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Abstract

Leptospirosis, caused by spirochetes of the genus Leptospira, is a globally widespread,

neglected and emerging zoonotic disease. While whole genome analysis of individual path-

ogenic, intermediately pathogenic and saprophytic Leptospira species has been reported,

comprehensive cross-species genomic comparison of all known species of infectious and

non-infectious Leptospira, with the goal of identifying genes related to pathogenesis and
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mammalian host adaptation, remains a key gap in the field. Infectious Leptospira, com-

prised of pathogenic and intermediately pathogenic Leptospira, evolutionarily diverged from

non-infectious, saprophytic Leptospira, as demonstrated by the following computational

biology analyses: 1) the definitive taxonomy and evolutionary relatedness among all known

Leptospira species; 2) genomically-predicted metabolic reconstructions that indicate novel

adaptation of infectious Leptospira to mammals, including sialic acid biosynthesis, patho-

gen-specific porphyrin metabolism and the first-time demonstration of cobalamin (B12)

autotrophy as a bacterial virulence factor; 3) CRISPR/Cas systems demonstrated only to be

present in pathogenic Leptospira, suggesting a potential mechanism for this clade’s refrac-

toriness to gene targeting; 4) finding Leptospira pathogen-specific specialized protein

secretion systems; 5) novel virulence-related genes/gene families such as the Virulence

Modifying (VM) (PF07598 paralogs) proteins and pathogen-specific adhesins; 6) discovery

of novel, pathogen-specific protein modification and secretion mechanisms including

unique lipoprotein signal peptide motifs, Sec-independent twin arginine protein secretion

motifs, and the absence of certain canonical signal recognition particle proteins from all

Leptospira; and 7) and demonstration of infectious Leptospira-specific signal-responsive

gene expression, motility and chemotaxis systems. By identifying large scale changes in

infectious (pathogenic and intermediately pathogenic) vs. non-infectious Leptospira, this

work provides new insights into the evolution of a genus of bacterial pathogens. This work

will be a comprehensive roadmap for understanding leptospirosis pathogenesis. More gen-

erally, it provides new insights into mechanisms by which bacterial pathogens adapt to

mammalian hosts.

Author Summary

Leptospirosis is an emerging and re-emerging globally important zoonotic infectious dis-

ease caused by spirochetes of the genus Leptospira. This genus is complex, with members

that cause lethal human disease, yet mechanisms that underlie pathogenesis remain

obscure. Leptospira species are divided into those that are infectious for mammals, and

those that are non-infectious environmental saprophytes. Based on biological characteris-

tics and molecular phylogeny, infectious Leptospira are further divided into pathogenic

and intermediately pathogenic members. The pan-genus genomic analysis of 20 Leptospira

species reported here shows the evolutionary relationship of the different Leptospira

clades, and various genetic factors related to virulence and pathogenesis. Infectious Leptos-

pira show key adaptations to mammals, for example sialic acid biosynthesis, pathogen-

specific porphyrin metabolism, and the observation that pathogenic Leptospira are vitamin

B12 autotrophs, able to synthesize it from a simple amino acid precursor, L-glutamine. A

large novel protein family of unknown function—the Virulence Modifying proteins—is

found uniquely in pathogenic Leptospira. Similarly, the CRISPR/Cas system was only

found in pathogenic Leptospira. A comparative genomic analysis of a complex bacterial

genus allowed us to identify large-scale changes that provides new insights into general

processes by which bacteria evolve to become pathogenic.
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Introduction

Leptospirosis is a globally widespread zoonotic disease with important health consequences for

humans and domesticated animals [1, 2]. Infectious Leptospira have significant affinity for spe-

cific mammals but vary in how strictly they adapt to specific hosts [1]. Rodent reservoirs (e.g.,

reservoir hosts (rats, mice) do not exhibit disease but have long-term renal colonization and

excrete organisms in the urine, which is key to leptospiral ecology and its life cycle. Infected

livestock (e.g.,. cattle, pigs) and companion animals (e.g.,. dogs) may suffer fetal loss and acute

kidney, liver and lung injury in response to infection. Infected humans variably exhibit clinical

manifestations including asymptomatic infection [3] with or without long-term renal carriage

[4], undifferentiated fever, renal failure, jaundice, hemorrhage (especially the severe pulmonary

hemorrhage syndrome), meningitis, shock and death.

Past taxonomy divided the Leptospira genus into a single pathogenic and a single sapro-

phytic species denoted as L. interrogans and L. biflexa, respectively, which, in turn, were

divided into more than 250 serovars based on the cross-agglutinin absorption (CAAT) assay

[1, 5]. In the 1990s, DNA hybridization (DDH) identified 17 ‘genomospecies’ [6], which also

distinguished DDH from serovar. DDH complemented by molecular methods and experimen-

tal studies have since confirmed the existence of at least 22 species [7–12], and grouping of spe-

cies as infectious (sometimes referred to as group I and group II pathogens, corresponding to

“pathogenic” and “intermediately pathogenic”, respectively) and non-infectious (“sapro-

phytic”) [13]. Technical challenges in performing DDH has led to the development of many

different molecular approaches to species identification [14, 15]. The International Committee

on Systematics of Prokaryotes, Subcommittee on the Taxonomy of Leptospiraceae recently

agreed that genome sequence comparison should replace DDH for species definition [16].

Such methods include sequence-based phylogeny and calculation of in silico genomic similari-

ties between isolates by using draft genomes [17–20].

Leptospiral typing is important for carrying out outbreak investigations and in identifying

likely mammalian host reservoir sources of infection. Two commonly used molecular methods

performed are pulsed-field gel electrophoresis and multilocus sequencing typing (MLST).

MLST has the advantage that it reflects the underlying population genetic structure, is repro-

ducible, is robustly supported by experimental data, and even can be used directly to identify

infecting Leptospira in clinical samples [21–27]. Genome sequencing, which has become widely

available, together with automated tools that assign MLST sequence types directly from

sequence data, has demonstrated an important potential for typing, with the expectation that

automated analysis tools will become sufficiently user-friendly for rapid and efficient whole

genome analysis and comparison, including phylogenetic analysis based on the identification

of single nucleotide polymorphisms (SNPs) in the core genome.

The goal of the Leptospira Genome Project, initiated in 2011, has been to obtain and com-

pare whole genome information for all known Leptospira species. Among the goals of this anal-

ysis are the following: i) identifying Leptospira pathogenesis mechanisms that might explain

heterogeneity in clinical manifestations of leptospirosis; ii) understanding the relationship of

genomic content and context to pathogenesis; iii) determining the definitive evolutionary rela-

tionship of Leptospira towards understanding how infectious Leptospira diverged from sapro-

phytes; and iv) identifying common antigens for improving diagnosis and vaccine

development. Prior to this project, there were 9 known pathogenic Leptospira species, 5 inter-

mediate Leptospira species, and 6 saprophytic Leptospira species [28], for which whole genome

sequence analysis was available for two pathogenic species (two serovars of L. interrogans, Lai

[29] and Copenhageni [30], two serovars of L. borgpetersenii [31]), one intermediate pathogen

L. licerasiae [32], and one saprophyte species, L. biflexa [33]. Since the advent of the present
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large-scale project the whole genome sequence of another pathogen, L. santarosai serovar Sher-

man has been reported [34] but without comparative analysis.

The present study reports a systematic comparative genome analysis of the 20 Leptospira

species known when this project began. These species comprise the pathogenic, intermediately

pathogenic and saprophytic clades, defined by 16S rRNA gene sequence [2, 35, 36] and com-

plemented by DNA-DNA hybridization [7, 11, 32]. This analysis focuses on the main genomic

features and content distinguishing infectious from non-infectious Leptospira, and on how spe-

cific genes and gene families have ramified in the pathogenic and intermediately pathogenic

Leptospira.

Methods

Leptospira isolates

A globally representative collection of the 20 Leptospira species known at the advent of this

project was analyzed here, and provided by members of the leptospirosis research community

(Table 1).

DNA preparation from isolates

A standard operating procedure was established for all contributing laboratories to follow in

preparing DNA for whole genome sequencing. Leptospira were considered to be like Gram-

negative bacteria for the purpose of DNA extraction because of the presence of lipopolysaccha-

ride and a thin peptidoglycan cell wall. Either ~1012 bacterial cells or 30 mL of the densest pos-

sible culture of Leptospira (in EMJH medium) were centrifuged and the pellet resuspended in

180 μl Buffer ATL (all buffer abbreviations are according to the manufacturer and related spe-

cifically to components of the kit) (Qiagen Tissue Kit, Valencia, CA, USA), and then purified

according to the protocol “Purification of Total DNA from Animal Tissues (Spin-Column Pro-

tocol),” including the use of proteinase K, thorough vortexing throughout the procedure, and

incubated at 56°C until the cells were completely lysed, according to the manufacturer’s

instructions. Lysis was usually complete in 1–3 hr. Before adding Buffer AL, 10 μl of RNAse

cocktail was added (mixture of two highly purified ribonucleases, RNase A (500 U/ml) and

RNase T1 (20,000 U/ml); Ambion, Life Technologies, Carlsbad, CA), and incubated for 30–60

min at 37°C. After vortexing for 15 s, Buffer AL was added to the sample, which was again

mixed thoroughly by vortexing, followed by adding ethanol (96–100%), and mixed again by

vortexing. It was considered essential that the sample, Buffer AL, and ethanol were mixed

immediately and thoroughly by vortexing or pipetting to yield a homogeneous solution. After

this point samples were handled with large bore, genomic DNA-compatible tips. The mixture

from step 3 (including any precipitate) was pipetted into the DNeasy Mini spin column placed

in a 2 ml collection tube (provided), centrifuged at 6000 x g for 1 min and the flow-through dis-

carded. The DNeasy Mini spin column was placed in a new 2 ml collection tube, and washed

with 500 μl Buffer AW1. The DNeasy Mini spin column was placed in a new 2 ml collection

tube, washed with 500 μl Buffer AW2, and centrifuge for 3 min at 20,000 x g (14,000 rpm) to

dry the DNeasy membrane; remaining ethanol was considered to interfere with sequencing

reactions and processing. The DNeasy Mini spin column was eluted twice by adding 2 x 100 μl

Buffer AE directly onto the DNeasy membrane, incubating at room temperature for 1 min, and

then centrifuged for 1 min at 6000 x g (8000 rpm). DNA was shipped on dry ice to JCVI for

sequencing. Quality control included certification of intact, high molecular weight DNA and

required 15–30 μg for fragment libraries, complementarily documented by agarose gel image

containing a DNAMass Ladder, OD260/280 determination, and an estimated DNA concentra-

tion from a fluorometric assay (SYBR Green, Quant-IT PicoGreen dsDNA Assay Kits).
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Genome sequencing, draft assembly and annotation

The genomes of 17 Leptospira species (the whole genome sequences of the remaining 3 species

studied in the present analysis, L. interrogans serovar Copenhageni strain L1-130 and L. biflexa

serovar Patoc Strain Patoc I, and L. licerasiae serovar Varillal strain VAR010, already were pub-

lished [33, 37, 38]) were sequenced at JCVI by a combination of Illumina HiSeq (2x100 bp)

and 454 FLX Titanium. Briefly, paired-end libraries were constructed for each sequencing tech-

nology from random nebulized genomic DNA in the 300–800 bp (Illumina) and 2–3 kb (454)

size ranges. Sequence reads were generated with a target average read depth of ~ 20–30 fold

(454) and ~60-fold (Illumina) coverage. Sequences for all 18 strains were assembled using the

Celera Assembler version 6.1 [38], and ordered using NUCmer [39] to align the contigs to the

best-matching closed Leptospira reference genome. All 18 new genome sequences underwent

manual gap closure to elevate the genome status to improved high-quality draft (Table 1). Con-

tigs were annotated for protein- and RNA-encoding features using the JCVI automated anno-

tation pipeline essentially as described [40–43] except HMMs were run using HMMER3 [44].

Phylogenetic analysis

16S rRNA trees were generated by first creating a multiple sequence alignment to the bacterial

16S rRNA reference alignment using Ribosomal Database Project release 10 (RDP-X) [45].

The aligned FASTA sequences were downloaded and trimmed to remove gapped columns

using Belvu (v2.31) [46]. Based on the alignment, a bootstrapped Maximum-likelihood tree

was subsequently inferred using phylipFasta, an in-house wrapper script [47] for the Phylip

program [48, 49].

SecY trees were created by first aligning secY nucleotide sequences using Clustal Omega

[50] with 100 combined guide-tree/HMM iterations. The multiple sequence alignment was

trimmed to remove gapped columns and a bootstrapped Maximum-likelihood tree was

inferred as was done for the 16S rRNA trees.

The nucleotide sequences of 7 MLST housekeeping genes were extracted from the 20

genomes, and sequence types (STs) assigned using the MLST website (http://leptospira.mlst.

net/) [51]. A multiple sequence alignment of the concatenated sequences of 7 MLST loci was

performed using ClustalW implemented in MEGA version 5 [52]. A maximum likelihood tree

was re-constructed using an algorithm implemented in PhyML version 3.0.1 [53]. The model

of sequence evolution used was the generalized time-reversible (GTR) model with gamma-dis-

tributed rate variation. The CLCMain Work Bench version 7.0 was used to edit and display

the tree (Qiagen, USA).

Universal protein marker trees were constructed using a set of 39 proteins that are univer-

sally conserved among bacteria and produce monophyletic phylogenies, suggesting that they

undergo minimal horizontal transfer (S1 Table) [54–56]. Protein sequences were aligned using

ClustalW (v1.83) [57] using default settings. The alignment was trimmed to remove gapped

columns using trimAl (v1.2r59) using–nogaps option and–fasta output option [58]. Aligned

and trimmed predicted amino acid sequences of each species were concatenated as described

previously [40], in the following order: AspS, FusA, GyrB, InfB, LepA, LeuS, PyrG, RplA, RplB,

RplC, RplE, RplF, RplK, RplM, RplN, RplO, RplP, RplR, RplV RpoA, RpoB, RpsB, RpsC,

RpsD, RpsE, RpsG, RpsH, RpsI, RpsK, RpsL, RpsM, RpsO, RpsQ, SecY, SerS, TopA, TsaD, Tuf,

and YchF. The resulting alignment of 11241 amino acids was used to generate a Maximum-

likelihood tree from 100 bootstrapped replicates using raxmlFasta, an in-house wrapper script

for the raxmlHPC (v7.0.4) [59].

A pan-genome tree was constructed using the mean of the BLASTP Score Ratio (BSR) as

described previously [60]. The PanOCT output file

Comparative Genomic Analysis of the Genus Leptospira
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100_pairwise_BSR_distance_matrix_phylip.txt was used as input for Neighbor [48, 49] to build

an unrooted UPGMA Neighbor-Joining tree. This PanOCT output file is a Phylip-style dis-

tance matrix derived from the pairwise mean BSR of core proteins present in 100% of genomes

where a single value is presented for each pair of genomes in the pan-genome.

In silico DNA-DNA hybridization

Genome relatedness among Leptospira strains was determined pairwise from fully or partially

sequenced genomes using the genome-to-genome distances (GGD) calculator (S2 Table) [61].

This analysis was complemented by in silicoDNA-DNA hybridization as previously reported [11].

Pan-genome analysis

Clusters of orthologous proteins were generated using version ver3_13 of PanOCT [62]. Since

PanOCT does not place paralogs into its ortholog clusters, but does produce a paralogs.txt file

that specifies which clusters are paralogs, an in-house PERL script, paralogs_matchtable.pl, was

created to merge paralogous clusters. This approach was necessary because analysis of core and

novel genes has historically been defined for clusters containing all paralogs [63–68]. The R

script, compute_pangenome.R, from Park et al. [67] and paralog_matchtable.pl were used to

construct the pan-genome, core and novel genes plot. We initially chose not to compute permu-

tations in genome order for the reasons described in [69]. As a consequence of a lack of permu-

tations, compute_pangenome.R was modified to load in a defined genome order of addition.

Orthologous protein content was compared and illustrated in a Venn diagram that was con-

structed using output from an in-house PERL script, create_meta_groupings.pl that uses out-

put from PanOCT and a file that describes how genomes are to be grouped. Genomes were

grouped by whether they are infectious (group I or group II), non-infectious (saprophytic), or

an outgroup (Leptonema illini). Since there were multiple genomes per group (except for Lep-

tonema), clusters were counted if there was a majority (50%), all-but-one, or all protein mem-

bers from a particular group or groups. Clusters not matching these criteria were not counted.

Metabolic reconstructions

Four draft metabolic network reconstructions were created for representative species chosen

from pathogenic, intermediate and saprophytic clades including the following: L. interrogans

(serovar Copenhageni strain L1-130), L. licerasiae (serovar Varillal strain VAR010), L. biflexa

(serovar Patoc strain Patoc 1 (Ames)) and L. kmetyi (serovar Malaysia strain Bejo-Iso9). L.

kmetyi was included in these comparisons because in addition to having recently been reported

to infect humans in the Caribbean islands [70, 71], initial genome examination suggested that

L. kmetyi could belong to a transitional group between the group I and group II pathogens and

distinct from the other group I pathogens, here represented by L. interrogans. The reconstruc-

tions were built using the ModelSeed framework [72].

The COBRApy toolbox [73] was used to perform Flux Balance Analysis (FBA) [74] simula-

tions and constraint-based analyses using the gurobi linear programming solver [75]. The con-

straint-based model consists of an S matrix composed of distinct metabolites and reactions

including exchange and biomass reactions (S3 Table). Each of the reactions has an upper and

lower bound on the flux it can carry. Reversible reactions have an upper bound of 1,000 mmol

gDW−1h−1 and a lower bound of −1,000 mmol gDW−1 h−1, making them practically uncon-

strained, while irreversible reactions have a lower bound of zero. By default, the biomass reac-

tion was set as the objective to be maximized. The exchange reactions that allow for

extracellular metabolites to pass in and out of the system were defined such that a positive flux

indicates flow out. The GapFind MILP algorithm [76] encoded in the COBRApy Toolbox was

Comparative Genomic Analysis of the Genus Leptospira
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performed for the models unable to grow in minimal medium (biomass objective function

equal to zero), to find exchange reactions allowing for in vitro growth, indicating strain-specific

auxotrophies.

An in silicominimal medium was constructed that supported growth for all of the Leptos-

piramodels, consisting of trace elements (magnesium, manganese zinc, sulfate, calcium, cop-

per, phosphate, cobalt, chlorine, potassium, ferrous and ferric iron and ammonia), water,

oxygen, heme, CO2, the vitamins thiamine (B1), folate and menaquinone, glycerol and the

fatty acids lauric acid, stearic acid, and decanoate and aminoethanol, meso-2,6, diaminopime-

late, as well a variety of amino acids (glutamate, aspartate, tyrosine, phenylalanine, asparagine

(S3 Table).

Genomic location and genetic organization of vitamin B12 biosynthesis
-related gene clusters in Leptospira

PanOCT data were used to identify the cob I/III and cob II gene clusters in infectious and non-

infectious Leptospira (when present), which encode proteins predicted to participate in B12

transport or synthesis. To determine the genomic locations of the btuB and cob II and I/III

clusters, a custom Postgresql database was created using the annotated genomes of 20 species.

Orthologs were identified with blastp (-F “m S” -s T) and conserved genomic neighborhood

using the Prokaryotic Sequence homology Analysis Tool (PSAT) [77].

Results

General genomic descriptions

The genomes of 17 Leptospira spp. isolates were newly determined for this study, representing

8 pathogenic, 4 intermediate and 5 saprophytic clades and used in pan-genomic comparative

analyses along with the previously reported genomes of L. interrogans serovar Copenhageni

strain Fiocruz L1-130 [30], L. biflexa serovar Patoc strain Patoc I (Paris) [33] and L. licerasiae

serovar Varillal strain VAR010T [32]. Thirteen of these isolates were sequenced to a genome

finishing status [78, 79] of "Improved High-Quality Draft" (IHQD) and 5 to a status a “High-

Quality Draft" (HQD) (Table 1). To achieve a genome finishing status of IHQD, manual finish-

ing was conducted consisting of contig sequence extension, sequence gap closure, and PCR to

link physical ends. On average, the genomes assembled into 36 contigs [range 4 (L. kmetyi) to

89 (L. vanthielii)], with an average genome size of 4.26 Mbp in length [range 3.89 Mbp (L. borg-

petersenii to 4.71 Mbp (L. noguchii)] at an average of 59.7-fold sequence coverage. The average

G+C% was 40.7% [range 35.5% (L. noguchii) to 45.6% (L. wolfii)]. These genomes were pre-

dicted to encode an average of 4,197 protein-coding sequences per genome [range 3,932 (L.

terpstrae) to 4,582 (L. alexanderi)].

Phylogenetic analysis of the LeptospiraGenus to determine
evolutionary relatedness

Twenty genome sequences (17 new, 3 previously published) of isolates representing 20 of the

22 known Leptospira spp. (Table 1) were used to determine phylogenetic distances between

species; two recently reported species (L. idonii [80] and L.mayottensis [81]) are not included

here. Phylogenetic relationships among all Leptospira species were analyzed in five indepen-

dent ways (Fig 1): A, a core set of 39 concatenated genes coding for housekeeping proteins

(universal markers); B, a pan-genus set of 1350 proteins; C, 3) multilocus sequence typing

(MLST)[51]; D, 16S rRNA (highly conserved); and E, secY (highly variable)[70]. Leptonema

illini was used as the outgroup for all analyses. Each approach yielded different nodes and

Comparative Genomic Analysis of the Genus Leptospira
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branches of the species, except for 16S rRNA sequences, for which deduced phylogeny did not

discriminate between L.meyeri and L. yanagawae. Additionally, these five approaches revealed

three clades correctly clustering members of the nine pathogenic (group I) and five intermedi-

ately pathogenic (group II) and six non-pathogenic (saprophytic) species. Only the trees based

Fig 1. Phylogenetic analysis of Leptospira species.Consensus maximum-likelihood trees are depicted using multiple alignments of 16S rRNA (A), secY
(B), MLST (C) and 39 concatenated protein data sets (D). The numbers along the branches denote percent occurrence of nodes among 100 bootstrap
replicates. A pan-genome tree was generated based on the mean of the BLASTP score ratio of core 1135 proteins (E). The scale bar represents the number
of nucleotide (A-C), amino acid (D & E) substitutions.

doi:10.1371/journal.pntd.0004403.g001
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on secY, the universal markers and the pan-genome clearly separated the closely related patho-

genic species L. interrogans, L. kirschneri and L. noguchii from the other 6 pathogenic species.

As expected, phylogenetic positions shifted to some extent between the single locus-based anal-

yses and became more consistent using the multi-locus approaches. The following pairs of spe-

cies showed close relationships: the pathogenic species (except in the secY tree) L. interrogans

and L. kirschneri, L alexanderi and L. weilii; the group II species, L. inadai and L. broomii; and

the non-pathogenic (except 16S and secY trees) L. wolbachii and L. vanthielii.

Furthermore, the genome relatedness between pairs of representative strains of each of the

20 species from fully or partially sequenced genomes confirmed the genetic relatedness among

Leptospira species as established by DDH (Fig 1/ S2 Table).

Pan-genome analysis

The pan-genome is defined as a core set of genes shared by all isolates plus a variable set of

genes shared by a subset of isolates, and strain-specific or novel genes. Based on these 20 repre-

sentative genomes and raw PanOCT output, the size of the core- and pan-genome was deter-

mined to contain 1,764 and 17,477 genes, respectively; however, with paralogs collapsed, the

size of the core- and pan-genome was determined to be 1,592 and 13,822 genes, respectively

(S1A Fig). The number of species-specific or novel genes ranged from 233 to 892 (S1A Fig) for

each new genome added. After the addition of the third genome (L. noguchii), the size of the

core gene set plateaued, while the pan-genome continued to rise (S1A Fig).

To determine whether the Leptospira pan-genome is open or closed (as defined below, the

number of new genes identified (i.e., unique or strain-specific genes) for each genome added

was determined and fit to a power law function (n = κN-α) as described previously [63]. Con-

ceptually, a pan-genome is closed when sequencing the genomes of additional isolates fails to

increase gene number (i.e., the entire gene repertoire has been discovered) [82]. The exponent

(α) indicates whether the pan-genome is open (α� 1) or closed (α> 1) [83]. Using this equa-

tion, the pan-genome of Leptospira was inferred to be open (α = 0.49 ± 0.02) (S1B Fig). From

an exponential decay function, the number of new genes predicted for each genome (species)

added was extrapolated and calculated to be 409 ± 12 on average (S1B Fig).

The distribution of protein clusters representing gene families among the three groups

(pathogenic, intermediate, saprophytic) is depicted in a Venn diagram (Fig 2A). Because there

were multiple genomes per group (except for the Leptonema outgroup), clusters were counted

if there was a majority (50%), all-but-one, or all protein cluster members from a particular

group or groups. Focusing on the majority criteria, pathogens and intermediates had nearly

equal numbers of group-specific genes (416 and 424, respectively), and the highest number of

shared genes between two groups (369). Binary comparisons of pathogens and intermediates

with saprophytes revealed just 52, and 78 genes shared, respectively. When comparing only

Leptospira-specific genes, the core genome was comprised of 737 genes, with the majority of

genes being shared with Leptonema illini. Closer examination of species-specific genes showed

that pathogenic Leptospira have more species-specific genes on average (637±129) than do

intermediates (418±126) or saprophytes (321±90). L. noguchii sv. Panama str. CZ 214T had

the greatest number of species-specific genes among species compared in this study. To under-

stand the function of genes shared among infectious Leptospira, the distribution of protein

functions was examined for clusters shared among infectious and non-infectious Leptospira

(Fig 2B). The only functional category dominated by pathogenic Leptospira was “mobile and

extrachromosomal elements.” The functional categories that stood out most among genes

shared between pathogens and intermediates was "biosynthesis of cofactors, prosthetic groups,

and carriers" and "fatty acid and phospholipid metabolism." Saprophyte-specific genes

Comparative Genomic Analysis of the Genus Leptospira
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Fig 2. Pan-genomic comparisons of 20 Leptospira species. Panel A:Orthologous protein clusters were binned, counted and placed into a Venn diagram
by whether clusters contained proteins from genomes in each of the three Leptospira groups: pathogenic (A), intermediate (B), saprophytic (C) and the
Leptonema outgroup (D). Clusters were counted if there was a majority (50%), all-but-one, or all protein members from a particular group or groups
(separated by colons). Singleton clusters, representing species-specific or strain-specific genes are noted in circles surrounding the Venn diagram. Clusters
not matching any of these criteria or containing at least one protein from another group were considered as ambiguous groupings. The Venn diagram is not to
scale. Panel B: Protein clusters unique to pathogenic, intermediate, and saprophytic groups or shared only between pathogenic and intermediate groups
were counted by main functional role categories. See key for group colors.

doi:10.1371/journal.pntd.0004403.g002
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dominated 10 of the 16 functional role categories, many of which were involved in central

intermediary and energy metabolism, gene regulation, signal transduction, protein fate, cell

envelope, and transport functions.

Protein secretion systems

All Leptospira clades are predicted to have type II protein secretion systems but do not appear

to contain a type III secretion system. Lipoproteins in Leptospira have particular pathogenetic

significance because of their potential as vaccine targets and virulence factors involved in host-

pathogen interactions [84–93].

An unusual sec system in Leptospira

Leptospira contains the Sec system for signal-peptide-containing proteins and signal peptidase

to remove the signal peptide at the time of secretion. Genes encoding the signal recognition

particle (SRP) protein Ffh and receptor protein FtsY were not found in any Leptospira genome,

nor was the SRP structural RNA. Generally, the lack of SRP and its receptor is unusual in bacte-

ria, although the system is missing in the genus Dehalococcoides and also, apparently, in the

uncultivated marine lineage SAR86 [94]. The narrow, elongated spiral shape limits the distance

a ribosome can be from the Leptospira plasma membrane and may obviate the need for transla-

tion arrest by SRP. However, in looking for novel features near Sec system genes in Leptospira

showed a novel gene inserted between the normally consecutive genes for Sec system proteins

SecY and YajC, encoding a non-globular protein with an N-terminal signal peptide and a

transmembrane segment towards the C-terminus, with the majority of residues in between

consisting of low complexity, poorly conserved sequence especially rich in Lys, Glu, and Asn.

No homologs to this low-complexity protein occur outside the Leptospira genus. We postulate

that this novel gene could be involved in protein secretion.

Unusual sec-independent (twin-arginine) translocation system

Twin-arginine translocation (TAT) in prokaryotes allows completion of complete protein fold-

ing prior to Sec-independent secretion through the plasma membrane. Except in the halo-

philes, where high salt outside the cell explains the need for folding prior to export, TAT

substrates tend to be redox cofactor-binding proteins [95]. These proteins fold and bind their

cofactors before crossing the membrane. The tatA and tatC gene-encoded components of the

translocase are evident in Leptospira genomes, but the twin-arginine signal itself proved elu-

sive. The TIGRFAMs collection [96] hidden Markov model (HMM) TIGR01409 finds no

sequence scoring near the trusted cutoff in any species of Leptospira, nor in Leptonema illini.

However, alignments of full-length homologs in Leptospira to recognizable TAT translocation

substrates from other lineages could be extended into the N-terminal signal region. Such align-

ments often showed a Lys-Arg dipeptide in the Leptospira sequence aligned to the Arg-Arg

motif of recognizable TAT signal sequences. This observation triggered a review of all candi-

date families of TAT translocation substrates in Leptospira, and produced iterative refinement

of the lineage-specific TAT signal, and a catalog of TAT substrates.

Eleven protein families were confirmed as TAT substrates by multiple criteria, including

strong conservation of the putative TAT signal within the protein family, alignment to non-

spirochete homologs that extended N-terminally into the TAT signal region, and strong

sequence similarity of the putative TAT signal motif, usually RKxFL, across the different Lep-

tospira putative TAT translocation substrate families. A continuous 18-residue stretch from

each protein in each of these was used to construct a seed alignment of Leptospira TAT signal

sequences, including the modified Twin-Arg motif and the adjacent hydrophobic region.

Comparative Genomic Analysis of the Genus Leptospira
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Comparative analysis predicted a conserved TAT signal sequence in all Leptospira [97] (Fig 3).

Eleven protein families comprising the defining alignment and for two additional families are

strong candidates for TAT-dependent, Sec-independent translocation (S4 Table). Only one of

the 13 families, the PhoX alkaline phosphatase family, was observed to be largely restricted to

pathogenic species of Leptospira [98].

Inspecting the family of LIC_10874 (a 4Fe-4S dicluster domain protein family of

LIC_10874) within and outside the genus Leptospira demonstrated conservation of the putative

TAT signal in both, and the substitution in Leptospira of the second Arg by Lys, as in other

families. This family is notable, however, because in multiple species from phylogenetically dis-

tant clades, translation start sites can be assigned with high confidence, and the TAT signal

begins rather far (some 50 residues) from that start. Member sequences in this family all share

a well-conserved prefix domain, ~50 amino acids in length, between the start of translation,

and star of the recognizable TAT signal.

An unexpected feature in the Leptospira TAT system cassette is a probable serine phospha-

tase encoded next to tatC (family TIGR04400), which either overlaps it or is present within five

base pairs in all 20 leptospiral species examined. It is not known whether this putative phos-

phatase is involved in Sec-independent translocation per se, rather than in its regulation, or in

some unrelated process.

Lipoprotein secretion

Cleavage of pro-lipoproteins by the type II signal peptidase occurs within a short

lipobox sequence, which includes the invariant cysteine that is targeted for covalent modifica-

tion with lipids. In E. coli lipoproteins, the -1 position immediately preceding the peptidase

cleavage site is highly conserved, being occupied by the small nonpolar amino acids Ala or Gly

in the vast majority of cases [99]. A previous analysis noted somewhat larger residues, such as

Asn, Ser, and Cys, at the -1 position of experimentally-verified spirochete lipoproteins [100].

Fig 3. TAT signal sequence in Leptospira sp. The X-axis shows position in an ungapped alignment. The Y-axis shows information content, measured in
bits.

doi:10.1371/journal.pntd.0004403.g003
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Examination of L. interrogans lipoprotein orthologs in saprophytic and intermediate species

revealed a number of unexpected amino acids at the -1 position (S5 Table). For example, the

bulky amino acid Tyr was found in the -1 position in LipL21 in all intermediate Leptospira

spp., whereas those from pathogenic and saprophytic species possess typical -1 residues Ala

and Ser, respectively. Conversely, some lipoproteins of saprophytic or intermediate species

with expected amino acids at the -1 position were found to have orthologs in L. interrogans

with variant amino acids at the -1 position (S5 Table). For example, the outer membrane lipo-

protein Loa22 of saprophytic species has the allowed residue Asn at -1 while its orthologs in

pathogenic and intermediate species has Leu or Phe at the -1 position. Similarly, LIC11088

orthologs in most intermediate and saprophytic species possess permitted residues at -1,

whereas the pathogens have Gln or charged residues. Thus, the availability of genome

sequences from across the genus Leptospira has confirmed the much higher flexibility in the

leptospiral lipobox and is anticipated to lead to redefinition of the pan-leptospiral lipobox to

accommodate increased amino acid flexibility at the -1 position.

The substrate specificities of the first two enzymes in lipoprotein biogenesis, prolipoprotein

diacylglyceryl transferase (Lgt) and signal peptidase II (Lsp), are likely to be influenced by

amino acids at the -1 position relative to the lipoprotein cleavage site [101]. For this reason,

these enzymes would be expected to possess novel structural properties that allow recognition

of an expanded set of residues at the -1 position of the lipobox. Consistent with this notion, Lgt

orthologs of all 20 Leptospira strains lack the signature sequence that defines most Lgt proteins

(Prosite accession PS01311) [102]. Interestingly, Leptonema illini, the bacterium most closely

related to Leptospira among sequenced organisms, harbors two Lgt paralogs: one quite close in

sequence to leptospiral Lgt orthologs and another with signature sequence similar to Lgt of all

other organisms. This arrangement suggests duplication of lgt in an ancestor common to Lep-

tospira and Leptonema, with subsequent loss of the latter and functional divergence of the for-

mer to accommodate bulkier -1 lipobox residues. Similarly, Lsp of Leptospira species possesses

an extra 22 or 24 residues at a position corresponding to a location within the second periplas-

mic loop of E. coli Lsp [103], which is missing from the Lsp sequence of other bacteria with

well-characterized lipoproteins, including the spirochetes B. burgdorferi and T. pallidum. The

sequence features of leptospiral Lgt and Lsp suggest the presence of novel structural features at

the active sites of these enzymes consistent with variability at the -1 position of the leptospiral

lipobox.

Metabolic reconstructions

In silico, genomically-based metabolic network reconstructions were created for four represen-

tative Leptospira species occupying different clades: L. interrogans and L. kmetyi (pathogen;

group I), L. licerasiae (intermediate pathogen; group II) and L. biflexa (non-pathogenic). L.

kmetyi was chosen for analysis because preliminary genomic inspection suggested unusual fea-

tures of this species with regard to pathogenesis-related genes (vide infra). The base in silico

media and default computational bounds (S3 Table) represent every compound allowed to

enter the system for cellular uptake to allow all models to produce biomass. Removal of some

of these compounds leads to species-specific growth (a unique model-predicted auxotrophy).

The use of a steady-state assumption does not allow the flux balance analysis to take into

account specific concentrations of a given metabolite but, rather, the predicted rate of uptake,

secretion or transformation. The default uptake bounds for each metabolite are provided (S3

Table). Negative bounds represent entry of the metabolite into the extra-cellular compartment

where they can then be consumed by the model. The bounds are only constraints on the maxi-

mum rate of consumption of a given compound. The actual rate of consumption is predicted

Comparative Genomic Analysis of the Genus Leptospira
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by the model. Units are in mmol gDW-1 hr-1. Analogously to core and pan genomes, the reac-

tion content of each model can be used to construct core and pan metabolic networks. The

core network consists of those reactions occurring in all representatives of Leptospira, while the

pan network consists of all reactions that can potentially occur in any individual Leptospira

species (Fig 4A).

Major differences in the metabolic networks between the four species arose in amino acid

metabolism, biosynthesis of cofactors and vitamins and carbohydrate metabolism (Fig 4B).

These large groups were further divided into specific pathways, specifically those of porphyrin

metabolism, folate metabolism, starch and sucrose metabolism, as well as phenylalanine and

tyrosine metabolism. A large difference was observed in porphyrin metabolism, specifically for

the biosynthesis of cobalamin (vitamin B12) in L. interrogans (see below).

The conversion of static metabolic network reconstructions into computable mathematical

models allows computation of phenotypes based on the content of each reconstruction [104].

Thus, the four strain-specific reconstructed networks were converted into genome-scale meta-

bolic models that allow for the computational/simulation prediction of phenotype. This set of

genomic scale models (GEMs) allows for a meaningful interpretation of the content of each

reconstruction and allows for the prediction of each strain’s different metabolic capabilities

[105]. Because reactions belonging to the amino acid metabolism subsystem made up the

majority of reactions in the pan-reactome, it was hypothesized that these capabilities may

reflect functional differences between different Leptospira species. To test this hypothesis, dif-

ferent minimal media formulations were created in silico and used to test each model’s growth

capabilities. The models predicted all of the Leptospira tested to be auxotrophic for the amino

acids aspartate, histidine and asparagine as well as vitamins B1 (thiamin) and vitamin K2

(menaquinone).

Beyond the auxotrophies predicted to be shared by all 4 Leptospiramodels, potential spe-

cies-specific auxotrophies for other vitamins and amino acids were also identified. All of the

strain-specific models were predicted to be auxotrophic for phenylalanine except for L. interro-

gans, which was predicted to have the enzyme prephenate dehydrogenase encoded for by novF

that converts chorismate to prephanate, a precursor to tyrosine and phenylalanine. The model

for L. interrogans lacks prephanate oxidoreductase, which would predict inability to convert

prephanate to tyrosine. Only L. kmetyi was found to have the enzymatic machinery capable of

synthesizing tyrosine from phenylalanine. Among these representative species of the three

Fig 4. Core and pan-metabolic capabilities of the Leptospira genus. The core and pan metabolic content was determined for genome-scale metabolic
models of 4 different Leptospira species.A)Core content, illustrated by the intersection of the Venn diagram, shared with all species. The pan content
consists of all content in any model and includes the core content. The Venn diagram is not to scale.B) Classification of reactions in the core and pan
reactomes by metabolic subsystem.

doi:10.1371/journal.pntd.0004403.g004
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clades, only L. interrogans was predicted to be an L-glutamate auxotroph due to the lack of L-

glutamate oxidoreductase.

Additional major differences were observed between the pathogenic and the non-pathogen

Leptospira. A major difference in the lysine biosynthesis pathway was observed for the models

of the pathogens, L. kmetyi and L. interrogans. Only these models possessed the dapABCDE

genes required to convert L-aspartate 4-semialdehyde to LL-2,6, diaminopimelate required for

peptidoglycan and lysine biosynthesis. Therefore both L. licerasiae and L. biflexa were pre-

dicted to be LL-2,6, diaminopimelate auxotrophs. Furthermore, only the pathogens L. interro-

gans and L. kmetyi possessed a full folate (vitamin B9) biosynthesis pathway using as precursor

guanosine 5’-triphosphate. L. biflexa and L. licerasiae could produce vitamin B2 (riboflavin),

but lack the reactions to convert it to folate including dihydroneopterin aldolase encoded for

by folB; therefore, the models for L. biflexa and L. licerasiae were folate auxotrophs while the

models for L. kmetyi and L. interrogans were not.

Vitamin B12 biosynthesis

The vitamin B12 biosynthesis genes in infectious Leptospira are grouped into two clusters: cob

I/III and cob II (Table 2). Though the exact number of reactions for each pathway in Leptospira

remains unknown, in Salmonella enterica Typhimurium cob I comprises genes for the biosyn-

thesis of adenosylcobinamide, cob II genes for the synthesis of the lower axial ligand

5,6-dimethylbenzimidazole (DMB) and a third cluster cob III, the nucleotide loop that joins

DMB to the corrin ring to complete B12 biosynthesis. In infectious Leptospira, cob II is a five-

gene cluster that includes three genes cobTSC that participate in the synthesis of DMB (and

two genes that may or may not participate in B12 biosynthesis), suggesting that the first cluster

encodes enzymes for the synthesis of adenosylcobinamide guanine diphosphate. The first 12

genes encode enzymes that participate in the synthesis of the corrin ring (cob I) whereas the

last five, enzymes for the addition of the nucleotide loop (cob III). Intriguingly, cob III of the

infectious species includes a gene cbiZ encoding an enzyme that participates in an alternative

cobinamide salvage pathway first described in the archeon, strain Göl [106].

Cob I/III gene clusters in the sequenced pathogenic Leptospira vary in length, from 16 in L.

santarosai Shermani 1342KT to 19 in L. alexanderiManhoa 3L60T and L. borgpetersenii Java-

nica UI 0993. Presumably owing to repeated in vitro sub-culture in medium containing B12,

several genes have been inactivated or deleted in the strains tested. For example, the Javanica

UI 0993 cobI/III cluster contains a gene fragment resulting from a premature stop codon in a

gene encoding a histidine phosphatase superfamily branch 1 (hps_1) protein present in all

other pathogenic Leptospira including other L. borgpetersenii strains (Hardjo L550 and JB197);

and, cob I/III in L. alexanderi 3L 60T, contains a disrupted cobyrinic acid a,c-diamide synthase,

inactivated by a frame shift mutation. A gene encoding a flavodoxin reductase present in cobI/

III of other infectious has been deleted in L. santarosai 1342KT and L. alstoni 80–412. The cob

I/III clusters of L. kmetyi (group I) and all group II pathogens contain three genes, two encod-

ing a putative cobalt transporter (cbtBA) and a gene encoding an additional hps_1 protein

(Table 2).

Cob II also varies in length among all infectious (pathogenic and intermediately pathogenic)

Leptospira, from three genes in L. broomiiHurstbridge 5399 and L. inadai Lyme 10T to seven

in L. noguchii Panama CZ214T. The genes comprising the cob II cluster in non-pathogenic Lep-

tospira are found in two discrete clusters in non-pathogenic species (e.g., LEPBI_I2857 and

LEPBI_I2858, LEPBI_I2938 –LEPBI_I2940) in L. biflexa (Table 2), suggesting that homologs

in pathogenic Leptospira were acquired en bloc after the divergence of pathogenic and non-

pathogenic Leptospira.
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Leptospiral glycobiology: structure and diversity of rfb/O-antigen loci,
lipid A, and sialic acid biosynthesis-encoding regions

General features of Leptospira rfb loci. Lipopolysaccharide (LPS) has long been a major

focus of leptospiral microbiology not because of its (low potency) endotoxigenic activities (see

below in the lipid A section) and because, notably, leptospiral LPS is the basis for serovar iden-

tification and vaccine development [36, 107–109]. Because of the importance of LPS in lepto-

spiral biology, we carried out a comprehensive analysis of the genomic locations, structures

and neighborhood of leptospiral rfb loci, also known as the O-antigen loci, in 20 species of

Leptospira.

Using previously described leptospiral O-antigen gene clusters as a guide [110–112], we

identified and schematized all clades of Leptospira rfb loci (Fig 5; S2 Fig depicts the rfb locus in

genomic context). Of the genomes representing 20 Leptospira species, 17 known serovars were

compared. The O-antigen biosynthesis gene clusters were located in three different genomic

locations and ranged in size from 3,768 bp (L. wolffii sv. Khorat) to 121,402 bp (L. alexanderi

sv. Manhao3). This region in L. wolffii sv. Khorat is now the smallest predicted leptospiral rfb

biosynthesis cluster, consisting of just 4 genes, replacing the locus of L. licerasiae sv. Varillal

[32]. All pathogenic leptospiral species, and the intermediates L. inadai, L. broomii and L. fainei

have their rfb loci located in the same genomic position, sandwiched between a copper-binding

protein on the left and the ribosomal protein S6 on the right (S2 Fig). The same protein-encod-

ing genes (viz.,MarR and DASS) define the start and end of the O-antigen cluster, respectively.

Of the rfb loci of pathogenic Leptospira, serovars Manhao 3, Javanica, and Pingchang were

most similar in size and gene content (Fig 5). Notably, L. broomii [113] (and L. fainei [114–

116], both of which are serovar Hurstbridge, had nearly identical rfb gene clusters, predicting

that L. broomii would also be serovar Hurstbridge, and confirmed by serology [113]. The pres-

ence of a specific serovar in different species has been previously observed in isolates of both L.

interrogans and L. borgpetersenii serovar Hardjo, which have highly similar gene content in

their O-antigen biosynthetic loci [117]. The rfb gene cluster of saprophytic Leptospira is down-

stream of the gene encoding ribosomal protein S6, lacks DASS, and is smaller (median 60,710

bp vs. ~99,520 bp) than pathogenic Leptospira rfb gene clusters (S2 Fig). O-antigen gene loci in

serovars Varillal and Khorat are located in a third location, betweenmurC and purK, consistent

with a novel branching in the phylogenetic tree.

Consistently, the downstream flanking genes in the rfb loci are far more conserved than the

upstream genes (Fig 5; S2 Fig). This finding is especially true for the pathogenic serovars and

between three of the five intermediate serovars represented. For pathogenic serovars and serovar

Lyme, a conserved block of genes is involved in O polysaccharide processing via theWzy-depen-

dent pathway. This export system was also identified in two saprophytic serovars (e.g., Holland

and Codice). Overall, 12 of the representative 20 species genomes encoded theWzy-dependent

system and one genome (L. licerasiae sv. Varillal only encoded a putative flippase (Wzx) with no

identifiable Wzy ortholog. There were no orthologs of Wzz, the O-antigen chain length determi-

nant, in the 20 genomes studied. Also conserved in the 3-prime region of only those serovars

with theWzy-dependent pathway is a gene encoding a protein with homology to E. coli WcaJ/S.

enterica WbaP, which are members of the PHPT family of polyisoprenyl-phosphate hexose-

1-phosphate transferases that function to transfer glycosyl-1-phosphate to a lipid undecaprenol

carrier, initiating formation of the O-unit in O-antigen assembly. In L. borgpeterseni serovar

Hardjobovis, this protein, encoded by orfH13, is an UND-pp-galactosyltransferase [118].

The other major pathway of O-antigen polysaccharide biosynthesis is theWzm/Wzt–

encoded or ABC-transporter dependent pathway [119, 120]. Six of the 20 representative

genomes encoded orthologs ofWzm andWzt. Two of the genomes were from intermediate

Comparative Genomic Analysis of the Genus Leptospira
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Fig 5. Structure of Leptospira rfb locus gene clusters. The rfb region and beginning and ending CDSs (blue) 9 of pathogenic (A), 5 intermediate (B), and 6
saprophytic (C) representative Leptospira species were compared. rfb region CDSs are labeled by locus identifier and colored by functional role categories
as noted in the boxed key. Gene symbols, when present, are noted above their respective genes. BLASTPmatches between CDSs are colored by protein
percent identity (see key).

doi:10.1371/journal.pntd.0004403.g005

Comparative Genomic Analysis of the Genus Leptospira

PLOS Neglected Tropical Diseases | DOI:10.1371/journal.pntd.0004403 February 18, 2016 19 / 57



and four were from saprophytic groups, representing 5 known serovars (e.g. Hurstbridge, Sao-

paulo, Hualin, Hardjo type Went, and Patoc). The genome analysis did not provide a clear

indication of the export system used by serovar Khorat. One other known O-antigen biosyn-

thesis pathway the synthase-dependent pathway [119]. BLASTP searches of WbbE and WbbF

from the only known example of this pathway, from the plasmid-encoded O:54 antigen of S.

enterica serovar Borreze [121], failed to identify any homologs in the representative 20 Leptos-

pira genomes. It is possible that serovar Khorat uses a novel mechanism for O -antigen

biosynthesis.

A dTDP-rhamnose biosynthesis gene cluster, encoding rfbABCD was found in the con-

served 3-prime end of the predicted O-antigen biosynthetic gene clusters of only pathogenic

Leptospira spp. serovar Saopaulo, found in the saprophytic species L. yanagawae, encoded

homologs of all four of these genes, but in the order rfbCBAD, where the genes rfbABC appear

to have been inverted (Fig 5C). The genes rfbAB and rfbC, were found in a different location

with rfbC separated by several genes in serovars Hualin, Hardjo, and Patoc. These same isolates

lacked an rfbD homolog. Only rfbAB homologs were identified in serovar Hurstbridge.

L. licerasiae-type surface polysaccharide cassettes. We previously reported that L. licera-

siae, which is antigenically unique, lacks the type of extremely large O-antigen biosynthesis

region found in L. interrogans and nearly all other Leptospira [122]. Instead, the one serovar of

L. licerasiae, Varillal, has a six-gene cluster with three glycosyltransferase genes between two

normally adjacent, convergently transcribed genes: themurC gene involved in cell wall biosyn-

thesis and purK gene of purine biosynthesis. Leptospira wolffii had a similar genomic rfb locus,

again with a six-gene cluster positioned betweenmurC and purK (Fig 5B); antigenic relatedness

to L. licerasiae serovar Varillal remains to be confirmed experimentally. The first glycosyltrans-

ferase in this cassette, LEP1GSC185_2122 (GenBank EIE02925) in L. licerasiae and

LEP1GSC061_3728 (GenBank EPG64090) in L. wolffii, are highly conserved and would be a

useful marker for this extremely small O-antigen gene cluster. No other protein in the replace-

ment six-gene cassette is conserved across the different variants. Genes in these regions have

no close homologs in any other Leptospira, in the O-antigen region or anywhere else, support-

ing the notion that these cassettes provide unique carbohydrate chemistry and serology, and is

not simply an unusual gene neighborhood for otherwise common leptospiral enzymes.

Lipid A biosynthesis. The lipid A of leptospiral LPS is not as potent an endotoxin as lipid

A moieties of other bacteria such as the Enterobacteriaceae or Neisseria spp.; the mechanistic

explanation for this observation is that L. interrogans lipid A has different acyl chains and

novel phosphorylation on the position of the lipid A that abrogate endotoxinogenicity [123].

The lipid A biosynthetic pathway of L. interrogans serovar Lai involves 13 enzymes, encoded

by genes lpxA, lpxC, lpxD1, lpxD2, lpxB1, lpxB2, lpxK, kdtA, kdsB1, kdsB2, lnt, kdsA (also

found as waaA) and htrB. The presence and homology of amino acid (aa) sequences of these

enzymes was compared between 21 different species and/or serovars of Leptospira spp classi-

fied in three different groups: pathogenic (PT, 10 species), intermediate (IM, 5 species) and

non-pathogenic or commensal (NP, 6 species). Most proteins were found in all Leptospira spe-

cies (S6 Table). However lpxB2, was found only in 4 pathogenic species/serovar and 1 non-

pathogenic, lpxD2 was not found in intermediate species/serovar and htrB was only present in

1 pathogenic and 1 non-pathogenic species/serovar. The kdsB1 and kdsB2 were only found in

two species/serovar (L. interrogans sv. Lai and L. inadai sv. Lyme), all other species/serovar had

only one kdsB that showed a higher level of similarity with kdsB2 from L. interrogans sv. Lai

than with kdsB1. Although we found that some genomes lack one or two lipid A biosynthetic

genes (e.g. lpxD2 and kdsB2), the computation analysis is still consistent with functional bio-

synthetic pathways still being present in all species, because, for the genomes lacking one of the

duplicate genes, the remaining ones (e. g. lpxD1 and kdsB1) may be able to complement the

Comparative Genomic Analysis of the Genus Leptospira
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function of the lipid A biosynthetic pathway. Another possibility is that the genes are present

in the genomes, but we missed the genes because of gene diverge or gaps in genome sequence

obtained. Finally, the variable presence of lipid A biosynthesis genes may relate to some as yet

undiscovered structural differences in lipid A moieties among Leptospira.

The predicted protein sequences of individual lipid A biosynthesis pathway were nearly

identical among Leptospira as predicted using an identity matrix (S7A Table). The homology

between two sequences is expressed within the range of 0 to 1 (identical or completely homolo-

gous). The results presented hereby are expressed as the mean of homology values within each

group, compared to the pathogenic species group. The lpxA amino acid sequence was found in

all species, although the average similarity within pathogens was 0.928, while the homology of

intermediates and saprophytes was 0.694 and 0.581, respectively, when compared to pathogen

sequences. This analysis was carried out for each amino acid sequence (S7B Table).

Sialic acids as post-translational modifications restricted to pathogenic Leptospira.

Previous studies have demonstrated that pathogenic Leptospira endogenously synthesize

Neu5Ac, the most common sialic acid, and that an observed gene fusion event suggested that

L. interrogans uses a Neu5Ac biosynthetic pathway that is more similar to that of animals than

to other bacteria. Lectin-based affinity purification of NulO-modified molecules, followed by

mass spectrometric identification suggested post-translational modification of surface lipopro-

teins, including the putative virulence factor Loa22 [124, 125]. In the genomes analyzed for this

study, 3 of the 9 pathogens had the complete cluster of genes involved in the production of

sialic acids; 3 more lacked 1 gene in the cluster (Table 3). L. weilii contains only 2 genes from

the cluster (spsE and rfbB3) and L. kirschneri and L. noguchii have only the spsE gene

All genomes, except L. licerasiae and L. wolffii have a N-acetylneuraminic (sialic) acid syn-

thetase (spsE) gene (NP_711790.1). Phylogenetic analysis of this protein shows 2 distinct

groups (S3 Fig). The first group contains the proteins from pathogens that contain the whole

cluster. These proteins are related to the synthetases involved in the production of legionaminic

acids. The second group contains the proteins from the intermediate species, the saprophytes

and the pathogens L. kirschneri and L. noguchii. This group of synthetases is related to those

producing pseudaminic acids.

The lack of a second sialic acid synthetase (NP_711794.1) in L. kirschneri and L. noguchii

differentiates these pathogens from L. interrogans, which does contain this gene. These synthe-

tases contain a phosphatase domain in addition to the NeuB domain, which suggests an ani-

mal-like Neu5Ac biosynthetic pathway. The pathogen L. weilli lacks NP_711794.1 but

saprophyte L. vanthielli contains a similar synthetase but one that is missing the N-terminal

transferase domain present in leptospiral pathogens. Finally, a UDP-N-acetylglucosamine

diphosphorylase (NP_714003.1) was found in all leptospiral genomes studied. This gene is not

located within the sialic acid gene cluster, and is also annotated as a MobA-like NTP transfer-

ase domain, therefore its role in sialic acid biosynthesis is unclear.

The sialic acid biosynthetic genes in leptospiral pathogens have some notable characteris-

tics. L. alexanderi lacks O-acyltransferase (neuD) and this species and L. borgpetersenii have a

truncated version of a nucleoside-diphosphate-sugar epimerase (NP_711787.1) (S3 Fig;

Table 3). Only L. santarosai has a N-acetylneuraminic (sialic) acid synthetase with a phospho-

glycerate dehydrogenase domain. Notably, none of the intermediate or saprophyte species con-

tain the metabolic machinery to synthesize sialic acids, confirming previous suggestions [124].

Leptospiral mobile elements: phage and CRISPR-Cas systems

Phage. Bacteriophages are abundant biological entities that have significant effects on bac-

terial evolution. Some estimates suggest that there are approximately ten-fold more phages
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than bacteria [126, 127]. However, our current knowledge of phages infecting Leptospira spp.

is limited. Three distinct L. biflexa phages were isolated from sewage water in Paris. Morpho-

logical analysis by electron microscopy revealed that these three phages belong to theMyoviri-

dae family and seem to be morphologically similar with polyhedral heads and contractile tails

[128]. One of these phages, the 74-kb LE1 prophage, was shown to replicate as a double-

stranded circular replicon in L. biflexa [129]. The genome of LE1 has a GC content of 36%,

similar to that of Leptospira spp., and most of the 79 predicted ORFs display no similarity to

known ORFs, but 21 ORFs appeared to be organized in clusters that might encode head and

tail structural proteins and immunity repressor proteins [130].

Next generation sequencing and refinement of computational methods have allowed com-

parative genome analysis to discover new prophage and genomic islands [131]. A few phage

related genomic islands have thus been characterized in L. interrogans and L. licerasiae [122,

132, 133] and it was previously shown that one of these genomic islands can excise from the L.

interrogans chromosome [133].

To determine the distribution of prophages within the Leptospira genus, Phage_Finder [60]

was run under both strict (-S) and non-strict modes to identify predicted prophage regions.

Phage_Finder predicted a total of 14 major prophage regions across the 20 genomes, most of

which were found to be shared between the Leptospira species (Table 4). Among the prophage

sequences, the LE1-like prophage is found in many genomes, suggesting that double-stranded

DNA tailed phages, which are the most frequently observed phages in bacteria [134], are com-

mon phages infecting Leptospira. The presence of numerous phage-associated sequences in the

genome of pathogens and intermediates, in comparison to the saprophytes, suggests that

phages have played an important part in the evolution of these lineages, as has been experimen-

tally shown in L. biflexa [135].

Further experimental studies of Leptospira phages, which would include both electron

microscopic visualization and production of phage in vitro, will be important to determine

whether recombinant Leptospira phage might be useful for genetic manipulation studies of dif-

ferent Leptospira species, particularly pathogens and intermediates.

CRISPR/Cas systems. Three described types of CRISPR/Cas systems are common in Lep-

tospira genomes and only found in infectious members of the genus (Table 5): the E. coli (type

I-E), DVULG (type I-C), and MYXAN systems [96, 136, 137]. A single sequenced genome, L.

inadai serovar Lyme str. 10, has the recently described PreFran type, which has been found in

Prevotella and Francisella [96]. Four of the 20 representative strains have components of two

CRISPR/Cas types, suggesting that for some isolates there is redundancy in CRISPR/Cas

machinery. Surprisingly, half of the 20 representative Leptospira strains contained predicted

CRISPR repeats, which were more common in pathogens and intermediates than in sapro-

phytes, which lacked CRISPR systems. In none of the six saprophytes examined—L. biflexa, L.

meyeri, L. wolbachii, L. vanthielii, L. yanagawae, and L. terpstrae—were CRISPR/Cas systems

detected, suggesting that these species rely on some other mechanism for escaping phage/plas-

mid attack. In these saprophytes, we were also unable to detect sequences encoding prophage,

while CRISPR systems and prophage occurred together in several, but not all, representative

pathogenic and intermediate strains.

When present, between one and six CRISPR repeat arrays were detected, containing

between three and 25 spacer sequences (Table 5). Since CRISPR spacer sequences in other

organisms are known to target phage sequences for destruction, we wondered if any of the 239

predicted spacer sequences targeted any of the known Leptospira spp. phage or predicted pro-

phages. A database containing the nucleotide sequences of the 19 predicted prophages from

this study plus the LE1 phage and the prophage from Qin et al. [32, 132] was constructed and

used to search all 239 predicted spacer sequences using BLAST+ 2.2.30 [138]. Upon filtering
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the data for matches spanning the entire spacer sequence, with 3 or fewer mismatches and with

a bitscore of 30+ revealed three spacer sequences matching two predicted prophage sequences

(Fig 6). Two different L. noguchii spacers matched the same predicted L. santarosai prophage

(Table 5). One of the same L. noguchii spacers also matched a predicted L. weilii prophage and

was also recognized by an L. weilii spacer (Fig 6).

Virulence and Survival Mechanisms

Adhesion to Extracellular Matrix (ECM). The presence of genes encoding putative adhe-

sive proteins through the 20 sequenced species was analyzed by BLAST and comparative

genome analysis (S8 Table). The widespread distribution of these genes within the Leptospira

genus suggests that their functions arose independent of mammalian adaptation, but any

potential role in adaptation to an environmental lifestyle remains speculative. These predicted

adhesion-related proteins were generally distributed among the 20 species except for the pre-

dicted adhesin-encoding gene LenB, identified only in pathogenic L. interrogans serovars Lai

and Copenhageni strains; in the saprophyte L.meyeri; and Lsa27, Lsa21, LipL53 present in two,

three and five pathogen species, respectively. Three predicted adhesin-encoding genes were

restricted to pathogenic species: Lsa30, Lsa44 andMfn6. Lsa30 was present in all species, Lsa44

was absent in L. interrogans serovar Lai and L. weilli, andMfn6 was absent in L. weilli and L.

alexanderi. The genes encoding Lsa23, Lsa26, Lsa33, Lsa45, Lsa66, LipL32 andMfn1 were

found in all infectious species (pathogens and intermediates) but absent in saprophytes. The

Len protein family members were variably distributed. Lsa24/LenA was identified in all

sequenced strains, while LenB, LenC, LenD, LenE and LenF were found in both pathogens and

saprophytes; LenD was also found in the intermediate L. wolffii. Lsa23, Lsa26, Lsa33, Lsa45,

Lsa66, LipL32 andMfn1 were found in all pathogenic and intermediate but are absent in sapro-

phyte strains. The Len protein family showed a random distribution among the genome

Fig 6. CRISPR Spacer Sequences that Recognize Leptospira Predicted Prophages. The CRISPR sequences are shown, which correspond to specific
prophage accession numbers as listed in Table 4.

doi:10.1371/journal.pntd.0004403.g006
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species: Lsa24/LenA was identified in all sequenced strains, while LenB, LenC, LenD, LenE and

LenF were found in both pathogenic and saprophytic Leptospira, and LenD was also found in

L. wolffii, an intermediate. The adhesins Lsa20, Lsa25, Lsa36, Lsa63, TlyC, OmpL1, OmpL37,

OmpL47,Mfn7 and rLIC12976 were identified in all pathogenic, intermediate and saprophyte

species;Mfn9 was found in all except in L. santarosai. Also listed are plasminogen- and com-

plement regulator-binding proteins (S8 Table) that have functions related to the predicted pro-

teins listed above.

Complement evasion and ECM degradation via metalloproteases. Two leptospiral pro-

teases have been suggested as virulence factors: thermolysin and collagenase. Thermolysins are

members of the M4 metalloprotease family that can be identified bioinformatically by the pres-

ence of two N-terminal propeptide (FTP, and PepSY) and two C-terminal protease domains

(Peptidase_M4 and Peptidase_M4_C) [139]. Using Pfam HMMs targeting these four domains

(e.g., PF07504, PF03413, PF012868 and PF01447), we identified LIC13322 and four additional

predicted thermolysin orthologs only in pathogenic Leptospira spp.: LIC10715, LIC13320,

LIC13321, and LEP1GSC059_0182 (S9 Table), primarily among L. interrogans, L. kirschneri

and L. noguchii. LEP1GSC059_0182 was found only in one species, L. noguchii. No thermoly-

sin ortholog was found in intermediate or saprophytic species.

Collagenase has been suggested to be a virulence factor in Leptospira based on observed in

vivo expression, detection of specific anti-collagenase antibodies induced by infection, and the

effects of ColAmutagenesis and complementation on traversal of cell monolayers and outcome

of experimental animal infection [140, 141]. Comparative genomic analysis identified two col-

lagenase genes, restricted to pathogenic Leptospira spp.: orthologs of one (LIC_12760) were

found in all pathogens except L. kmetyi; an additional paralog, EMN46521, was restricted to L.

weilii and L. alexanderi, and based on nearly identical size and closely related amino acid

sequences, likely arose by gene duplication (S9 Table). The implications of this latter finding

for pathogenesis are unclear.

Resistance to oxidative stress. Three enzyme systems have conventionally been associated

with the ability of pathogenic bacteria to defend against host-derived oxidative stress-related

mediators such as hydrogen peroxide and superoxide radicals: catalases, peroxidases and

superoxide dismutase. While catalases generate water and oxygen from H202, peroxidases gen-

erate water and an oxygen radical.

KatA and another but uncharacterized predicted catalase ortholog (LEP1GSC062_4039)

were only found in pathogenic Leptospira, suggesting that these enzymes play an important

role for Leptospira living within the mammalian host (Table 6). Conversely, superoxide dis-

mutase was not found in pathogenic Leptospira but only in saprophytic Leptospira, suggesting

either that pathogenic Leptospira are not exposed to oxygen radicals in the environment, or,

more likely, that this clade of Leptospira has developed alternative ways to detoxify oxygen

radicals.

Immunodominant proteins of Leptospira. Previously published protein microarray anal-

ysis demonstrated the presence of immunodominant proteins of L. interrogans serovar Copen-

hageni using sera from confirmed leptospirosis cases in Bahia state, Brazil. The top 24

immunogenic hits from this analysis were analyzed throughout the genus Leptospira, focusing

on the presence of orthologs and their amino acid similarities (S10A Table). Only 1 of these

genes (a methyltransferase, NC_005823.1) was restricted to L. interrogans, and only 1 (Lig A)

was found in only L. interrogans and kirschneri, with the caveat that a 56% homologous LigA

domain was found in L. alstoni, a leptospire with unclear disease potential. Orthologs of 20 of

these 24 hits were detected in all Leptospira species but with variable amino acid similarities,

suggesting that species- (and perhaps serovar-) specific protein microarrays might be necessary

for accurate assessment of immune responses induced by different Leptospira in humans.
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Further, to validate such arrays with well-defined sera from leptospirosis cases, identification

of the infecting leptospire will be necessary.

The extensively-studied leptospiral immunoglobulin-like (Lig) protein family is comprised

of three proteins, LigA, LigB and LigC [142, 143], which have bacterial immunoglobulin-like

(Big) repeat domains, a motif found in virulence factors of other bacterial pathogens [144, 145].

The three genes encoding Lig proteins were believed to be pathogen-specific [142, 146–148].

Comparative analysis of 20 genomes confirmed that ligA and ligB were present exclusively in

pathogenic Leptospira: ligB was identified in all pathogenic species, ligA was found in three of

the nine pathogenic species, L. alstoni, L. kirschneri and L. interrogans (S10B Table). While ligC

was found in the five intermediate species and five of nine pathogenic species (S10B Table),

none of the lig genes were identified in genomes of saprophytes. ligC was previously identified

as a pseudogene from sequence analysis of a limited number of strains [142, 147, 148].

The unique structure of LigA, LigB and LigC proteins, which includes a large number of

tandem Big domains, is conserved across species for which lig genes were found. ligB and ligC

encode molecules which are comprised of a lipobox sequence, 12 tandem Big2 type domains

and a C-terminal non-Big domain (S10B Table), whereas ligA encodes a protein with 13 tan-

dem Big domains which lacks a C-terminal non-Big domain. Of note, further prospection of

the genome sequence and ortholog families identified four additional genes that encode Big2

and Big3_4 domain-type containing proteins (S10B Table). These genes are different from the

conventional lig gene family in that they encode proteins with a small (1–2) number of Big

domains. Interestingly, a gene (LIC13050) encoding a protein with two Big3_4 domains was

found in all Leptospira species, including the saprophytes.

PF07598 paralogous gene family. Previous work identified a group I-specific family of

proteins corresponding to Pfam model PF07598 [149] that was expressed in vivo in a hamster

model of acute leptospirosis [149], and expanded in strains, e.g., Copenhageni and Lai, that

commonly cause severe disease, suggesting that these proteins contribute to Leptospira viru-

lence. These prior studies focused on finding PF07598 orthologs to the L. interogans Lai attenu-

ated strain in the 20 representative Leptospira spp., but did not look for strain-specific homologs

that match PF07598 HMM. To identify novel PF07598 family members, we identified clusters

of protein orthologs from our pan-genome run that matched PF07598 above trusted cut-offs;

this analysis also included matches within the genomes of previously sequenced strains L. borg-

peterseniiHardjo L550 and JB197 (and previously annotated as conserved hypothetical pro-

teins). At least 26 distinct orthologs ranging in length from 47 (LEP1GSC049_1303 unique to L.

kirschneri) amino acids to 651 (LEP1GSC193_2756; L. alstoni 80–412) were identified (Table 7;

only homologs longer than 200 amino acids shown). As previously reported, L. santarosai

1342KT contains two distinct homologs, while L. kirschneri 3522 CT at least 15 and L. noguchii

CZ214 at least 14 including 5 (LEP1GSC059_0232, LEP1GSC059_3018, LEP1GSC059_3019,

LEP1GSC059_3599 and LEP1GSC059_3600) without an apparent ortholog in any of the other

strains tested (Table 7). L. borgpetersenii Javanica (4 total) and the previously sequenced

genomes of two Hardjo strains (3) contain two orthologs in common, while Javanica has two

distinct copies (LEP1GSC103_4030 and LEP1GSC103_0672) not present in Hardjo and both

Hardjo strains share an ortholog (LBJ_1339 and LBL_1564) not present in Javanica. In addition,

L. interrogans L1-130 contains an ortholog (LIC_10639) shared with L. noguchii CZ214T and L.

kirschneri 3522 CT not present in L. interrogans 56601 consistent with the hypothesis that sero-

var Lai has lost this ortholog.

To better understand the evolution of this paralogous gene family, a phylogenetic tree of all

PF07598 members detected in infectious Leptospira was constructed using homologs longer

than 200 amino acids shown (Fig 7A). A complex web of lineage specific gene duplications and

loss was revealed. For example, as highlighted in (Fig 7A), successive gene duplications and
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subsequent gene loss have led to four distinct clusters containing proteins in L. interrogans, L.

kirschneri and L. noguchii PF07598 family members. The initial duplication event led to diver-

gence of the first orthologous group comprising LEP1GSC059_0224 (L. noguchii) and

LIC_12985 and LA0591 (L. interrogans) and apparent loss of the corresponding ortholog in L.

kirschneri (�). The second, an L. interrogans-specific event (��), led to the divergence of two

orthologous groups comprised of LA_0589, LIC_12986 and LEP1GSC049_3370, and

LA_3388, LIC_10778 and LEP1GSC049_0186, respectively. L. interrogans Lai 56601 has seem-

ingly lost an ortholog belonging to a group containing LIC10639 and LEP1GSC049_1381

Fig 7. Phylogenetic Relationship of PF07598 Paralogous Family in Leptospira. (A) Unrooted
bootstrapped phylogenetic tree; (*) Gene duplication event; (**) gene duplication event; (***) gene deletion.
(B) Principal components analysis was used to arrange PF07598 family members. Color legend indicates the
PF07598 family members from specific serovars depicted as diamonds. Arrowheads indicate L. noguchii-
specific orthologs. Only PF07598 family members longer than 200 amino acids are included in the analysis.
Clusters (A, B and C) were defined by K-means clustering with Kendall rank correlation.

doi:10.1371/journal.pntd.0004403.g007
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comprised of proteins belonging to L. interrogans Copenhageni and L. kirschneri, respectively;

and L. kirschneri 3522CT, L. alexanderi and both L. borgpeterseniiHardjo strains seem to have

lost an ortholog present in the other pathogenic strains (���). This pattern of species and sero-

var specific gene duplication and gene deletion occurs throughout the tree. K-means clustering

with Kendall rank correlation grouped the L. interrogans Lai orthologs into three clusters com-

prising family members with>90% inclusion probability: LA_1400 and LA_1402 (cluster A);

LA_0589, LA_0591, LA_0835 and LA_3388 (cluster B); and LA_0620, LA_0769, LA_0934,

LA_2628 LA_3271 and LA_3490 (cluster C) (Fig 7B).

Motility and chemotaxis. Since motility is required for pathogenesis [150, 151], it is plau-

sible that there are differences in motility and chemotaxis gene content that distinguish infec-

tious from non-infectious species. We identified a total of 76 CDSs encoding proteins involved

in leptospiral motility and chemotaxis, using the annotated genome of the Leptospira interro-

gans serovar Copenhageni strain Fiocruz L1-130 as a reference. We established the amino acid

sequence identity of CDSs in 20 Leptospira genomes based on their respective orthologs in the

strain Fiocruz L1-130 genome (S4 Fig; S11 Table). Among these, 37 CDSs were predicted to

encode proteins in the basal body assembly and export apparatus; 7 CDSs were predicted to

encode proteins in the flagellar hook assembly; 7 CDSs were predicted to encode proteins

involved in the filament assembly; and 25 CDSs were predicted to encode proteins in chemo-

taxis (S4 Fig; S11 Table).

Proteins involved in motility were highly conserved among all the 20 Leptospira species

according to BLAST analysis and PanOCT ortholog clusters (S4 Fig). The filament is the por-

tion of the flagella which demonstrated the highest amino acid sequence identity, with a mean

of 97.9%, 86.4 and 72.4% amino acid sequence identity among pathogenic, intermediate and

saprophytic species, respectively (S11 Table). The ORFs that encode the flagellar hook proteins

also demonstrate high amino acid sequence conservation, with an average sequence identity of

86.0% and 61.7% in pathogenic and saprophytic species, respectively (S11 Table). FliK, a bi-

functional protein involved in determining hook length and modulating export-pathway speci-

ficity at the hook–filament checkpoint [152, 153], was the only protein that showed a low level

of identity among the three species groups, including within the pathogenic species (69.7%, S4

Fig and S11 Table).

Although CDSs encoding basal body proteins showed the lower amino-acid identity among

motility genes, the average identity was high, ranging from 93, 73, and 60% within pathogenic,

intermediate and saprophytic species (S4 Fig and S11 Table). In this category, three proteins

showed 50% identity or lower when comparing pathogenic species with intermediates and sap-

rophytes. The protein FlgA is involved in the P-ring formation, whereas the FliO and FliJ are

involved in the export apparatus. In addition, five CDSs showed an amino acid sequence iden-

tity below 50% between pathogenic and saprophytic species, which were CDSs encoding pro-

teins FlgH and FlgL involved in the L- and P-ring formation, respectively, proteins FlgN and

FlhX involved in the export apparatus, and the FliG1 protein, which is involved in the motor

switch. The P- and L-ring form the outer cylinder and acts as a bushing for the central rod [153,

154] and is believed to participate only passively in the motor mechanism, while the FliG1 pro-

tein is believed to be partly responsible for the asymmetrical rotation of the flagella [155].

CDSs encoding chemotaxis proteins are highly conserved among pathogenic species (87%

amino acid sequence identity). In contrast, ORFs encoding such proteins are less conserved

when comparing pathogenic species with intermediates and saprophytes species groups and

have lower amino acid sequence identity (48 and 43%, respectively, S4 Fig and S11 Table).

More than 70% of the orthologs of chemotaxis proteins within intermediate and saprophyte

species had less than 50% amino acid sequence identity when compared to pathogenic species.

Among these proteins, the majority were methyl-accepting protein (MCP) homologs, but
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include also chemotaxis regulators like cheA, cheR, cheB and cheY (S4 Fig and S11 Table).

Whereas orthologs associated with construction of the flagellar filament are conserved across

pathogenic, intermediate and saprophytic species, ORFs encoding two chemotaxis proteins,

one MCP homolog and cheR1, in pathogenic species had no orthologs in intermediate and sap-

rophytic species. Furthermore, one MCP homolog protein in pathogenic and intermediate spe-

cies had no orthologs in saprophyte species, suggesting a degree of divergence with respect to

chemotaxis between pathogenic, intermediate and saprophyte Leptospira species.

Gene regulation and sensory transduction

Alternative sigma (σ) factors. σ factors are a class of proteins constituting essential disso-

ciable subunits of prokaryotic RNA polymerase. σ factors provide promoter recognition speci-

ficity to the polymerase and contribute to DNA strand separation. All bacterial species have a

housekeeping σ-factor (σ70) responsible for transcription from the majority of promoters.

Most bacteria encode additional alternative σ-factors that redirect RNAP to distinct sets of pro-

moters, which can contribute both directly and indirectly to environmental adaptation and

bacterial virulence. In addition to a housekeeping sigma factor σ70 (LIC11701, RpoD), all Lep-

tospira species have an alternative sigma factors σ54 (LIC11545, RpoN) involved in nitrogen

and many cellular and environmental regulations, σF involved in flagella gene expression

(LIC11380 (FliA,), 5–11 extracytoplasmic function (ECF) σ factors (σE) involved in regulation

of membrane and periplasmic stress, and more than 30 anti-σ regulators (S12 Table).

Leptospiral species differ in σ-factors. First, pathogenic Leptospira have two activators

(enhancer-binding protein, EBP) for σ54, whereas saprophytic Leptospira species has only one.

σ54 is a unique sigma factor that is phylogenetically different from other σ actors. It recognizes

a unique −24/−12 promoter sequence (instead of -35/-10 sequence for σ70) and its activation

always requires an activator, EBP. Signals feed into EBP and activate σ54–dependent genes.

Each EBP-σ54 pairs responds to different signals and activates a set of genes. Our analyses show

that while all pathogenic Leptospira appear to have two activators (herein named as Leptospira

enhancer-binding protein A and B that can be denominated EBP-A and EBP-B, saprophytic

Leptospira have only one EBP (EBP-A) (S12 Table). Although the upstream signals and down-

stream targets remain to be elucidated, we speculate that LepA-σ54 modulates a group of genes

involved in environmental survival for both pathogenic and saprophytic Leptospira, whereas

LepB-σ54 is important for pathogenic Leptospira species to adapt to host environment. Second,

pathogenic and saprophytic leptospiral species differ in ECF σ factors. Pathogenic and interme-

diately pathogenic Leptospira have 9 to 10 ECFs, and saprophytic species often have 5 ECFs.

One ECF (LIC10599) is only found in highly pathogenic Leptospira, while 2 ECFs are only

associated with saprophytic Leptospira (S5 Fig; S12 Table). Lastly, Leptospira have more than

30 regulators predicted as anti-σfactors, anti-anti-σfactors, and regulators of anti-anti-σfactors.

Although their functions remain unclear, some of these regulators may modulate ECF func-

tions as observed in B. subtilis. Nevertheless, there are some obvious differences in their distri-

butions among Leptospira species (S12 Table). It is conceivable that the ECFs and regulators of

σ factors present only in saprophytic Leptospira are involved in responding to environmental

stress, whereas the ECFs and regulators of σ factors present only in pathogenic Leptospira are

likely important for Leptospira’s life cycle in mammalian hosts.

Two Component Systems (TCS). TCSs are the predominant molecular switches control-

ling signaling events in bacteria. Typically, TCSs consist of a sensor histidine kinase (HK) and

an effector response regulator (RR). A single polypeptide merging both components results in

hybrid histidine kinases (HHKs). HKs and RRs are usually found adjacent to each other in the

genome. Orphan TCS proteins are unpaired HKs/RRs, which work with their cognate partners
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that are far apart in the genome. In addition, multistep phosphorelays may include intermedi-

ate histidine phosphotransferase proteins (Hpt), adding further complexity to TCS networks.

Pathogenic, intermediate and saprophytic Leptospira species encode an unusually large and

diverse set of TCSs, including orphan HKs and RRs, HHKs and Hpts in addition to classical

paired HK/RR systems (Table 8 and S13 Table). Of note, more than 60% of the TCS genes

found in Leptospira genomes encode non-classical orphan HK, orphan RR, HHK and Hpt pro-

teins (Table 8). Overall, pathogenic species had the lowest average number of TCS genes (76),

while saprophytic ones had the largest (102) (Table 8). Genome size-normalized TCS data

revealed that pathogenic Leptospira species have roughly 35% less TCS genes in comparison to

intermediate and saprophytic species (S6 Fig and Table 8). Additionally, pathogenic species

had a proportionally lower number of strain-specific TCS genes compared to intermediate and

saprophytic species (S7 Fig and S14 Table). We also identified a core set of 16 TCS genes shared

among all the Leptospira genomes being analyzed (S7 Fig). Half of these TCS genes, conserved

among all Leptospira species, were orphan HK/RRs (S15 Table). Taking into account their high

conservation throughout the species, irrespective of saprophytic or pathogenic mode of lives,

this core set of TCSs probably regulates pivotal cellular pathways in Leptospira.

Although there were 15 TCS genes conserved among pathogen and intermediate species, we

did not identify genes that were shared between saprophyte:pathogen or saprophyte: interme-

diate species (S7 Fig). This finding is in agreement with the previous observation that

Table 8. Summary of two component systems identified in 20 Leptospira genomes.

Species Non-Orphan HK Non-Orphan RR Orphan HK Orphan RR Hybrid HK Hpt Total TCS to genome size a

Pathogenic

L. interrogans 12 12 13 22 12 3 74 15.99

L. kirschneri 9 9 12 24 12 3 69 15.64

L. noguchii 12 12 12 23 12 3 74 15.70

L. alstoni 15 15 14 24 14 4 86 19.38

L. weilli 13 13 11 19 11 3 70 16.41

L. alexanderi 11 11 12 20 11 3 68 16.09

L. borgpetersenii 12 12 12 21 11 3 71 18.22

L. santarosai 13 13 11 20 11 3 71 17.80

L. kmetyi 18 18 18 25 19 3 101 22.85

Intermediate

L. fainei 19 19 15 27 18 4 102 23.79

L. broomii 21 21 14 26 21 4 107 24.34

L. wolffii 18 18 19 30 16 4 105 23.85

L. licerasiae 15 15 14 36 16 5 101 23.98

L. inadai 17 17 14 28 17 5 98 21.98

Saprophytic

L. wolbachii 17 17 13 33 20 4 104 25.47

L. yanagawae 14 14 16 32 18 4 98 24.16

L. biflexa 14 14 14 34 19 4 99 25.05

L. vanthielii 15 15 12 33 19 4 98 23.15

L. terpstrae 16 16 15 34 22 4 107 26.14

L. meyeri 16 16 13 36 21 5 107 25.54

a Number of TCSs / Total genome size (Mb) respective to each Leptospira species.

Abbreviations: HK, histidine kinase; RR, response regulator; Hpt, histidine phosphotransferase; TCSs, two component systems; Mb, megabase.

doi:10.1371/journal.pntd.0004403.t008
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intermediate Leptospira spp. are more closely related to pathogens rather than to saprophytes,

and that the gene order is more conserved in pathogenic and intermediate species [32]. Among

the 15 TCS genes found in both pathogenic and intermediate species, 5 were orphan RRs, 4

were orphan HKs, 2 were HHKs, and only 1 was a classical HK:RR pair (S13 Table).

It is worth noting that L. kmetyi and L. alstoni were outliers with respect to being pathogenic

species that harbored the largest number of species-specific TCS genes (27 and 17, respectively)

and the largest overall number of TCSs within this species group (S7 Fig and S14 Table). In

contrast, L. alexanderi did not contain any species-specific TCS genes (S7 Fig and S14 Table).

The seven TCS genes present in all pathogenic species (S16 Table) may represent moieties

involved in common signaling pathways and may play a role in host colonization and pathoge-

netic mechanisms.

Discussion

Here we used comparative whole genome analysis to answer the overall question, “what makes a

bacterial genus pathogenic?” This analysis delineated the definitive phylogenetic relationship

among 20 species of Leptospira, and demonstrated that infectious species and clades of Leptospira

contain unique genes that are not found in non-infectious Leptospira (summarized in Table 9).

In a general sense, the comprehensiveness of this analysis is fundamentally important for

understanding large-scale evolutionary mechanisms by which saprophytic bacteria acquire

genes to enable infectiousness and pathogenicity. More specifically, considering how complex

the genus Leptospira is—among the most complex genera of pathogenic bacteria—our analyses

indicate that many genetic events over evolutionary time have given rise to pathogenic Leptos-

pira of diverse biological properties. The genus Leptospira contains non-infectious environ-

mental saprophytes and those members infectious to mammals. Infectious Leptospira are

subdivided further into phylogenetically separated groups: pathogens (group I) and

Table 9. Summary of Some Key Genomic Differences in Leptospira Species that Suggest Role in Evolution from Saprophyte to Infectious
Pathogen.

Name of feature General function (Table/Fig) Comments

Rfb locus Serovar-specific polysaccharide biosynthesis on
lipopolysaccharide (Fig 5; S2 Fig)

Rfb loci more complex in pathogenic Leptospira than in
intermediates and saprophytes, possibly reflecting adaptation to
mammalian environments and pathogen-host cell interactions

CRISPR/Cas systems Defense against exogenous nucleic acids (Table 5; Fig
6)

Found only in pathogenic and intermediate Leptospira

Proteolytic enzymes
(thermolysin, collagenase)

Degradation of host proteins (eg., complement
components, interstitial proteins including collagen) (S9
Table)

Immune evasion, invasion of mammalian host tissues

Sialic acid biosynthetic
genes

Predicted to modify proteins with neuraminic acid
(Table 3; S3 Fig)

Complete loci found only in pathogenic Leptospira; sialic acid-
modified proteins predicted to be involved in pathogen-host
interactions

Catalase/peroxidase/
superoxide dismutase

Detoxification of oxidative radicals (Table 6) Catalase only found in pathogenic Leptospira; superoxide dismutase
absent in pathogenic Leptospira

Extracellular matrix
(ECM)-binding proteins

Adhesion (S8 Table) Some members found only in pathogenic and intermediates; some
found only in pathogenic; some found in all clades. Potentially
mediate Leptospira adhesion to host cells (in case of infectious
Leptospira); may be involved movement of Leptospira in and through
tissue interstitium; may generally promoting invasion/colonization
processes

Cobalamin biosynthesis Production of vitamin B12 (Table 2) Infectious Leptospira predicted to be autotrophic for B12
biosynthesis, predicted to be important during in vivo mammalian
infection

PF07598 family Unknown (Table 7) Upregulated in vivo; found only in pathogenic Leptospira

doi:10.1371/journal.pntd.0004403.t009
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intermediate pathogens (group II). Previous systems (pathogenomic) approaches began to

yield insights into the large scale set of genes that enable infectious Leptospira to adhere, invade,

colonize, persist, evade the immune system and cause disease in mammalian reservoirs hosts as

well as accidental hosts [32, 149, 156]. By identifying novel gene families, differences in patho-

gen clade-related gene content, and key potential metabolic differences among infectious Lep-

tospira species as well as Leptospira species that have contrasting potential for causing severe

disease, for example, the present work contributes towards the next generation of leptospirosis

pathogenesis experimental studies. The data and analyses resulting from this Leptospira

Genome Project will contribute to new research directions in diagnostics, vaccine and thera-

peutics development to prevent and ameliorate leptospirosis, with One Health relevance for

the health of humans and animals of veterinary importance alike.

This comparative analysis of the genus Leptospira assessed phylogenetic relationships

among species in several independent ways, including single locus, multilocus [51] and whole

genome approaches. All approaches robustly confirmed the separation of the 20 Leptospira

species into three clades: pathogens, intermediate pathogens and saprophytes; infectious Lep-

tospira include members of the pathogen and intermediate pathogen clades. Whole genome

analysis produced consistent dendrograms, similar but not identical to those obtained by

multi-locus sequence typing (MLST) [51]; MLST has been most useful for characterizing Lep-

tospira isolates [22, 51, 70, 157, 158] but also has been used to identify Leptospira strains

directly in clinical samples. Speciation based on Bayesian analysis of 16s rDNA (rrs) gene

sequences has become generally accepted [35] for Leptospira, especially differentiation of path-

ogen from non-pathogen (potential contaminant). However, the Leptospira 16S rRNA gene is

highly conserved so that species cannot be further subdivided. For example, 16S rDNA

sequence-deduced phylogeny could not distinguish L.meyeri from L. yanagawae. However,

the data provided here and elsewhere demonstrate that the gold standard for future definitive

taxonomical definition of any Leptospira isolate will be based on whole genome sequence-

based in silico DNA-DNA hybridization [11]. Genome-to-genome distances (GGD) analysis

confirmed in silico DNA-DNA hybridization results. As previously determined by the classical

in vitro-performed DNA-DNA hybridization studies, each of the representative strains repre-

sents a distinct species (estimated hybridization between pair of strains<70%) (S2 Table). For

example, L. interrogans serovar Icterohaemorrhagiae strain M20 is phylogenetically related to

L. kirschneri strain 3522C (estimated hybridization 42.30% ± 2.53) and L. noguchii strain

CZ214 (estimated hybridization 37.80% ± 2.49), while other pathogenic, intermediate and sap-

rophytic species are distantly related to L. interrogans (S2 Table). One serovar may belong to

more than one species (Fig 5) so that serovar does not have precise taxonomic implications,

although the present analysis is limited by not exploring within-species O-antigen loci in the

genomic data from the 320 isolates for which genomic sequence information was generated.

Finally, serovars belonging to the same species had GGD values higher than 70% DDH similar-

ity. In silico DDH values therefore accurately reflect whole genome relatedness and may be

used for the purpose of species delineation [159, 160], thus replacing the classical DNA-DNA

hybridization technique which, we argue, is now obsolete. The use of genome sequences also

provides reusable data and reproducible results. The GC content and a set of core genes

(including ribosomal genes) can also be extracted from genome sequences to verify that the

data are phylogenetically consistent.

Lipopolysaccharide rfb biosynthetic loci in 20 Leptospira species

A remarkable feature of Leptospira—one that has often dominated the study of Leptospira over

the past century—is the serologically-determined variety of Leptospira serovars. Serovar
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identification based on serological agglutination tests previously was the basis of Leptospira

taxonomy, and continues to be important for understanding leptospirosis epidemiology related

to human and animal infection and mammalian reservoir hosts. The present comparative

genome analysis of 20 Leptospira species, as well as hundreds of additional Leptospira whole

genome sequences not yet completely analyzed, demonstrates genetic determinants of the anti-

genic carbohydrates (putatively O-antigens). Therefore molecular analysis of genes in the rfb

O-antigen locus rather than serological tests will be the future basis of serovar identification.

Leptospiral LPS has long been known to be non-endotoxigenic, the basis for which is

thought to be due to unusual modifications of the core Lipid A component of LPS resulting in

altered Toll-like receptor-mediated innate immune responses [161–164]. Leptospiral serovar,

determined by LPS antigenicity, seems to have some association with mammalian host predi-

lection—for example, serovar Copenhageni with Rattus spp., serovar Canicola with dogs [1, 2,

165]—but a causal, mechanistic role here remains to be experimentally demonstrated. Indirect

evidence from other microbial systems suggests the speculative hypothesis that the diversity of

leptospiral LPS may be driven by environmental ecology-mediated selection pressures [166,

167], such as has been reported in Salmonella spp. which has many (>2000) serotypes). The

genus Leptospira has been reported to contain more than 300 serovars [1, 2, 165], the basis for

which remains essentially unexplored.

Metabolic reconstructions

Here we report the first genomically-predicted metabolic network analysis [168, 169] of Leptos-

pira, comparing members of the pathogen, intermediate pathogen and saprophyte clades.

These large-scale reconstructions allow classification of the conserved metabolic capabilities

(core metabolic network) and the unique metabolic capabilities (pan metabolic network).

These reconstructions can be further converted to metabolic models of metabolism to probe

metabolic capabilities computationally.

The most striking differences between infectious/pathogenic Leptospira and non-pathogens

arose in porphyrin and vitamin biosynthetic capabilities. L. interrogans was shown to have a

nearly complete vitamin B12 biosynthetic pathway that enables de novo B12 synthesis from an

L-glutamate precursor, while L. biflexa completely lacked this pathway. Only pathogenic Lep-

tospira—L. interrogans and L. kmetyi—were predicted to have a full folate biosynthetic path-

way. These differences in biosynthetic capabilities may allow such pathogens to survive in

nutrient-limited niches within the mammalian host. These observations are consistent with

previous observations that found that L. interrogans serovar Canicola can grow in vitro in the

absence of B12 but not B1 [170], but in contrast with observations of others who concluded

that pathogenic Leptospira could grow in the absence of B1 but not B12 [171].

An open question in Leptospira biology is why L. interrogans grows more slowly than do

intermediate pathogens and saprophytes, such as L. licerasiae and L. biflexa, which grow rap-

idly in defined EMJH medium [38]. The metabolic network model of L. interrogans was shown

to lack L-glutamate oxidoreductase, an enzyme involved in recruiting ammonia as a nitrogen

source [172, 173]), predicting a lower growth yield compared to the other Leptospiramodels in

our in-silicominimal media analysis. The model of L. biflexa predicted the greatest yield with

this reaction because this Leptospira contains the L-aspartate ammonia-lyase reaction allowing

it to convert L-aspartate into fumarate and ammonia, in addition to using this component

solely for biomass generation. These observations hint at one possible solution to the question

of different growth rates, but model-guided experimentation is required to validate this predic-

tion. Predictions made using these metabolic networks depend on an accurate reactome [174],

and must be validated experimentally. If the models reported here are further curated and
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experimentally validated they would be the first such mode for a pathogenic spirochete. Such

an approach will yield fundamental insights into diverse metabolic capabilities of this diverse

phylum, including Borrelia spp., which cause Lyme borreliosis and relapsing fever, and Trepo-

nema spp., which cause syphilis, yaws, periodontitis and other diseases.

Vitamin autotrophy

Vitamin B12 (cobalamin) is the largest and most complex of natural organometallic cofactors

and coenzymes, its de novo synthesis requiring ~30 energetically costly enzymatic steps [175].

Mammals have evolved highly complex, regulated mechanisms to absorb, transport and store

cobalamin [176], reminiscent of the baroque processes involved in iron uptake, transport and

storage in humans [177] [178]. We found that the genetic machinery for B12 autotrophy is

found in infectious but not saprophytic Leptospira, leading us to speculate that such autotrophy

allows Leptospira to infect mammals in the face of B12 sequestration by the host.

All Leptospira survive in the external environment, but our analysis predicts that only path-

ogenic strains make cobalamin de novo from L-glutamate, suggesting that this process is critical

in vivo. Important in this context, cobalamin absorption and utilization in mammals is medi-

ated by an elaborate set of carrier proteins, receptors and transporters [176] that generally are

presumed necessary to process and protect this very large molecule. Considering the mechanis-

tic details of cobalamin handling in mammals and the B12 autotrophy of infectious Leptospira,

we hypothesize that mammalian B12 systems deprive invasive microbes of cobalamin, akin to

the role of iron absorption, transport and sequestration known to sequester iron from patho-

gens, which have evolved siderophore mechanisms to acquire iron in vivo in mammalian hosts.

Comparative analysis of de novo cobalamin biosynthesis in Leptospira predicts that infectious

Leptospira are autotrophic for synthesizing this compound while saprophytes are auxotrophic,

and suggests lines of experimentation to explore further the details cobalamin biosynthesis in

Leptospira. The significance of the absence of complete cobalamin biosynthetic pathways in

some group I Leptospira remains unclear.

Detoxification of reactive oxygen species suggests resistance to host
defense and differences in ecological niche

Previous comparative biochemical studies of spirochetes demonstrated catalase activity only in

pathogenic Leptospira (all of which were previously classified inclusively as L. interrogans), and

superoxide dismutase activity only in the saprophytic L. biflexa; peroxidase activity was present

in both clades [179]. An important finding in our comparative genome analysis was that the

Leptospira catalases, KatA and the putative catalase ortholog (LEP1GSC062_4039), were only

found in pathogenic Leptospira, while the single leptospiral superoxide dismutase gene sod was

found only in saprophytic Leptospira. Catalase has classically been associated with resistance to

phagocyte-produced oxidative burst-mediated killing of pathogens (viz. hydrogen peroxide),

typically intracellularly after phagocytosis. The presence of catalases only in pathogenic Leptos-

pira suggests the testable hypothesis that this enzyme class may be involved in intracellular

resistance to intracellular host cell killing, following on the published observations of patho-

genic Leptospira within phagolysosomes [180, 181]; whether pathogenic Leptospira survive and

proliferate in this subcellular compartment has not been conclusively demonstrated. Con-

versely, the absence of sod in pathogenic Leptospira suggests that this clade occupies an envi-

ronmental niche not exposed to oxidative radicals. Presumably the observation that sod is

restricted to saprophytes suggests that this clade is exposed to a different context in which oxi-

dative radicals are found in the environment.
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Adhesion

Extracellular matrix (ECM)-binding proteins potentially mediate Leptospira adhesion to mam-

malian host cells, movement of Leptospira in and through tissue interstitium, and generally

promoting invasion/colonization processes [37, 182–195]. A diverse array of ECM-binding

proteins has been identified suggesting a redundancy of adhesion molecules that are probably

part of invasion strategies of Leptospira. Indeed, many putative adhesins are multifunctional as

they bind plasminogen and generate plasmin [185, 196, 197], increasing proteolytic processes

associated with infection, or they could participate in immune evasion strategies by interacting

with complement regulators (see below). Moreover, several of these proteins are recognized by

human leptospirosis serum samples indicating their expression during infection. A caveat is

that almost all these putative adhesins have been identified based on binding studies with

recombinant proteins. Although site-directed mutagenesis of pathogenic Leptospira spp

remains difficult, relatively straightforward methods have been developed for functional analy-

sis of putative adhesins genes through gain-of-function studies in L. biflexa [92] [198][199].

Many putative adhesins are present in saprophytic Leptospira but the presence of DNA

sequences does not mean that the proteins are expressed. Although non-pathogenic Leptospira

species may encode the genes for putative adhesins, transcripts of ompL1 and the protein itself,

for example, have not been detected in L. biflexa serovar Patoc (190). In any event, adhesion to

environmental biotic or abiotic structures may be part of the biology of saprophytic Leptospira

but such a concept remains speculative at this time [200].

Many adhesins are multipurpose proteins as they bind PLG and produce PLA. The genera-

tion of fully active PLA, aside from its other functions, also contributes to the enhanced degra-

dation of complement components. Indeed, it has been shown that in Leptospira, PLA

decreases C3b and human IgG deposition, most probably through their degradation, thereby

hampering opsonization, restricting complement antibacterial functions [201]. Another mech-

anism of complement evasion is through the acquisition of host regulators of complement acti-

vation. Surface microbial proteins that bind to complement inhibitors and activate them

permit pathogens to inhibit the complement response on the bacteria [202]. Binding of Leptos-

pira to factor H (FH), factor H-like protein (FHL-1) and C4 binding protein (C4BP) has been

reported [203, 204] and several complement regulators-binding proteins have been identified

[205–211]. Lsa23 is an example of multifunctional protein capable of binding ECM, PLG/PLA

and complement regulators and should play a role in leptospiral virulence [211].

Immune evasion via proteolysis of complement

The protein family includes several metalloprotease members that are considered virulence fac-

tors in several pathogens [212]. Aureolysin, a zinc-dependent metalloprotease of S. aureus, acts

in synergy with host regulators to inactivate C3 thus potentially inactivating host immune

response [213]. Indeed, in the case of Leptospira, thermolysins were only found in pathogenic

strains. Recently, experimental evidence of the sequence LIC13322 encoding a putative thermo-

lysin on the direct degradation of complement factors has been reported, suggesting its role in

immune evasion by pathogenic leptospiral strains [214]. Thus, it seems that pathogenic Leptos-

pira, like other successful pathogens, utilize at least two strategies to circumvent the comple-

ment system: acquisition of host complement inhibitors and degradation of complement

components, either thorough PLG/PLA generation or by the presence of bacterial proteases.

Sialic acids

We show here a distinctive presence of the sialic acid cluster in most pathogenic Leptospira

species and notably absent from intermediately pathogenic and saprophytic Leptospira species.

Comparative Genomic Analysis of the Genus Leptospira

PLOS Neglected Tropical Diseases | DOI:10.1371/journal.pntd.0004403 February 18, 2016 39 / 57



This fact suggests a role for sialic acids as virulence determinants. The data shown are consis-

tent with previously published data in which L. interrogans and L. alexanderi produced di-acet-

ylated nonulosonic acids and L. santarosai did not produce identifiable nonulosonic acid

species, and this observation could be associated with some species missing particular enzymes

of the pathway [215].

The pathogens that contain the whole sialic acid biosynthesis cluster have N-acetylneurami-

nic acid synthetases predicted to produce legionaminic acids, while other species have a cluster

predicted to produce pseudaminic acid. Pseudaminic acid has been shown to be required for

flagella biogenesis in Campylobacter spp. andHelicobacter spp. and function as virulence fac-

tors [216]. Leptospiral flagella are located between the inner membrane (IM) and outer mem-

brane (OM) and drive motility [217]. The presence of a pseudaminic acid pathway in all

species suggests glycosylation could have a similar role in flagella biogenesis.

Legionaminic acid has been associated with virulence in Legionella pneumophila and Cam-

pylobacter coli where its cell surface location seems to be involved in adhesion, cell-cell interac-

tion and immune evasion [218]. We hypothesize that similar mechanisms occur in pathogenic

leptospires.

PF07598 paralogous gene family

A novel gene family—first identified in a pathogenomic screen of L. interrogans serovar Lai

[219]—was found to have orthologs present in pathogenic Leptospira but not in intermediate

or saprophytic Leptospira. In L. interrogars serovar Lai, these genes were reported to be upregu-

lated in vivo [219] and here we report that the numbers of paralogs varies among the patho-

gens, with the L. interrogans, L. kirschneri and L. noguchi having the most. These observations

suggest that the PF07598 genes contribute to leptospiral virulence but the mechanism(s) by

which they do so remain to be elucidated; no functional annotations for the PF07598 gene fam-

ily is yet possible. Experimental studies of this gene family will likely provide insight into lepto-

spirosis pathogenesis.

Motility and chemotaxis

Although motility is essential for pathogenesis of Leptospira [150, 151], all Leptospira spiro-

chetes, including those belonging to intermediate and saprophytic species, are motile. Consis-

tent with this observation, we found that pathogenic, intermediate and saprophytic species of

Leptospira have all the genes necessary to assemble a functional flagellar apparatus. Further-

more, the flagella-encoding genes are highly conserved within the genus, indicating that patho-

genic and non-pathogenic Leptospira do not differ significantly with respect to their flagella

apparatus and structure.

In contrast to what we found with regard to motility, there was high diversity with respect to

predicted amino acid sequence identity among genes encoding chemotaxis proteins from differ-

ent species of Leptospira. Furthermore, not all chemotaxis proteins are present in all the species,

which corresponds to different chemotactic behaviors observed in pathogenic and saprophytic

Leptospira [220]. The majority of the diversity among the chemotaxis proteins was observed in

MCPs, trans-membrane sensor proteins that trigger the intracellular signal transduction in bac-

terial chemotaxis [221], and located at the cell poles near the basal body and flagellar motor as

other chemotaxis proteins [217, 222]. This finding, together with the observation that there is a

higher diversity among genes associated with the basal body and that asymmetrical periplasmic

flagellar rotation occurs with the interaction of basal body and chemotaxis proteins, suggests

that the sensing and chemotactic response regulated by this proteins may impact their survival

in specific environments, including their ability to infect a mammalian host.

Comparative Genomic Analysis of the Genus Leptospira

PLOS Neglected Tropical Diseases | DOI:10.1371/journal.pntd.0004403 February 18, 2016 40 / 57



Gene regulation

Transcriptional regulation is the most common form of regulation in bacteria, often via a spe-

cific transcriptional regulator (activator or repressor) or an alternative sigma factor. In this

study, we found that Leptospira have only three types of alternative sigma (σ) factors (σ54, σF,

σE), which is fewer than E. coli which have genome sizes similar to those of Leptospira. Our

analysis revealed that there is a distinct difference in the σ54 regulatory networks between path-

ogenic and saprophytic Leptospira species. All pathogenic species have two σ54 regulatory net-

works, LepA-σ54 and LepB-σ54, while saprophytic Leptospira only have LepA-σ54. Historically,

σ54 is known to be involved in nitrogen assimilation, and now is well recognized to regulate

diverse functions in response to various stimuli [223]. In addition, σ54 has also been shown to

be essential for infection in some pathogenic bacteria. For example, in another spirochetal

pathogen, B. burgdorferi, the EBP activator, Rrp2, and σ4, controls production of RpoS which

in turn, governs expression of many virulence factors important for mammalian infection such

as OspC [224, 225]. Thus, it is logical to postulate that LepB-σ54, is involved in survival in natu-

ral environments for both pathogenic and saprophytic Leptospira, while LepA-σ54 plays a role

in survival in the host for pathogenic species. This hypothesis merits experimental testing.

Extracytoplasmic function σ factors (ECF σ factors) are the most diverse alternative σ fac-

tors found in many bacteria [226, 227]. Many bacteria contain multiple ECF σ factors. For

example, Pseudomonas aeruginosa has more than 19 ECF σ factors [226]. Based on sequence

analysis, ECF σ factors have been grouped into over 40 classes [226]. Our analyses showed that

Leptospira have 5–10 ECF σ factors, and pathogenic Leptospira have 5 more ECFσ factors than

saprophytic species (S11 Table), which is consistent with the more complex life cycle of patho-

genic species than of saprophytic species. All Leptospira spp. have one copy of ECF31 and

ECF43 with unknown functions. Pathogenic Leptospira have additional 5 unclassified ECFσ

factors. Saprophytic Leptospira have one copy of ECF41 and ECF42 that are not found in path-

ogenic species. Although functions of ECF41 and ECF42-type remain unknown, one report

showed that one of the ECF41 σ factors, SigJ inMycobacterium tuberculosis, is involved in resis-

tance to hydrogen peroxide [228]. It is unclear whether ECF41 in saprophytic Leptospira (LEP-

BI_I1070) has a similar function as SigJ, and if so, how it contributes to the survival of

saprophytic Leptospira in the environment.

The activity of ECF σ factors is often regulated by an anti-σ factor, a transmembrane protein

that binds and inhibits the activity of ECF σ [229]. Cleavage of anti-σ factor by proteases leads

to release and activate σE. Extracellular signals regulate this intramembrane proteolysis often

via an anti-anti-σ factor (or called anti-σ antagonist). Our analyses revealed that both patho-

genic and saprophytic Leptospira have more than 30 σE regulators. Among them, 17 are only

found in pathogenic/intermediate Leptospira, while 19 are found solely in saprophytic Leptos-

pira (S11 Table). These differences likely reflect the variety of signals sensed by pathogenic and

saprophytic Leptospira.

In addition to alternative σ factors, both pathogenic and saprophytic Leptospira species

have many putative transcriptional regulators, far more than is found in other pathogenic spi-

rochetes such as Borrelia burgdorferi and Treponema pallidum [230, 231]. Our initial analyses

of transcriptional regulators among Leptospira species did not yield a distinct pattern of corre-

lation with pathogenicity. Further in silico and experimental analyses to confirm the prediction

and more importantly, to determine their regulatory role in Leptospira, is needed.

Sensory transduction

Leptospira species have a high number of two-component sensory systems (TCSs) (70–100)

compared to Borrelia, Treponema and Bradyspira (6–20). The number of TCS genes found in a
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particular Leptospira species strongly correlated with the likely diversity of ecological niches that

the species encounters, a phenomenon observed in other bacteria [203]. The lower number of

TCSs found in pathogenic species may be linked to the process of host adaptation, whereas the

larger numbers of unique TCSs in intermediates and, even more in saprophytes, may be instru-

mental for sensing and adapting to a more diverse range of environmental conditions. Regard-

less, almost all of the pathogenic species encode more than 70 TCS genes, indicating that the

Leptospira pathogen requires a highly complex network of signaling processes for its life cycle.

Interestingly, the proportion of TCS genes encoding orphan HK/RR and HHK proteins are

higher in Leptospira (> 60%) than in other bacteria where orphan TCS proteins are unusual.

These findings suggest that branched signaling pathways may be relevant in this genus and

could confer added physiological advantages to Leptospira under specific circumstances.

One limitation in the present analytical approach is the difficulty in defining a robust and

confident automatic method to segregate orthologous clusters among all Leptospira strains, and

especially those that relate to TCS function. As in most in silico analyses, further biochemical

experiments are needed to confirm the role of the various TCS categories identified in this study.

Another limitation of this cross-species comparative analysis is that differences in serovars/

strains with Leptospira species were not studied; such analyses will be a future priority given the

strength of the approach and the depth of existing data. This in silico approach will also not iden-

tify novel virulence factors nor mechanisms of pathogenesis based on sequence analysis alone.

In summary, the large-scale comparative genomic analysis of 20 Leptospira species has pro-

vided broad insights into how infectious members of this genus acquired the genes necessary

to acquire pathogenicity and virulence, placing these species within a definitive phylogeny.

Novel, Leptospira species-specific genes and gene families were identified. Genomically-based

metabolic reconstruction predictions predict novel adaptation of infectious Leptospira to mam-

mals (summarized in Table 9), including sialic acid biosynthesis, pathogen-specific porphyrin

metabolism and the first-time demonstration of riboswitch-regulated cobalamin (B12) autot-

rophy as a bacterial virulence factor. Only pathogenic Leptospira contain CRISPR/Cas systems,

suggesting not only a potential mechanism for this clade’s refractoriness to gene targeting but

also possible novel means to be able to genetically modify pathogenic Leptospira. Whether

restriction modification systems might contribute to gene targeting has yet to be analyzed in

detail, but the publicly available whole genome data sets provided in support of the present

work will be contribute to carrying out such analyses. A novel virulence-related genes/gene

family epitomized by the PF07598 group of paralogs suggests adaptation and diversification of

this protein family within the pathogenic clade. Identifying large scale changes in infectious

(pathogenic and intermediate pathogenic) as compared to non-infectious Leptospira has yield

large-scale, novel insights into the evolution of a bacterial pathogen, provides the basis for new

directions in leptospirosis pathogenesis research. It also makes novel genomic and pathoge-

nomic contributions to the field of bacterial pathogenesis, which is of general interest.

Supporting Information

S1 Fig. Pan-genome, core and novel genes of the 20 sequenced Leptospira species. The blue

and red lines denote the pan-genome and core genes as genomes are added in the order noted

on along the x-axis (A). The bars indicate the number of novel gene families discovered for

each genome added. The color of the bars illustrate the three main groupings of Leptospira:

pathogenic (red), intermediate (blue), and saprophytic (green). The number of novel genes dis-

covered with the addition of each new genome (B) was estimated using a pan-genome model

based on the original model presented by Tetellin et al. [63]. Purple circles are the median of

each distribution (grey circles). Power law (red lines) and exponential (blue lines) regressions
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were plotted to determine (α), and tg(θ), respectively. The exponent (α) indicates whether the

pan-genome is open (α� 1) or closed (α> 1) [83] and tg(θ) denotes the average extrapolated

number of strain-specific/novel genes.

(PDF)

S2 Fig. Flanking Genes Surrounding the Leptospira rfb locus gene clusters. The rfb region

and flanking CDSs (blue) 9 of pathogenic (A), 5 intermediate (B), and 6 saprophytic (C) repre-

sentative Leptospira species were compared. rfb region CDSs are labeled by locus identifier and

colored by functional role categories as noted in the boxed key. Gene symbols, when present,

are noted above their respective genes. BLASTP matches between CDSs are colored by protein

percent identity (see key).

(PDF)

S3 Fig. Phylogenetic analysis of leptospiral N-acetylneuraminic (Sialic) Acid Synthetase

(NeuB) protein sequences.Maximum-likelihood tree shows pathogens (red lines), intermedi-

ates (green lines) and saprophytes (blue lines). Numbers denote node support. A red

box highlights those proteins that are part of a complete sialic acid cluster.

(PDF)

S4 Fig. Heat map of ORFs encoding 51 motility and 25 chemotaxis proteins identified in

analysis of the 20 Leptospira genomes.ORFs are identified according to their L. interrogans

serovar Copenhageni strain Fiocruz L1-130 number. The heat map shows the degree of amino

acid sequence identity of ORFs with their respective orthologs in the L. interrogans strain Fio-

cruz L1-130 genome.

(PDF)

S5 Fig. Comparison of ECF Sigma (σ) Factors Among Leptospira. Venn diagram showing

distribution of ECF σfactors unique or shared among the pathogenic (L. interrogans L1-130),

intermediately pathogenic (L. kmetyi) and saprophytic (L. biflexa) species. The number and

locus ID of ECF σ factors that are unique or shared among these Leptospira species are labeled

in each sector of the diagram.

(PDF)

S6 Fig. Normalized number of Leptospiral two component systems by genome size. The

number of TCS genes was normalized per Mbp genome (y-axis) of representative Leptospiral

species (x-axis). See key for shading of pathogenic, intermediate and saprophyte genomes.

(PDF)

S7 Fig. Venn diagram showing the distribution of TCS genes among Leptospira species.

The ratios depicted inside each one of the major groupings, correspond to the number of TCS

ortholog genes present in the [majority:all-but-one:all] species of that particular group. True

cut-off values for these Figs correspond to the presence of the gene in 50% (majority), 90% (all

but one) or 100% (all) of the particular group of species. Sequence clusters that do not match

the indicated cut-off value or those from unexpected groupings are included in the “ambiguous

grouping” set. Singleton clusters, representing species-specific genes are noted in circles sur-

rounding the Venn diagram.

(PDF)

S1 Table. Universal protein markers.

(PDF)

S2 Table. Estimates of genome relatedness of Leptospira species.
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