study is based on only 1

year of data, and thus concerns itself largely with

variation in space, but insights gained from this analysis

will contribute towards predictive models of burnt area

for the subregion.

Data and methods

Data

Spatially explicit burned area data and data on the

environmental factors thought to affect burnt area for

all of Africa south of the Equator (including Madagas-

car) were assembled for the 2003 fire season. Summary

statistics of each dataset in the Lambert Azimuthal

equal area projection were derived with respect to fixed,

nonoverlapping square windows, defining the mean,

median, or percentage value within each window

across the study area. A 100 km� 100 km window size

was adopted as a result of window size sensitivity

analysis, resulting in 899 sample points.

Selection of appropriate environmental factors was

based on a conceptualisation of the direct and indirect

drivers of fire in southern Africa (Fig. 1). Fuel load, fuel

moisture, fuel-bed continuity, and wind speed all affect

the spatial extent of an individual fire (VanWilgen &

Scholes, 1997; Stott, 2000). These factors, together with

ignition frequency, are direct drivers of annual burnt

area and are influenced by a number of indirect drivers

(Fig. 1). Eleven spatially explicit datasets describing the

indirect drivers were used (illustrated on the left side of

Fig. 1), of which four represented controls on fuel load,

one on fuel moisture, three on fuel continuity, and three

on ignition frequency. Wind speed and relative humid-

ity at the time of burning are important in determining

fire size and intensity (McArthur, 1966; Trollope, 1984)

but were not included, as these data are not available

for the entire study region.

The 11 independent variables are summarised in

Table 1 and are described below, after description of

the burned area data. Most of the independent variables

are available as derived data products, and their

sources and attributes are noted in Table 1. Others,

including grazing density, land tenure, extent of trans-

formed land, length of the dry season, topographic

roughness, and lightning strikes, were derived from

the best available spatial information.

Annual burned area

Data for the main burning season (March–November)

of 2003 were used in this study. The dependent variable,

annual burned area, was derived from the NASA

Moderate Spatial Resolution Spectroradiometer (MODIS)

burned area product, that defines the 500m location

and approximate day of burning to a precision of 8 days

(Roy et al., 2005b; Roy et al., 2008). The MODIS design

includes features specifically for monitoring fires

(Kaufman et al., 1998). The MODIS burned area product

maps the spatial extent of recent fires and is available as

a monthly summary product. It is being generated on a

global systematic basis in support of the global change

community in conjunction with a number of other

NASA-funded satellite products (Justice et al., 2002).

Southern Africa was selected as the first regional test for

the burned area product that has been validated using

independent reference data collected by the Southern

Africa Fire Network (Roy et al., 2005a) detecting about

85% of the true burned area. At the time of writing, only

1 year of burned area data was available. In addition,

the 1 km MODIS active fire product that defines the
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Table 1 Spatial data on environmental drivers used as inputs to the regression tree model

Direct

driver of

burnt area

Indirect

driver

(input

surface) Name Units

Summary

statistic

Original

resolution

(at equator)

(km) Source and attributes Notes

Fuel load Mean annual

rainfall

(previous 2

years)

rainfall mmyrÿ1 Mean 28 TRMM monthly 0.251 rainfall

product 3B43 (V6) (Huffman

et al., 1995)

Rainfall positively affects grass production. This

effect is cumulative over years. Other work

(Balfour & Howison, 2002; Van Wilgen et al., 2004)

identified the previous 2 years of rainfall as the

best predictor of total burnt area between years

Soil fertility sand % Mean 9 IGBP global soil data products

5 arcmin (IGBP, 2000)

Soil fertility positively affects grass production. We

used the percentage of sand in the soil as a very

simple indication of the availability of nutrients

and water to plants

Tree cover treecover % Mean 0.5 MODIS Vegetation Continuous

Fields 500m (Hansen et al., 2003)

Tree cover has a negative impact on grass biomass

(Scholes & Archer, 1997), especially above about

40% cover (Scholes, 2003)

Grazing grazing kg kmÿ2 Median 6 Global Livestock Distributions

3 arcmin (FAO, 2005) filled using

(Fritz & Duncan, 1994) and

unpublished data (see text)

Grazer density affects how much of this fuel will be

left in the system to feed fires. Grazing is likely to

be correlated with soil fertility, as more fertile areas

support more grazers (Fritz & Duncan, 1994).

Fuel moisture

(flammability)

Length of the

dry season

dryseason Months Mean 28 Calculated using the TRMM

monthly 0.251 rainfall product

3B43 (V6) (Huffman et al., 1995)

The longer the dry season, the drier the fuel, and the

more time spent in a flammable state. Dry season

length is defined as the inverse of the number of

months it took for 70% of the rain to have fallen (i.e.

12-length of wet season5 length of the dry season)

Continued
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Fuel continuity Topographic

roughness

topography m Mean 0.09 Calculated using SRTM 90m

digital topographic data Version

2 (STRM, 2005)

This gives an indication of the flatness of the terrain,

and how many natural barriers there are to fire

spread. It is defined as the standard deviation of a

3� 3 block of a 90m resolution DEM (see Russell-

Smith et al., 2007)

Road density kmroads km Sum N/A MapStudio (www.mapstudio.co.za)

vector road data for Africa, 2000.

This is a measure of human impacts on fuel

continuity.

Fraction of

transformed

land

transformed % % 1 Global land cover 2000 1 km

(Mayaux et al., 2004)

This is a measure of human impacts on fuel

continuity – Land classified as cultivated or

settlements by the Global Land Cover were

considered transformed. The fraction of

transformed land in the analysis window was the

input variable

Ignition

frequency

Mean lightning

strikes over the

burn season.

lightning #hits kmÿ2

over the fire

season

Mean 55 GHRC LIS/OTD 0.5 Degree

High Resolution Full Climatology

(GHRC, 2003)

Areas with more lightning strikes might have higher

lightning-induced ignitions. Only lightning that

occurs at the same time as fire could be a source of

ignitions (see Fig. 2). Therefore, the months

during which 90% of the burnt area occurred

were identified, and the average lightning

frequency over these months was calculated

Population

density

popdensity # people

kmÿ2

Median 5 Ciesin Gridded Population of the

World 2.5 arcmin Version 3.

Adjusted estimates for 2000

(Ciesin, 2005).

It has often been suggested, and one study has

shown (Keeley et al), that increased population

densities result in increased numbers of fires

Percentage of

communal land

communal % % N/A Data surface created using

individual country data (see

text for details)

We hypothesised that ignitions might be more

frequent on communally managed land where

fire is used freely (Mendelsohn, 2002) compared

with land managed for commercial or

conservation purposes – which often have strictly

controlled fire schedules

TRMM, Tropical Rainfall Measuring Mission, GHRC, Global Hydrology Resource Centre, MODIS, Moderate Spatial Resolution Spectroradiometer.
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location of fires observed at the time of satellite over-

pass (Giglio et al., 2003) was used to study ignition

incidence. Interpreting polar-orbiting satellite active fire

data is complicated by the fact that only fires actively

burning at the time of satellite overpass and under

cloud free conditions are detected, but when interpreted

with this caveat in mind, the active fire product pro-

vides qualitatively different information from the burnt

area product (see ‘Results’). Further information and

MODIS fire product examples can be found at http://

modis-fire.umd.edu/MCD45A1.asp.

Grazing

The grazing intensity data (kg of live mass kmÿ2) were

created by summing cattle, sheep, and goat biomass per

unit area from the FAO livestock distribution dataset

(FAO, 2005). The FAO data do not cover protected areas

so the effect of indigenous large mammal grazers was

estimated for these regions using wildlife census data

from Kruger, Gorongoza, Etosha, and Serengeti

National Parks, as well as published carrying capacity

information (Fritz & Duncan, 1994).

Land management

Land tenure was used as an easily derived spatial

indication of different land management practices in

the region. Three different land management (land

tenure) classifications were identified: communal, com-

mercial, and protected areas. The surface was created

by combining available land tenure maps for South

Africa, Namibia, Botswana, and Zimbabwe with the

World Protected Areas map (UNEP-WCMC, 2006).

Each map was interpreted to identify communal, com-

mercial, and protected areas. We assumed that the

extent of commercial rangeland in Angola, Zambia,

Zaire, Mozambique, and Tanzania was negligible, and

that the major land tenure types in those countries were

communal and protected areas.

Land transformation

The Global Land Cover 2000 Africa product (Mayaux

et al., 2004) was simplified into a binary map of ‘trans-

formed land’ (crops, plantations, or urban use) and

‘untransformed land’ (all other categories). This was

used as a measure of the extent to which human

activities have fragmented the fuel load.

Accumulated rainfall

The monthly Tropical Rainfall Measuring Mission

(TRMM) best-estimate precipitation rate product (Huff-

man et al., 1995) was summed between July 2001 and

June 2003 and divided by 2 to give the preceding 2-year

average rainfall (see Van Wilgen et al. (2004) for justifi-

cation of this metric).

Length of the dry season

The dry season length (months) was derived using the

monthly TRMM best-estimate precipitation rate pro-

duct (Huffman et al., 1995). For each TRMM pixel, 12

monthly rainfall estimates from July 2002 to June 2003

were ranked and summed in descending order until at

least 70% of the annual rainfall was reached. The

remaining number of months (representing o30% of

the annual rainfall) was considered as the length of the

dry season for that pixel. These values ranged from 3

months in the high-rainfall belt near the equator, to 9

months in the subtropical arid zones in the continental

interior. This metric represents an improvement on dry

season metrics developed in the literature (Spessa et al.,

2005; Russell-Smith et al., 2007) in that it is independent

of total annual rainfall or an ad hoc identification of the

wet season. These are strongly seasonal climate sys-

tems, and a sensitivity analysis showed that the data

were not sensitive to the choice of the 70% cut-off.

Topography

Topographic roughness was derived from Shuttle Radar

Topography Mission (SRTM) elevation data (STRM,

2005) as the standard deviation of the SRTM elevation

values in 3� 3 90m pixel windows (following Russell-

Smith et al. (2007) and resampled to 500m using the

nearest neighbour method). At the scale of this analysis

(values summarised over 100 km windows), topo-

graphic effects are likely to be manifest in terms of the

negative effect that a highly dissected landscape has on

fire spread (Frost, 1999; Russell-Smith et al., 2007). At

finer scales, the topographic position of individual fires

affects the rate of spread (Viegas, 2004) and the fuel

moisture (Heyerdahl et al., 2001), but we expect that

these effects would not be apparent in our analysis.

Lightning frequency

Most lightning in these systems occurs in the rainy

summer months when there is very little fire (Fig. 2).

To extract a metric for lightning ignitions we included

only the lightning strikes that could have been ignition

sources for the fires in the system. Data from the Global

Hydrology Resource Centre (GHRC, 2003) were used to

compute the mean frequency of lightning strikes per

km2 during the fire season (defined as those months in

which 90% of the fires occurred). No correction was

6 S . A R CH I BA LD et al.
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made for cloud-to-cloud strikes because, lacking any

data to the contrary, it was assumed that the proportion

of these strikes was relatively constant across the study

region.

Data preprocessing

Considerable effort was taken to ensure that these data

were precisely coregistered, and projected in a way that

preserved the data integrity. All the data were repro-

jected into the same Lambert Azimuthal equal area

projection with an African projection (centre of latitude,

251, centre of longitude, 151; sphere radius 637 0997m).

The raster data products were reprojected with nearest

neighbour resampling to maintain the pixel values, and

resampled with 1 km or 500m output pixel dimensions

to reduce nearest-neighbour resampling pixel shifts (i.e.

position errors) (Dikshit & Roy, 1996). Similarly, the

vector data were converted into raster thematic layers

with 1 km output pixel dimensions.

Summary statistics of each dataset in the Lambert

Azimuthal equal area projection were derived with

respect to fixed, nonoverlapping square windows, de-

fining the mean, median or percentage value within

each window across the study area. A 100km� 100 km

window size was adopted as a result of window size

sensitivity analysis. Road density (km) was derived by

summing the length of roads in the 100km� 100 km

window. Mean values were used for the other indepen-

dent datasets (Table 1), except for grazing and human

population density. Median values were used to sum-

marise these latter data to reduce the skewness intro-

duced by high human populations confined to relatively

small urban areas, and similarly to reduce the influence

of some unrealistic outliers in the FAO cattle data

(W. Wint, personal communication, 2006). The annual
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percentage burned was found by summing within each

window the number of 500m pixels that were labelled

as burned in the period March–November 2003. The

proportion of nonland (i.e. coastal and inland water

bodies) and invalid (i.e. missing, cloud contaminated,

unavailable, unmapped) data within each window were

computed. Windows for which any of the datasets listed

in Table 1 had greater than one-third nonland and

invalid pixels were excluded from the analysis.

Analysis

Conventional statistical models such as General Linear

Models are inappropriate for investigating the drivers of

burnt area in the context of this study because many of

the relationships are likely to be nonlinear, with non-

additive predictor–response interactions, and several of

the independent variables are highly correlated (see

Table 2). Decision trees (regression trees) are hierarchical

classifiers that predict class membership by recursively

partitioning data into more homogeneous subsets, re-

ferred to as nodes (Breiman et al., 1984). They accom-

modate abrupt and nonmonotonic relationships between

the independent and dependent variables and make no

assumptions concerning the statistical distribution of the

data. When run using continuous data, a sum of squares

criterion is used to split the data into successively less

varying subsets. This splitting procedure is followed

until a perfect tree is created or until preset conditions

are met for terminating the tree’s growth. It is then

possible to identify the variables and the split conditions

that result in the final prediction. For our purposes, it is

this latter property that make trees particularly advanta-

geous; the tree structure enables interpretation of the

explanatory nature of the independent variables.

A random forest regression tree procedure was used.

Like other bootstrapping procedures, random forests im-

prove the predictive ability of regression tree models and

reduce overfitting (Breiman, 2001; Prasad et al., 2006). A

large number of regression trees are grown, each time

using a different random subset of predictor variables,

and keeping a certain percentage of data aside (‘re-

served’). In our case, we grew 1000 trees, using 3 of the

11 variables at each split, and using 66% of the data each

time. The default minimum node size of five (Breiman,

2001) was used, meaning no node with fewer than five

cases was split. Predictions were run on the reserved data

each time a tree was grown, and the final prediction for

each data point was the mean of the predicted values. The

analysis was undertaken using R software (http://

www.r-project.org/), using the RANDOMFOREST package.

Importance of independent environmental variables

There are several metrics for determining how impor-

tant different variables are to the final prediction (Brei-

man, 2001). We used a method which takes the

difference in mean square error (MSE) between a test

sample, and the test sample when that variable is

randomly permuted, calculated using the reserve data

for each tree, for each variable (Breiman, 2001). The

differences are averaged over all 1000 trees, and then

normalised by the standard error. This value, therefore,

provides a measure of how much the predictive ability

of the model is reduced when the effect of a certain

variable is excluded. When looking more specifically at

the effect of individual drivers on burnt area, a piece-

wise quantile linear regression method (Koenker, 2005;

Sankaran et al., 2005) was used to fit the upper bound-

ary of burnt area and to identify breakpoints. This was

done using QUANTREG in R statistical software. The 99th

quantile was used to identify the upper limits of burnt

area under different drivers.

Split conditions

In the random forest procedure many different trees are

grown and the average result taken, so one cannot

Table 2 Correlations between the 11 independent environmental variables used in the analysis

treecover

0.75 rainfall

ÿ0.50 ÿ0.53 dryseason

ÿ0.25 ÿ0.08 0.00 grazing

0.05 0.17 ÿ0.15 0.48 popdensity

ÿ0.38 ÿ0.29 ÿ0.07 0.28 0.13 kmroads

0.28 0.41 ÿ0.40 0.07 0.32 0.09 topography

ÿ0.04 ÿ0.01 0.02 0.50 0.35 0.27 0.08 transformed

0.47 0.54 ÿ0.04 ÿ0.03 0.22 ÿ0.51 0.11 ÿ0.02 communal

0.62 0.35 ÿ0.55 ÿ0.15 ÿ0.02 ÿ0.11 0.17 ÿ0.05 0.06 lightning

ÿ0.23 ÿ0.22 0.10 ÿ0.19 ÿ0.26 0.00 ÿ0.32 ÿ0.20 ÿ0.14 ÿ0.10 sand

Bold values represent significant correlations (P o 0.05).
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explore the explicit split conditions for classifying data

into different groups. As the particular conditions re-

sulting in high and low burnt areas were of interest to

us, we took this approach a step further and ran one

more regression tree using the predicted data from the

random forest permutation as an input. We pruned this

tree using a complexity parameter of 0.01 (see R doc-

umentation ‘rpart.control’ for an explanation of this

parameter). This tree was stable and explained 85% of

the variance in the input data which was significantly

(Po0.001) more than a random tree [see Rejwan et al.

(1999) for significance-testing methods for regression

trees]. The original observed burnt area data were then

classified using this regression tree, and the splits and

nodes analysed to determine the combinations of en-

vironmental conditions that result in high and low

burned area proportions across the subcontinent.

Spatial autocorrelation

Spatial autocorrelation in the burned area data (Lynch

et al., 2006) and the predictor variables may result from

various causal mechanisms (e.g. physical and biological

processes), acting both simultaneously and additively,

and from variables and processes not quantified in this

study. The scale of the analysis and the summary units

used to aggregate the data into 100 km� 100 km win-

dows also imposes a spatial structure on the data. It is

established that autocorrelated data violate the assump-

tion of independence of many statistical procedures

(Cliff & Ord, 1981; Legendre & Legendre, 1998).

Approaches to resolve this issue have been to manip-

ulate the sampling scheme to avoid autocorrelated

observations or to attempt explicitly to incorporate

spatial dependence into the model.

To date, no technique to incorporate spatial depen-

dence into decision trees has been reliably demon-

strated, and this remains an area of active research

(Miller et al., 2007). In this analysis rainfall, tree cover,

and topography are all explicitly included as predictor

variables that account for the major geographical gra-

dients. We also subsample the data in the random forest

procedure (using 66% of the data each time) that will

further reduce the spatial dependency of the data.

However, we admit to a degree of uncertainty related

to the statistical tests that may result due to inclusion of

spurious explanatory variables (Lennon, 2000); for these

reasons only, the most important splits in the regression

tree results are considered in ‘Results’.

Window size sensitivity analysis

Geographical analyses of this kind are sensitive to the

scale of the analysis; both with respect to the size and

location of the windows and to the nature of the

summary units used to aggregate the data (Openshaw,

1984; Unwin, 1996). Rather than select an arbitrary

window size, a sensitivity analysis was undertaken to

evaluate an appropriate size for the analysis. This was

undertaken by applying the random forest regression

tree procedure to the data several times, each time using

a progressively larger window size and recalculating

the summary statistics (fraction, percentage, mean or

median). Window side dimensions varying from

30 km� 30 km, approximately equivalent to the coarsest

available input data (0.51 lightning data, Table 1), to an

order of magnitude greater, 300 km� 300 km, were con-

sidered, providing 10 876 to 114 windows across the

study area, respectively.

Results

Window size analysis

The number of nodes in the final tree declined steeply

with increasing window size, and the predictive ability

(r2) of the random forest model declined less steeply

(Fig. 3). The r2-values are calculated for each window

size from the linear relationship between the burnt

area values predicted by the statistical model and the

observed percent burnt area. Window dimensions be-

tween 100 km� 100 km and 150 km� 150 km show

some variability in r2, perhaps related to the original

Fig. 3 Sensitivity analysis of the effect of increasing window

size on (A) the predictive ability (r2 of predicted vs. observed

burnt area) and (B) the number of terminal nodes, in the random

forest regression tree model.
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resolution of some of the input data relative to the

window sizes and locations. The 100 km� 100 km win-

dow was chosen as an acceptable trade-off between

overfitting the model (too many split conditions), and

reducing the predictive ability (by averaging the data

too much).

Spatial patterns of burnt area

The MODIS 500m burned area product identified 18%

of the observable study area as burnt in 2003. Some 26%

of the region could not be classified as burned or

unburnt due to persistent cloud and missing MODIS

observations (Roy et al., 2005a), so the actual burnt area

statistic for Africa south of the equator could range from

13% to 39% (from all unclassified pixels unburnt or all

burnt, respectively). The majority of the unclassified

pixels occurred over the equatorial parts of Gabon,

Congo, and the Democratic Republic of Congo (DRC)

and are associated with persistent cloud at the time of

MODIS overpass. The DRC and Angola had the highest

burnt areas: 56% and 41%, respectively, of the valid

pixels in these countries were burnt in 2003. Although

we were unable to determine the state of burning in the

invalid pixels, it is likely that the high burn percentages

are representative of the country totals (B. Muhigwa,

personal communication). In contrast, 2.5% and 1.7% of

South Africa and Namibia, respectively, burnt. These

results are consistent with other burned area estimates

for the region: total burned area derived from the SPOT

vegetation product for 2000 for the same area was

calculated at 17% (Silva et al., 2003), and the spatial

distribution of burning reflects that of independently

detected MODIS active fires (Roy et al., 2005a). The

annual fraction burned data are shown in Fig. 5a,

summarised for the 100 km� 100 km window size

adopted for the analysis.

Relative importance of environmental variables

A linear regression between predicted values from the

random forest and observed burnt areas had an r2 of

0.68 (Fig. 4), and the model captures the spatial dis-

tribution of burning well (Fig. 5). The model under-

predicts the high burnt areas and overpredicts the low

burnt areas, as would be expected from a procedure

that groups data into homogeneous classes.

The analysis identified tree cover, rainfall, and dry

season length as the most important predictors of burnt

area across the study region (Fig. 6). Human activity

also appears to influence burnt area, with grazing,

population density, and road density all identified as

moderately important – increasing the MSE by between

35% and 40% (see ‘Data and methods’ for definition of

importance). Sand percentage – an inverse measure of

soil fertility – was the least important variable, probably

because grazing density is a better indicator of the

effects of soil fertility. Lightning density was also less

important. As can be seen from Fig. 2, fires occur at very

different times of year from the peak density of light-

ning strikes in all vegetation types. This supports com-

monly held perceptions that humans are the main

sources of ignition in Africa (Frost, 1999; Sheuyange

et al., 2005). However, it does not totally exclude light-

ing as an important source of ignition at certain times of

year (such as the early wet season), or in places where

there are few people (Edwards, 1984).

Split conditions

The conditions that result in high or low burnt areas on

the continent were identified by cascading the observed

burnt data through the final regression tree created

from the random forest predictions (Table 3). The relia-

bility of this prediction is slightly decreased from the

original random forest predictions, (r25 0.57, Po0.001)

but because the split conditions are available, these

results give an indication of the mechanisms driving
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Fig. 4 Predicted burnt area calculated from a random forest

regression tree run on 2003 burnt area data using 11 independent

variables (Table 1). The dotted line represents an exact 1 : 1

relationship, the solid line shows a linear regression of these

data. The explained variance (r2 of regression line) is 68% but the

model overpredicts at low burnt areas and underpredicts at high

burnt areas. One thousand trees were run, excluding 33% of the

data each run (‘reserve’ sample). The predicted value is calcu-

lated as the mean value predicted each time a data point was

included in the reserve sample (see ‘Data and methods’).
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fire on the continent, and how these drivers change over

space.

Two different sets of conditions can result in very low

burnt areas (nodes 1 and 5; Table 3). Areas with low tree

cover have a mean predicted burnt area of less than 1%.

These areas coincide with areas of very low rainfall

(mean rainfall 288mm), and it is likely that low rainfall,

rather than low tree cover, is the cause of this. The low

rainfall does not permit the accumulation of sufficient

fuel to sustain extensive fires. The second condition

resulting in low burnt area is that the length of the

dry season is less than 6 months. Figure 7a shows the

parts of Africa where these two sets of conditions hold

true; covering approximately 31% of the study area.

Extremely low burnt areas, therefore, seem to be

correlated with a certain set of climatic factors. How-

ever, human activities can decrease burnt areas in cir-

cumstances that otherwise would result in intermediate

to high burnt areas. For example, when tree covers are

between 5% and 21%, a large range in burnt areas is

possible (3–35%). The percentage of the landscape that

actually burns in these areas depends on grazing den-

sity, and the density of the road network (nodes 2, 3,

and 4; Table 3). Fire regimes in these parts of Africa,

which cover around 28% of the total area (Fig. 7b), are

therefore highly spatially variable, and can be modified

by human activities.

Where annual rainfall exceeds 1150mm a year and

the dry season is longer than 6 months (node 9), annual

burnt area exceeds 20%. Although high population

densities, variable terrain, and high tree covers can

reduce burnt area, regular surface fires are an inevitable

consequence of climate in these parts, which cover 17%

of the subcontinent (Fig. 7c).

The ability of the regression tree to predict burnt area

was more reliable at the extremities, where either a

relatively large or small proportion of the area would

be predicted to burn (Fig. 8). Under conditions that led

to intermediate burnt areas (between 20% and 40%)

Fig. 5 Observed (left) and predicted (right) percent burnt areas for 100 km� 100 km windows across southern Africa. Predictions are

mean values for the reserve samples in the random forest (see ‘Data and methods’). Dark stipples represent areas where cloud or missing

Moderate Spatial Resolution Spectroradiometer (MODIS) data preclude burned area mapping for more than 5 months of the year.
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Fig. 6 Relative importance of each independent variable in

determining burnt area for Africa south of the equator. Impor-

tance is measured by testing how the accuracy of the results is

affected if the input variable is randomly permuted. It is calcu-

lated as the increase in mean squared error (MSE) that occurs in

the predicted values when each variable is randomly permuted

in the test set. Importance is calculated for each variable, for each

tree, then averaged, and normalised by the standard error. See

Table 1 for a definition of variables.
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Table 3 Split conditions identified by a regression tree run on the random forest predictions

Split conditions Mean percent burnt Node #

treecover o 21 treecover o 5 0 1

treecover � 5 kmroads � 355 3 2

Kmroads o 355 grazing � 5 14 3

grazing o 5 35 4

treecover � 21 dryseason o 6 0 5

dryseason � 6 grazing � 6 kmroads � 333 9 6

kmroads o 333 20 7

grazing o 6 rainfall o 1150 20 8

rainfall � 1150 popdensity � 15 27 9

popdensity o 15 treecover � 38 20 10

treecover o 38 topography � 0.4 47 11

topography o 0.4 rainfall o 1300 50 12

rainfall � 1300 71 13

Observed burnt area data were classified with this regression tree, to produce the mean % burnt values.
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predictions were less certain, probably because there

are a number of different combinations of factors that

can result in this range of burnt areas, and these are not

fully captured by the first 12 splits of the regression

model.

The effect of people

Population density always had a negative effect on

burnt area in the regression tree model. Fig. 9a, and a

piecewise quantile linear regression model (Koenker,

2005; 99th percent quantile, run using QUANTREG in R)

indicate that the negative effect of people on burnt area

holds for population densities greater than 10 people -

kmÿ2. Below this population density, the slope of the

quantile regression is not significantly different from 0.

The relationship between population density and

number (rather than area) of fires appears to be quite

different however (Fig. 9b). The results suggest that

increasing human population densities up to around

10people kmÿ2 are associated with more fires, but that

densities higher than 10 people kmÿ2 are associated

with fewer fires (Fig. 9b). The difference between Fig.

9a and Fig. 9b implies that as population density

decreases, the size of individual fires must increase,

we suggest due to less fragmented fuel beds.

Discussion

Drivers of fire: fuel and weather

In order for a fire to start and spread three conditions

must be met: there must be an ignition event, there must

be flammable fuel, and the weather conditions must be

suitable (VanWilgen & Scholes, 1997; Stott, 2000). More-

over, the fuel bed must be adequately continuous, or the

fire will not spread. At a subcontinental scale, our

analysis suggests that annual burnt area is controlled

mainly by the second condition: the fuel. The four most

important variables identified by the random forest

procedure (Fig. 6) either affected fuel loads (rainfall,

tree cover, grazing) or fuel moisture (length of the dry

season). The continuity of the fuel bed was also shown

to be important, as high road densities and variable

topography both limit burnt area.

We were unable to include weather conditions in our

statistical model – the daily data necessary to produce

daily fire danger indices were not available at the scale

Fig. 7 Areas where the fire regime is under varying degrees of climatic control. (a) Areas of very low tree cover (and rainfall) always

have low burnt areas (grey), as do areas with short dry seasons (black). (b) Areas where the burnt area is most under human control:

depending on population density, grazing, road density, and the percentage of transformed land these areas can range from 3% to 35%

burnt. (c) Areas where significant percentages of the landscape burn, and human activities reduce, but cannot eliminate, fire. Here dry

season is measured as the number of months with less than 30% of the annual rainfall. These maps were created by plotting spatially the

areas in Africa that fulfilled particular environmental conditions identified in Table 3.
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Fig. 8 Median (horizontal thick line) and range ( � 25% quan-

tiles) of burned area class values identified by the regression tree

(Table 3). Some burnt area classes have less variance than others,

particularly those that predict the smallest and the largest burnt

area. The regression tree was created using the predicted values

from a random forest bagging procedure, and the 11 environ-

mental inputs in Table 1. This resulted in a stable tree, which was

then used to classify the observed burnt area values.
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of Africa south of the equator. However, it has been

shown in several fire-prone systems that a small num-

ber of large fires account for the majority of the area

burnt (Yates & Russell-Smith, 2002; Dickson et al., 2006).

These very large fires are thought to be caused by

extreme weather conditions (McArthur, 1968; Bessie &

Johnson, 1995; Moritz, 2003), in particular, periods of

several days of hot, dry winds following a good

rainy season. Including daily-resolution fire weather

would undoubtedly improve the predictive power of

the model.

Where tree cover exceeds 40%, the maximum possible

percent burnt area declines rapidly (Fig. 10a). This

threshold presumably results from a reduction in grass

fuels as tree density increases, and was also identified

by the regression tree procedure (Table 3 node 10).

There is much evidence for a nonlinear interaction

between fire and vegetation structure in these systems

– and forest and fire-maintained grasslands are identi-

fied as alternate stable states (Bond et al., 2005). If the

sudden drop in burnt area that we found is valid, and

not an artefact of the remotely sensed data used, then it

appears that 40% tree cover is the threshold at which

such a system switch might occur, fires might be kept

out, and a tendency to canopy closure would proceed.

Empirical data supports this – identifying a nonlinear

response of grass productivity to tree cover with an

inflection point around 35% and 40% cover (Scholes,

2003), and a switch in the understorey species composi-

tion to more forbs (Malaise, 1978).

Our data show that tree cover can only exceed 40% in

systems with more than about 800mm of rainfall (Fig.

10b). Thus, these results corroborate Sankaran et al.

(2005), who found that a rainfall threshold of 784mm
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Fig. 9 Burned area (percentage of 100 km� 100 km window) plotted against log population for the Moderate Spatial Resolution

Spectroradiometer (MODIS) burned area product (left) showing the negative effect of people on burnt area at densities over about

10people kmÿ2; and for the MODIS active fire product (right) showing a different pattern, where decreasing densities of people appear to

decrease fire activity. A piecewise quantile linear regression (Koenker, 2005; 99th percent quantile, run using QUANTREG in R) of these data

is superimposed.
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was the dividing point between stable (rainfall-main-

tained) and unstable (fire/disturbance-maintained) sa-

vannas.

Drivers of fire: ignitions

We found no indication that the frequency of ignition

limited or promoted burnt area in the region. Lightning

frequency over the fire season came out as one of the

least important predictors, as did land tenure (there is a

perception, unsupported by our data, that fires are more

commonly ignited on communal land than on privately

held land). Moreover, low human population densities,

which should be associated with fewer ignitions (Kee-

ley et al., 1999; Stott, 2000), do not appear to reduce

burnt area (Fig. 9a). The opposite was true; high human

densities (410 people kmÿ2) resulted in less area being

burnt, probably because of the effect that people have in

fragmenting the landscape (Saunders et al., 1991)

through cultivation, grazing livestock, fuel-wood collec-

tion, roads, or possibly by suppressing fires.

Theoretically, there must be a point at which a lack of

ignition sources should limit the total area burnt, but

our analysis did not reveal any set of circumstances

where this might be the case. Low population densities

were associated with a reduction in the number of fires

identified by the MODIS active fire product but there

was no concomitant reduction in burnt area (Fig. 9a and

b). These results have two implications. Firstly, in

sparsely populated regions, reduced ignition occur-

rence seems to be adequately compensated for by

less-fragmented fuel beds, resulting in more extensive

individual fires. Secondly, it takes very few people to

provide sufficient ignition opportunities, and lightning

can provide sufficient sources of ignition in areas where

even this minimum population density is not reached. It

is not possible to test this hypothesis without data on

individual fire size, but Frost (1999) indicates that

increased human densities are associated with smaller

fires, and that the proportion of lightning-caused fires

increases in drier, less-populated areas.

Potential for change: where do people matter?

The analysis makes some clear predictions on the con-

ditions under which people can affect annual burnt

area, and the conditions where climatic factors over-

whelm the effect of people. Once the very dry

(o300mm) and very wet (41000mm) areas have been

excluded, there remain large parts of Africa (Fig. 7b)

where the burned area is responsive to influence by

nonclimatic factors. In these regions, the burnt area

fraction can range from 3% to 35% of the total area.

Running a separate random forest procedure on this

data identified road density, grazing, fraction of trans-

formed land (cultivated/urban), and population den-

sity as the four most important predictors of burnt area.

Given that major demographic and economic changes

are predicted in 21st century Africa (Kirk, 1999; UNEP,

2002), it is likely that fire regimes, particularly in this

intermediate-rainfall area, will also change.

Potential for change: climatic limits to fire

Importantly, this research also shows that there are

large parts of southern Africa where human activities

have little effect on fire regimes – and climatic factors

either limit, or promote widespread fires. The analysis

identified a tree density of o5% (corresponding to a

mean rainfall of around 288mm) as a threshold below

which very little fire activity occurs. The assumption

that it is rainfall, not tree cover, that is causing the

reduced burnt area is corroborated by field data on fire

spread. Annual rainfall of 288mm produces grass fuels

of around 1000–1500 kg haÿ1 (Scholes, 2003), and Trol-

lope’s et al. (2002) fire behaviour equations for southern

African savannas estimate a zero rate of spread at just

under 1000 kg haÿ1.

The other condition resulting in low burnt areas was a

dry season of less than 6 months (i.e. for more than half

of the year, monthly rainfall is significantly contributing

to the total annual precipitation). Stott (2000) suggests

that dry seasons of as little as 2.5 months are sufficient

to provide dry grass fuels for burning. The fact that this

analysis identifies 6 months of dry weather implies that

it is not only the presence of dry, flammable fuels, but

the proportion of the time that these flammable fuels are

available that is important for determining burnt area. It

also hints at a potentially interesting interaction

between length of the dry season and ignition prob-

ability that should be further investigated. Ignitions

might prove to be limiting in areas with very short

dry seasons.

About 17% of the study region has the high rainfall

and long dry seasons necessary for widespread fire (Fig.

7c). This relatively small area accounted for 37% of the

area burnt in 2003. In these regions (core Miombo

woodlands, covering northern Angola, southern Congo,

and Northern Mozambique), human activities were still

shown to reduce burnt areas, but never to very low

levels (Table 3). These parts of Africa are the focus of

current projects aiming to store carbon by reducing fire

(peaceparks annual review: http://www.peaceparks.

org/) so it is important to know the extent to which

fire can be managed in these systems. Our results

suggest that climatic and environmental conditions

are likely to override human attempts to prevent fire –

unless tree covers can be increased to 40% or more.
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Potential for change: climatic variability

Much of southern Africa is characterised by high inter-

annual variability in rainfall. Because all the other

factors influencing burnt area on the continent change

slowly, at decadal time scales, interannual variability in

burnt area is likely to be driven largely by variation in

rainfall and dry season length. Published analyses of

long-term fire datasets support this hypothesis (Balfour

& Howison, 2002; Van Wilgen et al., 2004; Mulqueeny,

2005; Russell-Smith et al., 2007). Thus, the limits of the

fire-prone and nonfire-prone systems shown in Fig. 7

are strongly dependent on the rainfall preceding the

year of study (2003), and could change quite dramati-

cally during periods of extremely high or low rainfall.

As more years of burnt area data become available, it

will be possible to test whether the relationships

between rainfall and burnt area identified at local sites

also hold true over large areas, and apply these results

to more mechanistic models of burnt area, including

structured equation modelling. This, together with

improved weather inputs, will be the next stage of the

research.
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