
What Makes a Chair a Chair?

Helmut Grabner1 Juergen Gall1 Luc Van Gool1,2

1Computer Vision Laboratory 2ESAT - PSI / IBBT

ETH Zurich K.U. Leuven

{grabner,gall,vangool}@vision.ee.ethz.ch luc.vangool@esat.kuleuven.be

Abstract

Many object classes are primarily defined by their func-

tions. However, this fact has been left largely unexploited

by visual object categorization or detection systems. We

propose a method to learn an affordance detector. It iden-

tifies locations in the 3d space which “support” the par-

ticular function. Our novel approach “imagines” an actor

performing an action typical for the target object class, in-

stead of relying purely on the visual object appearance. So,

function is handled as a cue complementary to appearance,

rather than being a consideration after appearance-based

detection. Experimental results are given for the functional

category “sitting”. Such affordance is tested on a 3d rep-

resentation of the scene, as can be realistically obtained

through SfM or depth cameras. In contrast to appearance-

based object detectors, affordance detection requires only

very few training examples and generalizes very well to

other sittable objects like benches or sofas when trained on

a few chairs.

1. Introduction

“An object is first identified as having important func-

tional relations, [...] perceptual analysis is derived of the

functional concept [...].”
Nelson, 1974, [17]

“Affordances relate the utility of things, events, and

places to the needs of animals and their actions in fulfill-

ing them [...]. Affordances themselves are perceived and, in

fact, are the essence of what we perceive.”
Gibson, 1982, [8, p. 60]

“There’s little we can find in common to all chairs – ex-

cept for their intended use.”
Minsky, 1986, [16, p. 123]

“[...] objects like coffee cups are artifacts that were cre-

ated to fulfill a function. The function of an object plays a

critical role in processing that object [... for] categorization

and naming.”
Carlson-Radvansky et al., 1999, [4]

Figure 1. The “chair-challenge” by I. and H. Bülthoff [3] (reprint

with the author’s permission).

These quotes emphasize that functional properties or af-

fordances1 are essential for forming concepts and learning

object categories. Experiments (e.g. [18, 4]) have demon-

strated that both appearance and function are strong cues

for learning by infants. Initially they attend only to the

form of an object. Later they use form and function and

finally (by the age of 18 months) they attend to the relation-

ships between form and function. Furthermore, Booth and

Waxman [2] have identified two salient cues that facilitate

categorization in infancy, namely (i) object functions and

(ii) object names. Moreover, names of objects most often

evolve on the basis of function2.

Whereas all this is well known for a long time, it has

been left mostly unused for object detection in computer

vision. Taking a look at the results of the recent Pascal

VOC Challenge [5], the performance still strongly depends

1“Affordance: A situation where an object’s sensory characteristics in-

tuitively imply its functionality and use. [...] A chair, by its size, its curva-

ture, its balance, and its position, suggests sitting on it.”, http://www.

usabilityfirst.com/glossary/affordance, 2010/07/28. In-

troduced in 1979 by Gibson [9, p. 127] based on the verb afford.
2When considering the evolution of a word for an object, most of

the time it is based on its function. For example the word “chair”: PIE

base *sed- (to sit) → Latin sedentarius (sitting, remaining in one place)

→ sedentary (meaning “not in the habit of exercise”) → cathedral →

chair. http://www.etymonline.com, 2010/10/02.
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Figure 2. Visual object categories vs. functional categories. In this

work, we are interested in observing the functional category, hence

our detector is rather a functionality detector than a traditional ob-

ject detector.

on the object class. Whereas categories like “airplanes” and

“bicycles” are handled with reasonable success, other cat-

egories like “chairs” fare less well. This tends to happen

with classes that exhibit a large intra-class variation in ap-

pearance, but could be easier defined through their function.

Also consider Fig. 1. Apart from large intra-class vari-

ation in appearance, it illustrates additional challenges that

impede class detection. Scale and position of the objects

play an important role. Some of the depicted objects might

be categorized as “chairs”, however one cannot really sit on

them. The shadow on the wall still very much has the shape

of a chair, but it should not be considered as such.

Thus, it stands to reason that adding affordance cues can

help in resolving such cases. Especially if appearance is

not what is mainly shared by class members, it makes sense

adding such features. For instance, a dictionary3 gives the

following definition for a chair:

“chair: a seat (→ something designed to support

a person in a sitting position), esp. for one person,

usually having four legs for support and a rest for

the back [...].”

The function, i.e., what one can do with the object, is more

important to this definition than its form.

Of course, it will also rarely happen that affordance or

function fully define an object class (c.f ., [9, p. 134]).

For example, sitting can be done on chairs, stools, sofas,

etc. Equally, the object can have more than one affordance.

Fig. 2 illustrates the difference between functional and vi-

sual categories. Also, affordance depends on both the object

and the actor. An adult will not sit comfortably on a child

chair, and neither would a small kid on a chair for an adult.

But again, it is function which can help to tell them apart,

more than appearance.

Thus, in this paper, we propose affordance detection as

additional, complementary cue for scene analysis. For its

implementation, we will rely on 3d information. With the

advent of cheap depth cameras, such data will become read-

ily available.

3http://www.dictionary.com, 2010/10/02.

Related Work. Most recent object detection and cate-

gorization methods work on 2d images and follow the same

principle. Image features are extracted and clustered like in

the bag-of-word approach [6]. A single classifier or a set

of classifiers is then trained on the features. Depending on

the features and the classification techniques, a wide variety

of different approaches have been proposed over the last

years, e.g., [24, 7, 15]. Some methods include more knowl-

edge about the object and use 3d models (e.g., [19, 14]) or

build multi-view 2d models (e.g. [21]). However, all these

approaches focus on the object appearance itself.

The concept of affordance [9, p. 127ff] has become a

focus of attention within the cognitive vision and robotics

community lately, e.g., [25, 1]. Already in the early nineties,

Stark and Bowyer [22] have proposed the use of functional

properties. The 3d description of an object is parsed in the

search of potential functional elements, which are then used

to recognize the object. More recently, approaches have

been proposed to detect objects based on human interac-

tion. The human activity is annotated by extracting human

motion from video data and used to indirectly identify ob-

jects [10, 13, 20]. In these works, it is assumed that interac-

tions are observed during training and testing. Furthermore,

Stark et al. [23] have proposed to learn from human demon-

stration. They use affordance as cue together with image

segmentation to learn important object features while one

interacts with the object. The detection is then performed

with the selected appearance features.

In summary, these approaches have shown that function

is an important property. They, however, either assume that

the interaction with the object is also observed during detec-

tion, i.e., one requires someone to interact with the object,

or use affordance only as selection process for appearance

features. In contrast, we propose to hallucinate the interac-

tion during detection and to learn an affordance detector.

2. Affordance Detection

In this work, we assume that it is functionality one wants

to retrieve. We are not so much interested in localizing in-

stances of the particular object category “chair”, but rather

spots for “sitting”. This might indeed be not only chairs

but also a bench or a sofa. Affordance is handled as a cue

complementary and parallel to appearance, rather than be-

ing a consideration after appearance-based detection. And,

as our experiments show, affordance also significantly im-

proves appearance based class detection, like the detection

of “chairs”.

2.1. Imagine Actor-Object Interaction

We model the affordance as interaction between a virtual

actor and example objects. The proposed approach is illus-

trated in Fig. 3 for “sitting”. In the figure, the chair affords

the actor to sit on it. If one can imagine sitting comfortably
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Figure 3. Common approaches for object detection use many train-

ing samples to build an appearance model of the category. How-

ever, many categories might be better described by the functions

they support. Hence, we propose to imagine how well an actor

could perform a specific activity with a scene part, in order to de-

tect such objects.

at some spot in a scene, there is evidence for the existence of

an object class with such affordance. We assume the avail-

ability of 3d data to probe the interaction, as coming from

structure-from-motion or depth cameras.

In this paper, we focus on objects that involve full body

human interaction. Furthermore, we only consider interac-

tions where the action can be described by key poses. For

example, a typical sitting position of a human infers a sit-

table place. However, the general principle can also be ap-

plied to body parts or other objects. In general, the concept

of actor corresponds to the active part in an object-object

relation, which can be a human as in our example, but it

might be also another object, e.g., a key that opens a lock.

Our approach is inspired by shape sorting toys as shown

in Fig. 4(a). To perform matching between shapes, we rep-

resent the human action by key poses that are matched with

the 3d scene, see Fig. 4(b). For instance, when observing

a chair or a toilet seat, one can directly imagine how to sit

on the objects. However, the traffic cone does not imply a

comfortable sitting posture as illustrated in Fig. 4(c). Using

an actor for representing the functionality of an object has

the advantages that (i) the relevant parts for the functionality

are automatically recovered from the observed actor-object

interactions and that (ii) the relevant parts are mapped to

a unified representation, namely the actor. The core of the

concept is a probabilistic model defined on the actor’s shape

that is able to encode both variations in action style and vari-

ations in object shape.

2.2. Model

In order to learn the relation between a human and an

object, we require at least one training example where we

observe the functionality, i.e., showing the object in use.

Key Poses. For each training example �, we assume a

model of the object represented as 3d triangle mesh M
������
�

and a model of the actor interacting with the object, which

is also represented as 3d triangle mesh M
	���

� . We further

assume that the triangles and connectivity of the meshes

M
	���

� are consistent over all training examples. This is

achieved by using a consistent human model [11] for anno-

tation.

To make the detection process efficient, we reduce the

number of poses to a small set of key poses M̄
	���

� . The

key poses can be obtained by clustering and taking the mean

of each cluster, i.e., the vertices �
�
� ∈ M̄

	���

� are given by

�
�
� =

1

�

∑

��

�
�
��
, (1)

where � is the number of training examples �� within clus-

ter � and �
�
��

denotes the �-th vertex of mesh M
	���

��

. For

simplicity, but without loss of generality, we now refer to a

single key pose M̄
	���
.

(a) Shape sorting toy (b) Actor-object matching

(c) Imagine sitting

Figure 4. Inspired by shape sorting toys (a), we define the func-

tionality detector as an actor-object matching problem (b). One

can imagine to sit on a chair or similar objects, but the traffic cone

does not imply a comfortable sitting posture (c).
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Affordance model. For modeling the relation between

the key pose and the objects M
������
� , we rely on simple ge-

ometric features, namely 3d distance and mesh intersections

between the actor and the object.

For the 3d distance, we voxelize the mesh M
������
� and

compute a 3d distance field D� [12] of the scene with the

object. The closest distance of a vertex � � ∈ M̄
	���
 to the

object � is then efficiently obtained by

�
�
� = D�(T��

�), (2)

where the rigid transformation T� consisting of rotation and

translation maps the coordinate system of the human model

to the correct position inside the coordinate system of the

object. In this way, we obtain a set of distance values for

each vertex � � and reconstruct the underlying probability

using a kernel density estimator with a Gaussian kernel:

	��
�� (�) =
1



√
2��2

�
∑

�=1

exp
(

− (�− �
�
� )

2

2�2

)

, (3)

where 
 is the number of training examples.

For the mesh intersections, we evaluate for each triangle


 � ∈ M̄
	���
 whether it intersects with one of the triangles

of M
������
� . The intersection test is denoted by � �� , which is

1 in case of an intersection and 0 otherwise. Similar to the

distance, we model the probability for a triangle 
 � to have

an intersection with an object, i.e., � = 1:

	����
� (�) =

{

1

�

∑

� �
�
� if � = 1,

1− 1

�

∑

� �
�
� if � = 0.

(4)

In the case of sitting, the probability of an intersection never

exceeds 0.5.

Detection. The problem of detecting the functionality of

a previously unobserved object M������ is formulated as a

probability estimation problem, namely estimating the con-

ditional probability 	(T∣M������) defined over all transfor-

mations T of the key pose model M̄	���
 into the scene

M
������. Hence using Eqs. (3) and (4), our model becomes

	(T∣M������) ∝ (5)

( ∣� ∣
∏

�=1

	��
�� (D(T� �))

)
1

∣� ∣

⋅
( ∣� ∣
∏

�=1

	����
� (�T(

�))

)
1

∣� ∣

,

where �T(

�) = 1 if the triangle 
 � intersects with a tri-

angle of the scene after applying T to the mesh; otherwise,

�T(

�) = 0.

For localizing objects or places that share the same func-

tionality, we do not assume dynamic content or data where

a human is part of the scene. Instead, we hallucinate the

human interacting with the scene, i.e., we densely evalu-

ate 	(T∣M������). To this end, we voxelize the scene and

compute a 3d distance field. In our experiments, the trans-

formation matrices T are parameterized by the translation

vector (��, ��, ��) and the rotation � around the axis perpen-

dicular to the ground plane. Since we are only interested in

transformations with high probability, the evaluation can be

performed efficiently using coarse-to-fine grid search and

cascading.

3. Experimental Results

We train a “sittable” affordance detector based on ob-

jects from the category “chairs”. Afterwards, we compare

and discuss our approach on a synthetic dataset. Finally, de-

tection results on realistic scenes obtained through SfM or

a depth camera are shown.

3.1. Dataset and Implementation Details

Data. There are several sources for acquiring training

data, e.g., 3d models available from the Internet can be used

as well as models reconstructed from video, still images,

or depth data. We downloaded 110 3d models of chairs

from Google 3d Warehouse4. We randomly split the set of

chairs into two subsets of 50 and 60 samples each, which are

used for training and testing, respectively. As negative test

samples, we use 662 samples (all except chairs and sofas)

from the SHREC’09-Dataset5.

Training. We semi-automatically fitted a statistical hu-

man model [11] to 10 examples and averaged the poses to

obtain a key pose of a sitting person. This key pose was

then manually placed on the 3d models of the chairs. Fig. 5

shows our obtained model. We choose � = 5 for the pa-

rameter in Eq. (3), but very similar results are obtained for

different values6.

Detection. Voxelization is done with a voxel size of 1
cm3. For evaluating Eq. (5), we perform a grid search start-

ing with a stride of 8 voxels. The search is iteratively further

refined to grid sizes of 4, 2, and 1 voxels. Points on the finer

grid levels are only evaluated when they have at least one

neighbor on a coarser level where the probability is above

a given threshold. In our experiments, we set the threshold

relatively low (0.0001) to get full recall for the coarse-to-

fine grid search using a 6-voxel neighborhood. The rotation

� is evaluated for a set of discrete values at each grid level.

We used 8 and 10 rotation values for the classification and

detection experiments in Section 3.2, respectively.

Since evaluating the intersection term in Eq. (5) is more

expensive than evaluating the distance term, we use cascad-

ing to reduce the computation time. We first compute the

4http://sketchup.google.com/3dwarehouse/,

2010/08/28.
5http://www.itl.nist.gov/iad/vug/sharp/

benchmark/shrecGeneric/data.html, 2010/10/12.
6We performed all experiments with � = 1, 5, 10, 25, 50, 100.
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(a) Mean 3d distance (b) Var. 3d distance (c) Intersection

Figure 5. Illustration of the model (red: high, blue: low). (a,b)

Mean and variance of the 3d distance of each vertex to the object.

Regions with high variance correspond to variations among chairs,

namely the size of the backrest (head), the existence of armrests

(elbow), and the distance of the seat to the ground plane (feet). (c)

Probability of an intersection of a triangle with an object.

probability based on the 3d distance field. When the prob-

ability is below a given threshold, the transformation T is

rejected. Otherwise, we also compute the intersection term.

In our experiments, we used the same threshold as for the

coarse-to-fine grid search. For a scene with a chair that is

discretized into 6 × 107 transformations T, the approach

requires about 15 seconds on a standard PC (single thread).

3.2. Synthetic Google-Chair Data Set

As basic experiment, we show the concept of the pro-

posed affordance detector for classification and detection on

synthetic data.

Comparison. We compare our approach to (i) a recently

proposed 3d object classification system [14] and (ii) to a

state-of-the art appearance detector working in the 2d image

plane [7]. The 3d classification system was trained with the

provided positive chairs7. For the 2d detector, we use the

already trained version, publicly available on the authors’

webpage8.

Classification. We first evaluate the classification task:

chair vs. non chair. Chairs are located upright on the ground

plane. Negative samples are randomly rotated and scaled

in order to fit the size of a chair. In order to apply the 2d

appearance detector, we render 36 images by rotating the

object around the vertical axis. For the non-chair objects,

36 randomly chosen views are rendered. The detector is

applied on all the images separately and the maximum9 re-

sponse across all views is defined as the final score.

7We gratefully thank Jan Knopp for applying their method on our data.
8Release 4, classifier VOC2009/chair final.mat, http:

//people.cs.uchicago.edu/˜pff/latent-release4/,

2010/08/28.
9Using mean or median yields similar results.

Figure 6. An affordance detector trained on the visual category

“chairs”. Our approach outperforms state-of-the art object detec-

tors. The combination of appearance and our functional approach

increases performance further. Hence, function is a complemen-

tary cue for object detection, rather than being considered after

appearance-based detection.

For a quantitative evaluation, we use recall-precision

curves (RPC) and average precision (AP) [5]. Results are

depicted in Fig. 6. Our functional approach achieves supe-

rior results over both other methods. The 3d approach has

shown good results for object recognition. However, in our

setting it suffers from the relative small training set (few

very high ranked false positives causes the drop in preci-

sion). The pre-trained 2d detector (on a huge training set)

has typical problems of being not aware of the 3d structure

and the function of the object. We have to emphasize that, in

contrast to [14, 7], our approach is not scale invariant since

scale is an essential cue for functionality, see Fig. 1.

Combination of Appearance and Function. By

equally weighting, we combine the scores obtained from

the 2d appearance detector and our functional approach.10

The AP increases from 0.81 and 0.86, respectively to 0.92,

see Fig. 6. Hence, function can be seen as complementary

cue for object detection which in fact increases performance

by over 10% in terms of AP.

Generalization (function). In order to test how well

the detector generalizes to the affordance category “sitting”,

we downloaded 60 3d models from Google Warehouse that

are typically associated with sitting, e.g., sofa, bench, or

stool. The results demonstrate that function detection com-

plements appearance cues quite well in this regard. While

the affordance cue successfully generalizes towards these

other object types, generalization by the 2d and 3d chair

detectors is not effective, as depicted in Fig. 9. Since the

appearance varies widely within the affordance category,

see Fig. 2, the functional similarity is not well captured by

appearance-based detectors.

10Individual scores are mean and variance normalized.
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Figure 7. Ranking lists (top to

bottom and left to right) of the

500 highest ranked objects ob-

tained by our approach (left)

and a state-of-the-art 2d appear-

ance based object detector [7]

(right). Both methods are trained

on chairs only. Our method

generalizes well to other chairs

(green) and other sittable ob-

jects (blue) since it models rather

the functionality than the appear-

ance. Sittables that have a lower

rank are stools without backrest

since our model has learned the

backrest as affordance cue from

the chairs. [Full resolution figure

can be obtained from the authors’

web-page.]

(a) Chair (b) Sittable objects (c) High ranked “non-chair”

Figure 8. Few examples of detected sitting poses. Our approach also hallucinates a sitting pose for the table (c) since the tabletop is

interpreted as backrest and the pole as something to sit on. Indeed, this is a valid sitting pose according to our model since our approach

relies only on geometric properties and does not evaluate the physical stability of the sitting.

Figure 9. In contrast to appearance based detection our functional

approach generalizes quite well to the affordance category “sit-

ting”. Hence, function complements appearance in this regard.

Interpretation. A more detailed comparison is shown

in Fig. 7, where the 500 highest ranked test examples ob-

tained by our approach (left) and by the 2d appearance

based approach (right) are shown. Some objects appear

with very high rank for both approaches. However, our

approach trained from a few training samples generalizes

very well across chairs and other sittable objects, whereas

generalization for the 2d approach strongly depends on the

appearance. For example, the bench is detected since the

side view is very similar to a regular chair. Other sittable

objects appear much lower in the ranking list. As can be

seen from Fig. 7, our approach has mainly difficulties with

stools. Since the detector has been trained on chairs, it as-

sumes that the backrest is an essential part for sitting.

In contrast to object detectors, our method also predicts

how to use the object by hallucinating the pose of the ac-

tor, as shown in Fig. 8. To measure the pose prediction

accuracy, we have manually annotated the sitting poses for

the test chairs. For the predicted transformations, we get

10.9±11.0 cm error for translation and 0.53±0.91 rad er-

ror for the orientation. The predicted poses can also be used

to interpret the detections. For example, one can imagine

sitting on the chair and the sofa, but it also seems possi-

ble to sit on the high ranked table in the given position, see

Fig. 8(c). Such reasoning is not possible for the 2d detector,

which explains, for instance, the highly ranked phone.
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(a) Sample detections (b) Combined scene view (c) Confidence map for sitting (d) Sitting poses with high probability

Figure 10. Detection sittable locations in a synthetic scene. The 2d appearance detector [7] casts votes according to its detections (a) in the

3d volume for detecting chairs. In contrast, our method yields a much more accurate confidence map (c). The detected sitting places and

corresponding poses (d) with high probabilities are very plausible, i.e., high scores are obtained for the sofa and the chairs. The tables have

lower scores, but still a relatively high probability for sitting.

Generalization (training set size). We reduce the train-

ing set size from 50 to 25 and to 10, without significantly de-

creasing the performance on the category “chairs”, as well

as on the functional category “sittable”, see Tab. 1.

trainingset average precision

size chairs sittable

50 0.86 0.67

25 0.87 0.66

10 0.85 0.63

Table 1. Since our functional approach models only the relevant

parts for sitting, the model can be trained quite accurately given

only very few training samples.

Detection. Let us consider the task of detecting all sit-

table places in the synthetic scene shown in Fig 10. To make

the comparison as fair as possible, we apply the 2d object

detector on 36 rendered views from the scene. Due to the

large intra-class variation of the objects, the cluttered back-

ground, occlusions, and pseudo structures due to the pro-

jection, one finds misaligned, missing, and false detections,

see Fig 10(a). The detections (low threshold) are then fused

by casting votes in the 3d volume according to the camera

rays and the detection score. Compared to the 2d detector,

see Fig 10(b), our approach shows a clear confidence map,

see Fig 10(c), with peaks at the three chairs and the sofa,

but also yields some evidence for the small tables. The pre-

dicted sitting poses shown in Fig 10(d) are very plausible.

3.3. Real-world data

Finally, we applied the affordance detector trained on the

synthetic chair data to real world scenes. In order to obtain

the 3d scene structure we used to following two methods:

Depth camera. We used a time-of-flight camera to cap-

ture depth images from two scenes and applied our detec-

tor to the triangulated depth images. Results are shown in

(c) Confidence map, depth image (d) Estimated sitting poses

Figure 11. Two examples for data acquired with a depth camera.

The sitting on the chair and on the sofa are well recovered despite

the low resolution (176× 144) and the noise of the sensor.

Fig. 11.

Structure from Motion. We recorded 80 images from a

static office scene (see Fig. 12(a)). For dense 3d reconstruc-

tion, we use structure-from-motion11 and the approach of

Zach et al. [26]. This 3d model is then analyzed by our af-

fordance detector. The resulting confidence map and poten-

tial sitting positions are depicted in Fig. 12(b,c). The sitting

poses look very plausible except for the pose on the mon-

itor where the back is additionally supported by the wall.

As in Fig. 8(c), the detection can be explained by the scene

geometry although the pose is physically unstable.

11http://www.inf.ethz.ch/personal/chzach/

opensource.html
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(a) Scene (b) Confidence map

(c) Potential sitting poses

Figure 12. (a) An office scene is reconstructed from 80 images. (b)

The sitting probability projected to the reconstructed surface. (c)

Sitting poses with a very high probability. Besides the chairs, the

stool and the table is recognized to have the functionality “sitting”.

4. Conclusion

Objects are usually made for some purpose. Hence, the

functionality often is the most obvious common denomina-

tor for the members of an object class. We have proposed

an affordance detector where functionality is handled as a

cue complementary to appearance, rather than being a con-

sideration after appearance-based detection. By hallucinat-

ing an actor interacting with the scene, our approach pre-

dicts not only whether an object has the learned function-

ality, but also how the object can be used by the actor. We

have demonstrated the potential of the method for the func-

tional category “sitting”, both for synthetic and real-world

data. In both scenarios, objects or places that support this

function are well localized and plausible sitting poses are

recovered. Our current implementation relies only on ge-

ometric properties. Additional cues like physical stability

or material properties are necessary to further improve the

detection performance.
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