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Abstract 

Recent years have seen a substantial efficiency improvement for a variety of solar cell 

technologies as well as the rise a new class of photovoltaic absorber materials: the metal 

halide perovskites. Conversion efficiencies that are coming closer and closer to the 

thermodynamic limits require a physical description of the corresponding solar cells that is 

compatible with those limits. This review summarizes recent work on the interdependence of 

basic material properties of semiconductor materials with their efficiency potential as 

photovoltaic absorbers. It is explained how the classical Shockley-Queisser approach, with 

the band gap energy as the only parameter, connects to a more general radiative limit and to 

situations where non-radiative recombination dominates. We delineate a consistent loss 

analysis that enables a quantitative comparison between different solar cell technologies. In a 

next step, bulk material properties that influence the photovoltaic performance of a 

semiconductor like absorption coefficient, densities of states of the free carriers, or phonon 

energies are considered. It is shown that variations of these properties have a big influence on 

the optimized design of a solar cell but not necessarily on the achievable efficiency. 
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1. Introduction 

In recent years, two main developments have shaped the research field of photovoltaics: 

Firstly, the cost reduction in crystalline Si photovoltaics[1] implies that in order to reduce 

system cost, the area-related balance of system costs become increasingly important.[2] In 

consequence research has to focus definitely on high efficiency concepts as opposed to low 

cost – low efficiency approaches. The second development was the discovery[3-6] of metal-

halide perovskites as a novel material class for photovoltaic absorber materials. The 

development of the laboratory scale efficiencies of metal-halide perovskites represents an 

unprecedented success story that lead to an efficiency increase from ~10% to 22.7 %[7] within 

five years. While this rapid rise was certainly based on the community having accumulated 

substantial knowledge on how to design good solar cells, the speed is partly also due to quite 

peculiar properties of these metal-halide perovskites.  

In particular the second development triggered renewed interest in finding further 

promising photovoltaic materials based on computational or experimental material 

screening.[8-19] Such screening efforts would initially require a profound understanding of the 

key ingredients that are crucial for photovoltaic performance on a microscopic level.[20,21] 

This question of how to identify future promising materials for photovoltaics is closely 

connected to the question of how to explain the surprisingly high performance of some quite 

specific families of semiconductors. A typical example for a highly complex material used 

successfully in photovoltaics is Cu(In,Ga)Se2 which has achieved photovoltaic power 

conversion efficiencies approaching 23 %[22,23] being a polycrystalline semiconductor while 

all equally well or better performing materials were monocrystalline (Si or III/V 

materials).[24] Admittedly, the development of Cu(In,Ga)Se2 took decades starting in the early 

70s[25,26] until the community had discovered and developed all the necessary techniques and 

skills [22,23,27-33] that were necessary to achieve efficiencies > 22 %. Thus, it was quite 
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surprising for the photovoltaic community that lead-halide perovskites managed the same 

efficiency achievement within only a few years.[34-37] While lead-halide perovskites certainly 

have exceptional electronic and optical properties[38-40] for a solution processed material, 

issues with stability[41,42] and toxicity[43-45] imply that the community is constantly looking 

for new variations of this material, e.g. lead free perovskites[46-55] or lead-based perovskites 

with two, three or even four cations[56-58] on the same lattice position. In addition, also 

materials consisting of completely different elements and/or materials growing in different 

crystal structures are screened or closely analyzed for their applicability in photovoltaics and 

optoelectronics in general using both computational and experimental methods.[59]   

All these developments require a clearer picture of which parameters are crucial or at 

least helpful for enabling good solar cells. The purpose of this review is to establish the key 

criteria that make up a good solar cell material and discuss them on various levels of 

abstraction. These are shown in Figure 1 and range from thermodynamic efficiency limits 

describing the solar cell using external parameters like quantum efficiencies via the 

description of the device via internal parameters (lifetimes, mobilities, absorption 

coefficients) to the microscopic level of band structures and phonon energies. A starting point 

for this discussion is the Shockley-Queisser theory[60] which gives a first indication of what is 

necessary: A certain band gap depending on whether it is a single junction, tandem or even 

triple cell, we are aiming at. The Shockley-Queisser theory is certainly the highest useful level 

of abstraction which, consequently, contains only a minimum information on how the solar 

cell absorber material should look like. From this limiting situation, we decrease the level of 

abstraction and first look at the optical properties of the material such as the complex 

refractive index. Near-complete absorption of photons, however, is easily achieved in 

extremely thick semiconductor layers. Thus, the next stage does require taking the effect of 

non-radiative recombination and subsequently finite mobilities on the thickness dependence 
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of photovoltaic efficiencies into account. This brings us to the point, where we will 

understand that absorption coefficient α, charge carrier mobility µ and charge carrier lifetime 

τ are the three key parameters that determine efficiency on a device level. However, they do 

not yet answer how α, µ, and τ depend on microscopic material parameters.  

 

Figure 1: Outline of the paper illustrating the different models of a solar cell which use a 
different level of abstraction. The first situation involves looking at the solar cell from the 
outside, and describing it essentially using the photovoltaic and the light emitting diode 
(LED) or luminescence quantum efficiencies. Models based on detailed balance such as the 
SQ model and variations thereof may be used to calculate the current voltage curve. If we 
start with internal parameters such as absorption coefficient, mobility or lifetime, we typically 
use drift-diffusion models to calculate the JV curve and subsequently the efficiency. The last 
step is trying to understand the internal parameters from the microscopic properties of the 
material such as the effective mass, the momentum relaxation time, the phonon energy or the 
Huang-Rhys factor which describes the strength of electron-phonon coupling. 

 

The final section of our review, therefore, brings us to the question of how the 

microscopic structure of the photovoltaic absorber material affects photovoltaic performance 

via its influence on parameters such as phonon energies, trap densities, or the strength of 

electron-phonon coupling described by the Huang-Rhys should affect α, µ, and τ and 
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subsequently photovoltaic performance. On every level of abstraction, we will discuss how to 

calculate or simulate photovoltaic efficiency based on the macroscopic or microscopic input 

parameters discussed in each section. 

 

 

2. Shockley-Queisser Limit 

The Shockley-Queisser (SQ) model[60] is a widely used approach to calculate the efficiency 

limit of a single junction solar cell based on the principle of detailed balance between 

absorption and emission of light. In addition to its direct results, the SQ approach provides the 

possibility to extend and to adapt the detailed balance theory to a range of scenarios not 

discussed in the original paper. These scenarios include multijunction solar cells,[61,62] 

fluorescent converters,[63,64] organic solar cells[65,66] or various types of hot carrier and 

multiple exciton generation solar cells.[67-69]  

The SQ model treats the solar cell as a black box with a step-function like absorptance 

being one above the band gap Eg and zero below. In addition, every photon creates only one 

electron-hole pair and charge carriers of both polarities will then be able to reach their 

respective contacts. Thus, the short-circuit-current density of the solar cell in the SQ limit 

follows directly from  

dEEqJ
E

)(
g

sunSQsc, ∫
∞

= φ ,      (1) 

where q is the elementary charge and φsun is the solar spectrum in units of cm-2s-1eV-1. Eq. (1) 

already includes the first major loss mechanism of solar cells in the SQ limit, namely the loss 

of low energy photons with energies below the band gap Eg that are not absorbed by the solar 

cell. 
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The principle of detailed balance[70] requires that absorption is only possible when also 

emission of photons is allowed. This statement is equivalent to saying that Kirchhoff’s law[71] 

equating the absorptance and emissivity of a black body holds not only for thermal radiation 

but also for luminescence. Thus, we can calculate the excess luminescence flux lum∆Φ  

emitted from the solar cell via[72]  
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with V = ∆Ef/q being the internal voltage that is equal to the quasi-Fermi level splitting ∆Ef 

divided by elementary charge q within the device. Here,  
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is the black body spectrum at the temperature T of the solar cell, h is Planck’s constant and c 

is the speed of light. Eq. (2) and (3) imply that the carriers in the bands are already 

thermalized before they emit luminescence thus causing a second major loss mechanism of 

the SQ limit, namely the energy loss due to thermalization of electron hole pairs with energy 

much greater than the band gap Eg. In the SQ limit, radiative recombination is the only 

allowed recombination process. In an ideal solar cell, there is no dark current possible without 

recombination, i.e. the dark current is the recombination current in the dark. Thus, the dark 

current density Jd – voltage V curve of the ideal solar cell is given by ( )VqJ lumd ∆Φ= . 

Equation (2) has a mathematical form diode current-voltage curve, and therefore the prefactor 

before the square brackets can be interpreted as the saturation current density  

dEKTEqJ
E

)300,(
g

bbSQ0, == ∫
∞

φ     (4) 

in the SQ limit. Thus, the current-voltage curve under illumination in the SQ limit follows as  
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and the open-circuit voltage SQoc,V  is  
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In order to calculate the efficiency we divide the maximum of the extracted power density P = 

-JV by the incoming power density, i.e. 

( )

( )∫
∞=

0
sun

max

dEEE

P

φ
η .      (7) 

Figure 2a shows the efficiency for a single junction solar cell based on the methodology 

derived above. The maximum efficiency in the SQ-limit for a single junction solar cell 

without optical concentration and assuming the AM1.5G spectrum as defined in ref. [73] is 

about 33%. This maximum efficiency is reached or nearly reached for a range of band gaps 

around 1.1 eV to 1.45 eV which includes most technologically important semiconductors like 

crystalline Si, GaAs, Cu(In,Ga)Se2 over a wide range of In to Ga ratios as well as CdTe. 
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Figure 2: Efficiency in the SQ limit for a (a) single junction solar cell and (b) a tandem solar 
cell. For the calculations we assumed T = 300 K and illumination via the AM1.5G spectrum 
tabulated in ref. [73] (without concentration). For the case of the tandem solar cell we 
neglected optical coupling between the two subcells. 
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The SQ model allows us to calculate the limiting efficiency of a solar cell without considering 

the internal properties of the solar cell. We do not have to specify the cell thickness, the 

absorption coefficient of the absorber material or the charge-carrier mobility. In addition, we 

know that we cannot overcome the SQ-limit without circumventing one of the assumptions 

used to derive the limit. However, a major merit of the SQ-paper is the clarity of the 

restricting assumptions that give immediate hints towards the directions to overcome the limit. 

One of these directions is the use of more than one semiconductor material. The use of 

multijunction solar cells, with absorbers of various band gaps reduces the thermalization 

losses, i.e., the energy loss that follows when photons with energy larger than Eg are absorbed 

and the photogenerated carriers relax towards the band edges. Likewise the losses due to non-

absorption of low-energy photons are also reduced by the proper choice of lower band gap 

energies within the multi-junction stack. Figure 2b shows the resulting efficiencies in the SQ 

limit, which reach 45% even without concentration and which require in addition to low band 

gap solar cells in the lower range of the ones ideal for single junction solar cells (~1.1 eV) 

also solar cells with higher band gaps > 1.45eV which was the upper end of the range of ideal 

single junction solar cell band gaps. While ideal tandem efficiencies can be reached with 

combinations such as Eg1 ≈ 0.9 eV and Eg2 ≈ 1.6 eV, the technologically most relevant 

combinations might be in the future those which combine the band gaps of Si or Cu(In,Ga)Se2 

of around Eg1 ≈ 1.1 eV with band gaps in the range of Eg2 ≈ 1.75 eV which would then be the 

ideal high band gap partner material. 
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Figure 3: Power density per energy interval for the AM1.5G spectrum as well as for two real 
solar cells ((a) crystalline Si, data (EQE, Voc, FF) taken from ref. [74] and (b) lead-halide 
perovskite, data taken from ref. [75]) in comparison with the power density in the SQ limit for 
the respective band gaps. The graph illustrates the losses when going from the power 
contained in the spectrum first to the SQ limit (caused by thermalization, recombination and 
transmission of photons below the band gap) as well as further losses when going from the 
SQ limit to the real devices cause mostly due to the VocFF product in the real cell always 
being a bit lower than in the SQ limit due to additional non-radiative recombination processes.  
 

 

3. Describing Solar Cells with External Parameters 

The assumption of a step function for the absorptance of the solar cell is the key 

simplification of the SQ approach reducing the number of physical parameters for the 

description of the problem to one, namely the band gap energy. It is straight forward to extend 

the SQ approach to the more general situation of an arbitrary absorptance that can be 

determined experimentally or theoretically for a specific photovoltaic absorber. Thus, it is 

possible to determine an efficiency limit similar as in the SQ approach that is specific to a 

particular sample or device. We will call this limit the ‘radiative’ limit to distinguish it from 

the original SQ limit. This radiative limit is not unique for a certain material because the 

absorptance depends on the thickness of the layers and on the optical properties of interfaces 

(i.e. scattering, reflection, etc…). We will discuss the issue of optical models in chapter IV 
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whereas for the moment we will limit ourselves to external, measureable parameters such as 

the absorptance and photovoltaic quantum efficiency.  

If we assume that the quasi-Fermi level splitting ∆Ef is constant over the thickness of the 

device, i.e. the mobility is infinitely (or sufficiently) high, the luminescence flux is[72]  
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= 1exp)()()( f
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If the quasi-Fermi level splitting changes within the solar cell absorber volume, the 

calculation of the luminescence emission becomes more complex.[76] However, an important 

generalization of the SQ-approach is given by the opto-electronic reciprocity relation. Under 

the assumptions of Ref. [77] the electroluminescence emission is given by  
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where V is the internal voltage defined as the quasi-Fermi level splitting at the edge of the 

space charge region and the neutral base of a p-n-junction type solar cell. The assumptions 

required for the validity of Eq. (9) are that charge transport is by diffusion rather than by drift 

and that recombination is linear in minority carrier concentration.[77] These conditions are 

typically valid in the base of a pn-junction at typical light intensities and voltages relevant for 

photovoltaic operation. The conditions are not valid in fully depleted thin-film solar cells.[76] 

Note that with )()(PV
e EaEQ = , Eq. (8) follows from Eq. (9) and with )(Ea  equalling a step 

function we recover Eq. (2), i.e., the original SQ-approach. Furthermore, Eq. (9) together with 

the superposition of electro- and photoluminescence[78] provides the base for the quantitative 

(electro- and photo-) luminescence analysis of solar cells (see, e.g. [79]).  

In the following, we will discuss the radiative limit using the external quantum efficiency 

PV
eQ  keeping in mind that the external quantum efficiency can be replaced by the absorptance 
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of the photovoltaic absorber layer if the mobilities are sufficiently high.[76] We now replace 

the step function in Eqs. (1) and (4) by PV
eQ  and obtain the short-circuit current density 

dEEEQqJ )()( sun
PV
e

0
sc φ∫

∞

=      (10) 

and the radiative saturation current density 

dEEEQqJ )()( bb
0

PV
e

rad
0 φ∫

∞

= .     (11) 

Comparing the SQ limit with a step-function like absorptance and the radiative limit 

allows us to quantify losses due to the quantum efficiency not increasing abruptly above the 

band gap. This lack of abruptness may be due to disordered absorption edges, low absorption 

coefficients as observed e.g. in indirect semiconductors or the lack of efficient light trapping 

schemes. Figure 3 illustrates the concepts of the Shockley-Queisser limit as discussed in 

section II with the radiative limit discussed in the present section III. Figure 3 compares the 

power density per energy interval of the AM1.5G spectrum with the power density of a solar 

cell in the SQ limit and the power density for a real cell. Panel (a) shows the SQ limit for Eg = 

1.12 eV and experimental data of a crystalline Si solar cell[74] while panel (b) shows the SQ 

limit for Eg = 1.6 eV and a lead-halide perovskite solar cell[75]. The area under the curves is in 

all cases proportional to the power at the maximum power point and therefore also the 

efficiency. The power losses for the SQ limit are caused by thermalization, radiative 

recombination and transmission of photons below the band gap. The additional losses for the 

Si and perovskite solar cells are due to a slight reduction of the photovoltaic quantum 

efficiency relative to the step function and due to a decrease in the VocFF product due to 

additional non-radiative recombination processes. 
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In order to quantify these losses between the SQ limit (with a step-function like 

absorptance) and the radiative limit (with an arbitrarily shaped absorptance or quantum 

efficiency), we would need to have a way to decide which band gap we should use for 

calculating the SQ limit even in situations where the definition of a band gap might be less 

straightforward as for crystalline semiconductors. 

 

3.1. Defining a Photovoltaic Band Gap 

One approach to find a universal band-gap definition inspired by photovoltaic 

functionality is described in ref. [80]. The idea is to interpret a given realistic (non step-

function like) quantum efficiency as shown in Fig. 4a required for Eqs. (10) and (11) as a sum 

over many step functions H(E), i.e. 
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where P is a distribution function. We may also write  
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i.e. the band gap distribution equals the derivative of the external quantum efficiency )(PV
e EQ  

with respect to the photon energy as shown in Fig. 4b. 

In ref. [80] we suggested to define the photovoltaic band gap energy PV
gE  as the mean 

peak energy of the distribution )( gEP  via[80] 
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We chose the integration limits a and b as the energy (close to the absorption edge at low 

energies) where )( gEP  is equal to 50% of its maximum, [ ] 2/)(max)()( gEPbPaP == . Note 

that for the purpose of calculating PV
gE  it is important to avoid the high energy edge where the 

photovoltaic quantum efficiency typically decreases towards the UV part of the spectrum. 
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Figure 4: For the purpose of open-circuit voltage loss analyses, we propose to use the 
inflection point of the photovoltaic quantum efficiency )(PV

e EQ  as shown in panel (a). Panel 
(b) shows the first derivative of the photovoltaic quantum efficiency )(PV

e EQ  with respect to 
energy that we interpret as a distribution of SQ-type band gaps. We determined the band gap 
of experimental data not by using the maximum of the function shown in panel (b) but (to 
avoid noise), we determined the mean energy value of the shaded region (50% of the 
maximum value of P(E) before and after the peak) as defined by Eq. (14). Reprinted with 
permission. © American Physical Society, 2017. 
 

3.2. Thermodynamic Limits of the Open-Circuit Voltage 

The method for defining a photovoltaic band gap described above allows us to study the 

difference  
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in the open-circuit voltage between the SQ limit and the radiative limit with an arbitrary 

absorptance or quantum efficiency. The equations for the different terms in Eq. (15) can be 

found in Eqs. (1), (4), (10) and (11). Thus, when going from the SQ case to the radiative case 

for the open-circuit voltage, we obtain two loss terms, one describing the decrease in short-

circuit current and one the increase in the saturation current density. Both effects are due to 

the change from a step-function like quantum efficiency to an experimentally measured 

quantum efficiency. If we now also allow for non-radiative recombination to happen, we may 

extend that methodology to the actually measured open-circuit voltage. We may split up the 

voltage loss[80,81] 
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into the two terms ( radoc,scoc, , VV ∆∆ ) discussed above and a final term due to non-radiative 

recombination ( nradoc,V∆ ). It is in particular this third term that is typically limiting the open-

circuit voltage of solar cells and often also their power conversion efficiencies. The loss 

nradoc,V∆  is related to the external LED quantum efficiency lum
eQ  and is often[77,82,83] written in 

the form  
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Figure 5 is an example of the application of the above described methodology to split up 

the voltage losses of specific solar cells into the three parts scoc,V∆  due to a loss in short-

circuit current density (light grey), radoc,V∆ due to the shape of the quantum efficiency leading 

to radiative recombination below the SQ gap, and nradoc,V∆  due to non-radiative recombination. 

Note that the data used for Fig. 5 is obtained from specific solar cells that are not necessarily 

the record solar cells in the field. A similar analysis on record solar cells taken e.g. from the 

photovoltaic efficiency tables has been done,[84] but is hampered by the absence of 

electroluminescence data for most cells in the photovoltaic efficiency tables.[24] 
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Figure 5: Comparison of the three different types of open-circuit voltage losses, namely 
scoc,V∆  due to a loss in short-circuit current density (light grey), the loss radoc,V∆ due to the 

shape of the quantum efficiency leading to radiative recombination below the SQ gap, and 
nradoc,V∆  due to non-radiative recombination. These losses are shown for various specific solar 

cells whose data were published in references [80,81,84-87]. Note that the cells are not 
(necessarily) record efficiency cells. Figure is redrawn after ref. [80].  
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4. Connecting Internal and External Parameters 

While the extension of the detailed balance approach to externally measurable quantities such 

as the external photovoltaic and the external LED quantum efficiency[77] has proven to be 

useful in terms of analyzing experimental data, this approach does not allow us to analyze the 

effect of internal material parameters directly. Especially for purposes of studying the 

potential of a certain material rather than a device, we need to be able to calculate efficiencies 

from internal material parameters such as absorption coefficient or internal luminescence 

quantum efficiency rather than their external counterparts’ absorptance and external 

luminescence quantum efficiency. Here, we have essentially two options of how to proceed. 

Because we do not consider finite mobilities yet, there is no need at this point to already use 

drift-diffusion solvers that solve the continuity equations for electrons and holes and the 

Poisson equation. If we want to relate the achievable efficiency in the limit of high mobilities 

to the internal luminescence quantum efficiency, we need an optical model both for the 

determination of the short-circuit current and for the determination of the recombination 

current. However, if we want to relate the efficiency to the lifetime or recombination 

coefficient for non-radiative recombination the calculation of the recombination current is 

substantially simpler. We will discuss both approaches in the following, starting with the one 

that expresses the recombination current as a function of the internal luminescence quantum 

efficiency.  

 

4.1. Absorption Coefficient vs. Absorptance  

Relating the efficiency in the high mobility limit to the absorption coefficient and the internal 

luminescence quantum efficiency requires an optical model and the complex refractive index, 

consisting of a real part (nr) and of the imaginary part, which is also called the extinction 

coefficient k. The extinction coefficient is related to the absorption coefficient via k = αλ/(4π), 
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where λ is the wavelength of light, i.e. one may express the equations of the optical models 

using either k or α. In the following, we will use α, because it is typically used in the context 

of simple analytical models as the ones discussed below. 

 

 

Figure 6: Schematic of the two optical models described in (a) Eq. (18) and (b) Eq. (19). (a) 
Illustrates a situation, where we consider ray optics, perfect light incoupling and a perfect 
back reflector but no scattering. The absorptance is described for direct incidence by an 
equation (Eq. (18)) based on Lambert Beer’s law. The situation shown in (b) considers a 
perfect Lambertian scattering layer that leads to a Lambertian distribution of angles which is 
frequently used for efficiency limit calculations[88,89] for instance for crystalline Si. Redrawn 
after Ref. [89]. 
 

First, we have to connect absorption coefficient α and (the real part of the) refractive 

index nr with the absorptance. Especially for thin-film solar cells, optical models may have to 

be quite sophisticated if they are supposed to accurately describe the absorptance of a 

photovoltaic absorber layer including the effect of light scattering and interferences. In order 

to illustrate the principle, however, quite simple models are sufficient. As already done in 

previous publications,[89,90] we choose the two configurations shown in Fig. 6. In both cases, 

we assume that the front surface features a good antireflective coating so we can ignore 

reflection at the front contact. In addition, we assume a perfect mirror on the backside and 
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ignore all interferences. In such a situation, two generic situations remain. The one shown in 

Fig. 6a) is the idealized Lambert-Beer case with the absorptance given by   

( )da α2exp1LB −−=       (18) 

with d being the absorber layer thickness. Note that aLB is independent of refractive index nr. 

Figure 6b illustrates the case with a perfect Lambertian scatterer at the front. There are several 

equations that more or less precisely describe the absorptance in such a situation.[91] A 

popular approximation is[88]  

[ ]( ) 112
LT 41

−−
+= dna r α .     (19) 

Using dEEaqJ )(
0

sunsc ∫
∞

= φ , the knowledge of the absorptance is enough to calculate Jsc if we 

assume collection is efficient.  

As mentioned above, we could calculate Voc and the photovoltaic efficiency, if we knew 

the external luminescence quantum efficiency. If we only have information on material 

parameters describing recombination, such as radiative or non-radiative lifetimes, trap 

densities or internal luminescence quantum efficiencies, we also need an optical model to 

calculate solar cell efficiency. Before we discuss the relation between internal and external 

luminescence quantum efficiencies, we will however first introduce and define non-radiative 

and radiative recombination rates and lifetimes. 

 

4.2. External vs. Internal Luminescence Quantum Efficiency 

The Shockley-Read-Hall (SRH) recombination[92,93] rate 

( ) ( ) np ppnn
pnnpR

ττ 11

00
SRH +++

−
= .    (20) 

is used to describe recombination via defect levels in the band gap. Here, we use the 

abbreviations ( )[ ]kTEENn C−= TC1 exp  and ( )[ ]kTEENp TVV1 exp −= , where ET is the 
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trap level. Thus, n1 and p1 are small for deep traps but become important once the trap level is 

close to the conduction band (n1 becomes large) or close to the valence band (p1 becomes 

large). Note that SRH recombination is strictly suited only for singly charged defects (0/-) or 

(+/0) while the so-called Sah-Shockley statistics[94,95] is designed to describe recombination 

via amphoteric defects (+/0/-) such as dangling bonds in Si. However, for the purpose of this 

review we restrict ourselves to the description of recombination via traps using SRH statistics. 

This type of recombination is typically the dominant non-radiative recombination mechanism 

in most solar cell materials. The other non-radiative recombination mechanism is Auger 

recombination which is of particular relevance for crystalline Si at high doping densities or 

high injection conditions (high voltages or high light intensities).[96-98] In the following, we 

will just consider SRH recombination in relation to the radiative recombination rate that was 

implicitly already considered in the Shockley-Queisser limit. Implicitly means here that for 

the Shockley-Queisser limit, the radiative recombination rate does not have to be explicitly 

calculated but instead it only requires calculating the radiative recombination current (c.f. Eqs. 

(4) and (11)). Just as the radiative recombination current follows from the absorptance (or 

quantum efficiency) of the solar cell, the radiative recombination rate is linked to the 

absorption coefficient α (i.e. the internal parameter governing absorption). We can write 

down the detailed-balance condition for radiative recombination by equating the rates for 

recombination and absorption in equilibrium which leads to[99]  

dEnnk i bb
0

2
r

2
rad 4 φα∫

∞

=       (21) 

where krad is the radiative recombination coefficient. The radiative recombination rate is then 

( )2
radrad innpkR −= . We have shown in chapter III (Eq. (17)), the open-circuit voltage of a 

solar cell is directly related to the external luminescence quantum efficiency lum
eQ  which 

relates radiative and total recombination currents.[77] The equivalent internal quantity is the 
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internal luminescence quantum efficiency lum
iQ , which is defined as the ratio of the radiative 

to total recombination rates rather than currents. Thus,   

( ) ( ) np ppnn
k

k
RR

RQ

ττ 11
rad

SRHrad

radlum
i 1

+++
+

=
+

= .  (22) 

Note that lum
iQ  is a function of n and p and therefore it may change with voltage (in case of 

electroluminescence) or laser intensity (in case of photoluminescence).  

The relation between internal and external luminescence quantum efficiency depends on 

the fate of the photon that is created by radiative recombination. There are three options we 

need to distinguish: The photon may be emitted with probability pe, it may be parasitically 

absorbed with probability pa or it may be reabsorbed with probability pr and create a new 

electron-hole pair thereby starting the process again.[100] The sum of the three probabilities 

has to be one, i.e. pe + pa + pr = 1. The radiative recombination rate will cause an internal 

generation rate Gint = prRrad that is due to the solar cell illuminating itself. Thus, the effective 

recombination current density including Gint, Rrad and RSRH is  

( )

[ ]( )∫

∫

−+=

−+=

d

d

dxRpRq

dxGRRqJ

0
radrSRH

0
intradSRHrec

1
,    (23) 

If we now assume for simplicity that Gint, Rrad and RSRH are constant everywhere in the device, 

we obtain[101] 

[ ]radrSRHrec )1( RpRqdJ −+= .     (24) 

Under the same assumption, the radiative recombination current density expressed as a 

function of Rrad is given by  

raderad RqdpJ = ,      (25) 

and finally the external luminescence quantum efficiency is[89,101] 
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where we used the definition of lum
iQ  given by Eq. (22). If we insert the above equation (26) 

in Eq. (17), we directly obtain the relation  
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between the open-circuit voltage Voc and the internal quantum efficiency lum
iQ .  

Based on our analysis so far, we conclude that an optical model and optical material 

properties are necessary to calculate the absorptance and subsequently also the Jsc (Eq. (10)). 

In addition, both are necessary to calculate Voc from the internal luminescence quantum 

efficiency lum
iQ  or any Voc close to the radiative limit where Rrad is not << RSRH. In contrast, 

the dark recombination current away from the radiative limit, i.e. dRqJ SRHrec = , is accessible 

without any knowledge about optical parameters or optical models.  

The calculation of Voc from lum
iQ  requires the knowledge of how many photons are 

coupled out, reabsorbed or parasitically absorbed. While the outcoupling efficiency follows 

directly from the absorptance a and the absorption coefficient α via[101]  
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it is not straightforward to discriminate between reabsorption and parasitic absorption. A 

quantitative discrimination between pa and pr requires calculating the absorption of photons 

emitted by point sources distributed over the depth of the solar cell absorber. 

In Fig. 7 we illustrate the effect of parasitic absorption on the loss in open-circuit voltage 

relative to the radiative limit for a given value of (a) 1lum
i =Q  and (b) pe = 5 %. We use two y-

axes, with the left one being the voltage loss relative to the radiative limit and the right one 

being the external luminescence quantum efficiency. Figure 7a illustrates the case, where 

there is only radiative recombination in the absorber layer, however, not all of the light is 

outcoupled or reabsorbed in the absorber. Instead a certain percentage pa of photons are lost 

by parasitic absorption e.g. in a contact layer where they do not create a long-lived electron 

hole pair that would contribute to Voc. The loss in this situation is given by 

( ) ( )aee
pa

oc
lum
e exp pppkTVqQ +=∆−=  and, thus, becomes less relevant the higher the 

outcoupling efficiency pe is. 

Figure 7b illustrates the case, where the outcoupling efficiency is constant, but lum
iQ  is 

varied. For high values of lum
iQ , the effect of parasitic absorption is quite strong, while for 

values %20lum
i ≤Q , photon recycling has only a weak effect on Voc and therefore parasitic 

absorption becomes irrelevant for Voc. However, it may still be relevant for Jsc.  
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Figure 7: (a) Open circuit voltage loss due to parasitic absorption as a function of the 
probability pa of parasitic absorption in the radiative limit ( 1lum

i =Q ). (b) Total open-circuit 
voltage loss oc

rad
oc VV −  as a function of pa and lum

iQ  assuming a constant emission probability 
pe = 5%. Redrawn after ref. [89]. 
 

Based on the equations discussed in sections 4.1 and 4.2, we can calculate the current voltage 

curve under illumination as J = -Jsc + Jrec and the power density as P = -JV. From the 

maximum of the power density as a function of voltage, we then obtain the efficiency as 

discussed already in section 2.  

 

4.3. Efficiency as a Function of Absorption Coefficient and Lifetime 

If we want to calculate the high-mobility limit to efficiency as a function of the absorption 

coefficient and the lifetime of charge carriers, we may use the previously introduced Eq. (10) 

to calculate Jsc, and Eq. (11) to calculate J0,rad. In order to calculate the recombination current 

it is useful to study to extreme situations. The first scenario describes the situation where 

recombination is dominated by recombination in the neutral zone of a pn-junction solar cell, 
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i.e. where one type of carrier is present in excess of the other (i.e. n << p or p << n). This 

situation is called low-level injection. In low level injection, the recombination rate R = ∆n/τ. 

In the high mobility limit, the recombination current corresponding to this rate is J = qRd. The 

saturation current density is the recombination current in thermal equilibrium, i.e.  








 −
==

kT
E

N
NNqdnqdJ g

d

expVC0low
0 ττ

     (29) 

where NC and NV are the effective density of states of the conduction and valence band, Nd is 

the doping density, pn τττ == . 

The second scenario that may be easily treated analytically, is when we assume the solar 

cell absorber layer to be fully depleted with electron and hole concentrations being similar (i.e. 

n ≈ p). In this case, the saturation current density under high injection conditions is given by 






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2
exp

2
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0 τ

.    (30) 

which is a process with an ideality of 2. Thus the voltage dependent recombination current in 

this case reads  
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Note that Eqs. (29) to (31) neglect surface recombination for the sake of an analytical 

treatment. Note that the saturation current densities introduced in Eq. (29) and (30) depend 

linearly on thickness with higher thicknesses leading to a larger volume where recombination 

may take place and therefore a higher value of J0. The total current voltage curve then follows 

as  
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where the ideality factor nid = 1 for low injection and nid = 2 for high injection. From the 

current-voltage curve we can obtain the efficiency as discussed before using Eq. (7). 

 

4.4. The Optimum Thickness in the High Mobility Limit 

When comparing material parameters like absorption coefficient α and lum
iQ  or the SRH 

lifetime τ, it is important to understand their relative importance. The importance of 

absorption relative to recombination will depend on the chosen thickness of the assumed 

device. When, we assume for instance a rather small thickness, increasing the absorption 

coefficient might be highly beneficial. In contrast, for a larger thickness, absorption will 

already have saturated but reducing the amount of recombination will now be more important. 

Thus, there doesn’t seem to be a simple relation linking α and τ with the efficiency at an 

arbitrary thickness. However, if non-radiative recombination is dominant, efficiency will 

always have an optimum value as a function of thickness. The short-circuit current density 

will increase with thickness until a saturation value is reached where absorption above the 

band gap is efficient. If we assume efficient collection, Jsc will then remain constant for higher 

thickness. In contrast, the open-circuit voltage in the radiative limit will decrease with 

thickness[89,90,102] because J0 increases faster with thickness (linearly) than Jsc (sublinearly). 

Therefore, the product JscVoc and consequently also the efficiency will have a peak at a finite 

thickness even in the limit of infinite mobilities. The optimum thickness is strongly coupled to 

the absorption coefficient with higher values of α leading to lower optimum thicknesses. 

Interestingly, the efficiency η(dopt) at the optimum thickness dopt in a simple model as 

described in ref. [90] is directly related to the product α0τ, if we assume for instance 

( ) kTEE g0 −= αα . We are not aware of a simple analytical derivation of this relation but it 

is easy to illustrate this relation graphically. Figure 8a shows the efficiency calculated as a 
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function of thickness in the limit of high mobilities for four sets of parameters that are 

different with respect to the prefactor α0 of the absorption coefficient and the SRH lifetime τ. 

We observe that as long as the product of the two is kept constant, the maximum efficiency 

remains constant. The higher α0 and the lower τ is, the lower the optimum thickness will be.  

Figure 8b presents the optimum efficiency calculated using the JV curves as given by Eq. 

(32) as a function of optimum thickness if the prefactor α0 of the absorption coefficient and 

the SRH lifetime τ are varied over a large parameter range. This shows the robustness of the 

observation from panel (a). We also observe that the efficiency is proportional to ln(α0τ) over 

a large range of parameters. Only for very high α0τ− products, the efficiency goes into the 

saturation defined by the SQ limit.  
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Figure 8: (a) Efficiency as a function of thickness assuming infinite mobilities and therefore 
perfect charge collection, a direct band gap (Eg = 1.6 eV) with an absorption coefficient given 
by ( ) kTEE g0 −= αα  and radiative (dashed lines) as well as radiative and non-radiative 
recombination (solid lines). The saturation current density for non-radiative recombination is 
assumed to increase linearly with thickness. As long as non-radiative recombination is 
dominant, the maximum efficiency hardly changes as long as α0τ is constant. (b) Efficiency η 
at the optimum thickness as a function of the product α0τ, when varying α0 and τ over a wide 
range. The efficiency depends only on the product α0τ with higher α0τ leading to higher 
efficiencies. As long as the efficiency is not saturating because it approaches the SQ limit for 
high α0τ, the efficiency scales linearly with ln(α0τ). 
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5. Charge Collection and Electrostatics 

So far we discussed the effect of optical properties of the material as well as recombination on 

photovoltaic efficiency in the limit where charge collection and charge transport are efficient. 

Because the quasi-Fermi levels will be flat in the limit of high mobilities (whereby the 

definition of ‘high’ depends on the thickness of the device), we were still able to use 

analytical equations to describe the recombination currents. However, already in section 4.3, 

we had to distinguish between recombination in high and low injection, i.e. we had to 

consider the relative width of the space-charge region relative to the total active layer 

thickness. If we relax the condition of infinite mobilities, we need to change the level of 

theory required to describe the connection between parameters like α, µ and τ and the solar 

cell JV curve. While even with finite mobilities, the neutral zone of a pn-junction can still be 

described analytically using a one dimensional solution to the diffusion equation of minority 

carriers, every complete description of a solar cell including neutral zones and space-charge 

regions, requires the solution of the continuity equations for electrons and holes as well as the 

Poisson equation connecting space charge with electrostatic potential. 

 

5.1. Drift-Diffusion Simulations 

The so-called drift-diffusion simulations are based on solving three coupled differential 

equations, namely, the Poisson equation  

( ) ( )
ε

ρϕ pnx
x

x ,,
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2

−=
∂

∂
,       (33) 

relating the electrical potential ϕ to the space charge ρ and the permittivity ε and the two 

continuity equations for electrons 
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and holes 

( ) ( ) ( )
dx

xdpF
dx

xpdDpnxRpnxGxG
dt
dp

p
)()(,,,, 2

2

pintext µ−+−+= . (35) 

Here Gext is the generation rate of electron hole pairs due to external illumination (usually by 

the sun) while Gint is the internal generation rate due to the absorption of photons generated 

by radiative recombination within the device itself (i.e. due to photon recycling). The two last 

terms in Eqs. (34) and (35) describe the derivative of diffusion and drift currents with respect 

to position x. The diffusion term is proportional to the diffusion coefficients qkTD /pn,pn, µ=  

while the drift term is proportional to the electric field that we will denote here as F in order 

to distinguish it from the energy E. In order to solve these three differential equations, 

boundary conditions are required. Typically, the boundary conditions used are to set the 

difference of the electrostatic potential between cathode and anode to a fixed value depending 

on voltage, i.e. VVanodecathode −=− bi)()( ϕϕ , where Vbi is the built-in voltage. The 

boundary condition for the charge densities are typically defined such that the current for 

electrons or holes at cathode or anode is proportional to the respective density of electrons or 

holes multiplied with a constant factor called the surface recombination velocity S. Because 

there are four boundary conditions for charge density (electron and hole × anode and cathode), 

there are also four different surface recombination velocities. The surface recombination 

velocities for majority carriers should always be high to ensure current flow out of the right 

contact and the ones for minority carriers should be low to ensure that no unwanted 

recombination takes place at the electrodes.  

While drift-diffusion simulations are widely used in the different photovoltaic 

communities, they rather infrequently include the Gint term in Eqs. (34) and (35). This is due 

to the fact that it is complicated and time consuming to calculate the interaction of every 

coordinate in the device (where radiative recombination could take place) with every other 
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coordinate that may absorb the photon.[103,104] In addition, in many cases radiative 

recombination is slow relative to non-radiative recombination, i.e. 1lum
i <<Q  and in this case, 

Gint will be small compared to Gext even at voltages around Voc, where internal generation is 

highest. However, we want to stress that only while including the Gint term, the result of a 

drift-diffusion simulation will converge to the radiative limit for high mobilities and 

1lum
i =Q .[105] In addition, only including Gint into a drift-diffusion solver would allow one to 

study situations, where mobilities are low and charge collection might be improved by photon 

recycling supporting the diffusion of charge carriers by redistributing them optically. In the 

limit of zero mobility, charge redistribution would only proceed via a series of absorption and 

re-emission events which is the situation encountered in a fluorescent collector.[63,64] 

In the following, we will focus on the effect of the electric field distribution on charge 

collection and photovoltaic performance using drift-diffusion simulations as introduced in this 

section. The focus is on effects that go beyond the ones that could be described in the high 

mobility limit discussed in chapter 4. 

 

5.2. Full vs. Partial Depletion 

In this section, we discuss the general aspects relevant for charge collection with a 

peculiar emphasis on the topic of electrostatics, i.e. the electric fields within the device. Solar 

cells typically have at least one space charge region serving to build up a built-in voltage that 

helps separating charge carriers. While the built-in voltage is not a necessary prerequisite for 

charge separation it does help to perform that job for a range of voltages between short circuit 

and open circuit.[106-108] One way of classifying solar cell geometries is therefore to study the 

properties of the space charge region and in particular the width w of the space charge region 

in the device relative to the thickness d of the whole absorber layer. In some solar cells there 

may be more than one space charge region, e.g. the p-n-junction and the p-p+ (or n-n+) 
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junction (back surface field) in crystalline silicon solar cells. In this case, w refers to the width 

of the junction that makes the highest contribution to the built-in voltage (in the above 

example the p-n-junction). 

If we compare the typical ratio w/d over a range of technologies as shown in Fig. 9a, we 

observe that the ratio may span several orders of magnitude. On the low end of the scale 

(small space charge region relative to total active layer thickness), we have for instance 

crystalline Si solar cells but also dye-sensitized solar cells (DSSCs). On the high end, there 

are typical thin-film solar cell technologies, often those with low mobility lifetime products, 

such as amorphous Si or organic solar cells. Figures 9b, d, and f show the band diagrams of 

solar cells with different ratio w/d at V = 0 V in the dark with the space charge region being 

highlighted. If the ratio is low (b), most of the device is field free already at short circuit and 

collection of photogenerated carriers would happen by diffusion. The space-charge region 

only works as a carrier selective barrier (for holes in this case). The key parameter to describe 

collection is then the ratio of diffusion length Ldiff (of electrons in this example) and the 

thickness d. The diffusion length is directly related to the mobility-lifetime product via 

qkTL /diff µτ= . In contrast, if the ratio w/d approaches one (f), at short circuit there is a 

relatively constant field separating electrons and holes. In this situation, collection of 

photogenerated carriers is controlled by the ratio of drift length Ldr and thickness d, where the 

drift length is defined as FL µτ=dr .  

Figures 9c, e, and g show the corresponding band diagrams at open circuit. In the case 

with w/d << 1, the electric field remains zero in most of the device. Changes occur only in the 

space-charge region which takes up only a tiny part of the total volume. Thus, charge 

collection close to Voc is still controlled entirely by diffusion and is largely independent of 

voltage. If collection is efficient at short circuit it will also be efficient at open circuit. In 

contrast, if w/d = 1, collection is controlled by drift and because the drift length is 
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proportional to the electric field, the collection efficiency might change with voltage as long 

as we are not in the limit of very efficient collection (Ldr >> d). Thus, charge collection losses 

are often visible in the fill factor FF in case of thin film solar cells with w/d ≈ 1 but not in 

thick solar cells with w/d << 1. Note that towards higher voltages close to Voc, usually the 

electric field in a p-i-n device becomes low and inhomogeneous (high towards the contacts 

lower in the middle) which makes the concept of a drift length using an average electric field 

problematic around Voc.  

Figure 10a shows the diffusion length and various drift lengths for different values of the 

electric field as a function of the mobility-lifetime product. We chose a double-logarithmic 

presentation of the data which implies that both diffusion and drift length are straight lines, 

albeit with a different slope. The square-root-like dependence of the diffusion length on the 

µτ-product compared with the linear dependence of the drift length ensures that there is 

always a cross over which then depends only on temperature and electric field. Figure 10b 

presents the efficiency as a function of diffusion length for a 1 µm thick active layer and 

assuming that recombination is dominated by SRH recombination via a deep trap. The 

simulations were done using a drift-diffusion solver (ASA[109]) by varying the mobility while 

the SRH lifetime was kept constant at τn = τp = 1 µs. We varied the doping density such that 

the ratio w/d changed from 1 to << 1. In a range d/10 < Ldiff < d charge collection is improved 

by an electric field, i.e. Ldr > Ldiff leads to an improved efficiency for the fully depleted 

devices w/d = 1. However, for higher diffusion length, collection becomes efficient no matter 

whether drift or diffusion is dominant. In this situation, Figure 10b predicts that fully depleted 

devices are worse than partly depleted devices. This reversal of the optimum doping density 

in this idealized toy model cannot be explained by Fig. 10a and the differences between drift 

and diffusion lengths. Instead, the explanation is due to the effect of doping and depletion 

zones on recombination close to the open-circuit voltage. Within a depletion region, the 
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densities of electrons and holes are roughly equal and this condition will maximize the value 

of RSRH in Eq. (20) if we assume the product np to be constant. Thus, increasing the volume 

where n ~ p leads to faster collection but also to higher recombination at forward bias. In 

addition, SRH recombination in the space charge region with n = p leads to an ideality factor 

of 2 and thereby a reduced FF.[110,111] For these two reasons, pn-junction solar cells are 

beneficial relative to pin-junction solar cells in situations, where (i) SRH recombination is 

dominant, (ii) doping does not (strongly) deteriorate SRH lifetimes, and (iii) charge collection 

is already efficient due to sufficiently high mobilities.  
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Figure 9: (a) Typical ratio of the width w of the space charge region and the absorber 
thickness d for various types of solar cells. (b)-(f) Band diagrams for diodes with varying 
width of the space charge region in equilibrium (upper row) and at open circuit under 
illumination (lower row). Reproduced from Ref. [108] with permission from the PCCP Owner 
Societies. 
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Figure 10: (a) Diffusion length and drift length as a function of the mobility-lifetime product. 
The diffusion length qkTL /diff µτ=  is shown with symbols. The drift length FL µτ=dr  is 
shown for different values of the electric field F. The higher the electric field, the larger the 
region of when Ldr > Ldiff. (b) Efficiency as a function of the diffusion length for different 
ratios w/d. For Ldiff > d, small space charge regions are beneficial, because regions where n p 
cause higher SRH recombination and therefore lower Voc and FF. For d/10 < Ldiff < d charge 
collection is improved by an electric field and therefore larger space charge regions are better. 
For very small diffusion lengths, charge collection also in a fully depleted absorber would be 
inefficient. In this case the small space charge regions are better because collection at least in 
this small space charge region is high because of the high local electric field. Panel (b) is 
redrawn after ref. [108].  
 

6. Relations between Microscopic Material Parameters and α, µ, and τ 

So far, we have learned how to calculate solar cell efficiency based on external parameters 

such as the external solar cell and luminescence quantum efficiency as well as on material 

parameters such as absorption coefficient α, charge-carrier mobility µ and lifetime τ. The 

final step, necessary for an explanation of an already discovered suitability for photovoltaics 

or alternatively the identification of new materials for photovoltaics, requires finding relations 

between α, µ and τ and microscopic parameters such as the band structure or the phonon 

energies. Many microscopic parameters such as e.g. the effective mass have an impact on all 

three parameters and it may not be obvious whether for instance the increase in absorption for 

higher effective masses is counterbalanced by an increase in recombination and a decrease in 



 

 34 

mobility. Thus, there is no need to look at the quantities α, µ and τ separately. Rather we must 

consider the combined effect of microscopic parameters on all three quantities. While there is 

no simple equation that connects efficiency η to α, µ and τ, empirically such relations can be 

found as shown in section IV.B. For instance, if we assume mobility to be high and the 

absorption coefficient to be described by ( ) kTEE g0 −= αα , the efficiency at the optimum 

thickness will depend on the product α0τ. In the following, we will therefore briefly review 

analytical relations between α and τ and microscopic properties e.g. of the semiconductor 

crystal for the case of an inorganic semiconductor. In a later stage we will compare our 

findings to the situation in organic semiconductors used for photovoltaics.  

 

6.1. Absorption Coefficient and Effective Mass 

Simple relations between the absorption coefficient and microscopic parameters such as the 

effective mass are given for instance by Ridley who expresses the absorption coefficient αdir 

for interband transitions in a direct band gap semiconductor as[112] 
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Ridley uses the following abbreviations: The fine-structure constant (dimensionless)

3
0

2
fine 10297.74 −×== cq hπεα , the Bohr radius m10292.54 1122

0H
−×== mqa hπε , and the 

Rydberg energy eV 605.138 0
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with 2/1-1432/32
fine00 eVcm 1077.832 −− ×=×= hmRa HHαα . Here, m is the free electron mass (m 

= 9.109 × 10-31 kg), meff the absolute effective mass of electrons in the conduction band and 
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holes in the valence band (assumed equal), and ħ is the reduced Planck’s constant 

( eVs10582.6 16−×=h ).  

 

6.2. Multiphonon Recombination and the Energy Gap Law 

There are various attempts to express the recombination rate, the capture cross section or the 

SRH lifetime as a function of microscopic properties of the material.[113-118] In textbooks on 

semiconductor devices,[119] the SRH lifetimes τn,p as introduced in Eq. (20) are expressed as  

tpn
pn Nvth,

,
1

σ
τ = .      (38) 

where effth 8 mkTv π=  is the thermal velocity, Nt is the trap density and σn,p are the capture 

cross sections for electrons and holes. If we use the equations provided by Markvart, the 

lifetime for transitions involving multiple phonons (of the same type) is[120]  

1
2

ph2ph

2

t
0

11ln
2

cosh1
2

exp
1

−


















































 ++
−








−++

+
=

x
x

kT
E

xx
kT

E
p

xp

N
ττ , (39) 

where τ0 is a prefactor and Eph is the phonon energy. The parameter x is a function of the 

number p of phonons involved in the transition and the Huang-Rhys factor SHR and can be 

expressed as 
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The Huang-Rhys factor describes the strength of the electron-phonon coupling and contains 

two terms[115] both of which decrease with phonon energy. The first term describes polar 

coupling and is high if the factor ( ))0(11 =− −−
∞ fεε  is high, where ε(f) is the permittivity as a 

function of frequency f. The second term depends on the deformation coupling constant of the 
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phonon mode. Thus, if multiphonon transitions via optical phonons are dominant, also the 

deformation potential constant for optical phonons is required to calculate the Huang-Rhys 

factor. Note that the lifetime given by Eq. (39) is the lifetime for capture into a neutral state. 

Transitions involving attractive or repulsive defect states require multiplication of the rate 

with the so-called Sommerfeld factors described e.g. in refs. [121,122].  

Here, we will not go into the depths of the theory of multiphonon recombination but 

rather illustrate its implications for a few simple situations. We use Eq. (39) with a τ0 chosen 

based on ref. [123] and a completely arbitrarily chosen trap density of Nt = 1015 cm-3. We use 

an effective mass meff = m and a relative permittivity of εr = 10 for the calculations. Figures 11 

(a, b) show the resulting lifetime as a function of the energy difference between the two states 

involved in the multiphonon transition. These could be e.g. the conduction band and a defect 

state in the band gap. Panel (a) show the trend with phonon energy at a constant Huang-Rhys 

factor (SHR = 10) and panel (b) the trend with Huang-Rhys factor assuming a constant phonon 

energy (Eph = 30 meV). Both panels are meant to illustrate the idea of the energy-gap law, 

which implies that higher energy differences between the two states involved in the 

multiphonon transition lead to slower non-radiative recombination, i.e. longer lifetimes. Note 

that the lifetime given by Eq. (39) is the lifetime for a transition from band to defect. This is 

the same definition as the lifetimes τn and τp in Eq. (20). Detrapping may slow down 

recombination for shallow traps, which is taken into account in the classical SRH statistics by 

the terms n1 and p1 in Eq. (20). The effect of detrapping is therefore not taken into account in 

Eq. (39) and Fig. 11. 

Figure 11a shows that for a constant value of the Huang-Rhys factor SHR this energy 

difference scales with the assumed value of Eph, i.e. the number p = ∆E/Eph of phonons 

needed for the transition has a strong effect how long the lifetime would be. If p and the 

Huang-Rhys factor SHR are identical, the energy barrier that has to be overcome for 
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recombination to happen is zero and the lifetime will have a minimum value as a function of 

∆E. For recombination to happen via a defect state, two transitions are needed, i.e. conduction 

band to defect and defect to valence band. A particularly problematic situation for 

photovoltaic applications would therefore be the situation, where EphSHR = Eg/2. In this case, 

transitions from either band to a midgap defect would be fast and even low midgap defect 

densities would suffice for fast recombination and low photovoltaic efficiency.  

Figure 11c shows that lower phonon energies would at a constant and sufficiently small 

value of SHR lead to longer lifetimes at a given trap density. Figure 11c assumes the energy 

difference to be 600 meV. Note here that the condition of a constant value of SHR is an 

important restriction because phonon energy will have an effect on the Huang-Rhys factor 

with lower phonon energies generally increasing the Huang-Rhys factor.[115] However, the 

exact dependence SHR(Eph) will be affected by the type of electron-phonon coupling 

dominating (deformation coupling or polar coupling). In addition the relation between the 

reduced mass mr of the atomic oscillator and the phonon energy (approximately inverse, i.e. 

mr ~ 1/Eph)[115] will affect the result. Therefore, we will not provide a detailed discussion of 

the compensation of the beneficial effect of lower phonon energies as shown in Fig. 11c by a 

potential increase of the Huang-Rhys factor with phonon energy but highlight the necessity of 

further studies on this topic. Figure 11d shows how the lifetime depends on the Huang-Rhys 

factor indicating that as long as SHR < p any increase in SHR will lead to shorter lifetimes. 

Once the minimum at SHR = p is reached a further increase of SHR will lead to longer lifetimes.  

Thus, in order to achieve long lifetimes, we conclude that low defect densities, low 

Huang-Rhys factors and low phonon energies should be important ingredients. Future work 

on understanding the relation between molecular and crystal structure and these parameters 

are important. For the prominent case of perovskites, low deep defect densities have already 

been observed and identified[20,124] as a key ingredient for their long lifetimes and high open-
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circuit voltages. In molecules and molecular semiconductors, the concept of a phonon is no 

longer strictly applicable. Nevertheless, the general of the energy-gap law remains valid.[125-

129] For the case of organic photovoltaics, Benduhn et al.[128] have used the high energies of 

the vibrational modes of the lightweight elements used for organic semiconductors (i.e. ~ 160 

meV for the C=C bond) as an explanation for the high losses due to non-radiative 

recombination in these materials. Recently, the field of organic photovoltaics was transformed 

by the advent of new small molecule but non-fullerene acceptors that enable higher open-

circuit voltages (relative to the polymer absorption onsets) as opposed to fullerene-based 

organic solar cells.[130-147] These open-circuit voltages are enabled by a combination of lower 

offsets between the lowest occupied molecular orbital (LUMO) of donor and acceptor leading 

to higher charge transfer state energies and by lower non-radiative voltage losses ∆Voc,nrad. In 

the context of the energy gap law, we understand the latter effect of lower ∆Voc,nrad as being a 

result of the increased charge transfer state energy. 
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Figure 11: Lifetime for multiphonon recombination as a function of (a, b) the energy 
difference between ground state and excited state with (a) constant Huang-Rhys factor (SHR = 
10) and varying phonon energy and (b) constant phonon energy (Eph = 30 meV) and varying 
Huang Rhys factor. Note that the discrete jumps in the curves are due to the integer number of 
phonons needed for a transition. (c) Lifetime as a function of phonon energy for constant 
energy difference ∆E = 600 meV and varying Huang-Rhys factor. (d) Lifetime as a function 
of Huang-Rhys factor with a constant phonon energy (30 meV) and a varying energy 
difference. In order to calculate the lifetime, we used an arbitrary trap density of Nt = 1015 cm-

3. The minimum of the lifetime as a function of SHR and the number p = ∆E/ Eph of phonons 
needed is roughly at SHR = p. As long as p >> SHR, higher values of p increase lifetimes 
substantially. This increase in p can either be achieved by increasing the energy difference 
between the two states (energy gap law) or by reducing the phonon energy.  

 

In the case of ligand-capped PbS quantum dots, Bozyigit et al.[148] have studied 

multiphonon processes using thermal admittance spectroscopy and inelastic neutron scattering. 

One of the key results was the observation that the modification of the surface ligands is 

likely not affecting the passivating defects, i.e. altering Nt in Eqs. (38) and (39) but instead the 

ligands affect the mechanical properties of the surface of nanocrystals and thereby the Huang-

Rhys factor and the amount of electron-phonon coupling. Bozyigit et al also raise a currently 

unresolved problem, namely the combination of the equations for multiphonon recombination 

as derived by Ridley[115,116], Markvart[114,149] and others with the concept of the Meyer-

Neldel rule[150] that considers the effect of entropy on increasing transitions involving many 

phonons. 

 

6.3. The Role of the Effective Density of States on Photovoltaic Performance 

The effective mass meff or effective density of states Neff that are directly related via 

3/2
effeff mN ∝  are a great example illustrating the whole chain of going from microscopic 

properties to estimates of photovoltaic performance using different levels of abstraction. Low 

values of the effective mass have been cited in the literature as being useful for achieving high 

mobilities[46] and high open-circuit voltages.[151] While the arguments used in these papers 

are correct while taken in isolation, the question of whether high or low effective masses are 
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useful for photovoltaic performance is much less obvious if all effects of effective mass are 

considered in combination. Effective mass or effective densities of state affect absorption 

coefficients (see Eq. (36)), recombination rates (via their influence on the equilibrium charge 

carrier concentrations) and mobilities. The result depends on various properties of the 

material and the device, i.e. whether the material is a direct or indirect semiconductor, 

whether the material is doped or not and in case of mobility which scattering model 

dominates transport. We discuss all these different scenarios in a separate publication.[152] 

Here, we will just briefly review the key ideas for one simple scenario assuming a direct, 

intrinsic semiconductor ( ( ) kTEE g0 −= αα ). The effect of effective mass meff on mobility 

µ is described typically by the equation µ = qτm/meff,[153] with τm being the momentum 

relaxation time that depends on effective mass as well. Depending on the scattering model 

there are therefore various dependencies between mobility and effective mass possible of 

which we choose one for illustration purposes, namely -5/2
effm∝µ  (scattering via zero order 

optical phonons)[153]. In addition, we will not distinguish between effective masses of 

conduction and valence band and just assume them to be identical for simplicity. The 

calculation of the efficiency for high mobilities can then be done using Eqs. (30) to (32) with 

Jsc given by Eq. (10) with the quantum efficiency calculated using perfect collection and light 

trapping (Eq. (19)). For finite mobilities, the calculation has to be done using a drift-diffusion 

simulation software (ASA[109] in this case) solving the equations as discussed in section 5.1 

but without taking photon recycling into account. 
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Figure 12: (a) Dependence of the prefactor α0 of the absorption coefficient 
( ( ) kTEE g0 −= αα ), the inverse equilibrium recombination rate τ/n0 and the mobility as a 
function of the effective density of states Neff (conduction and valence band DOS assumed 
equal). (b) Efficiency (solid lines), Jsc (dotted lines) and Voc (dashed lines) assuming infinite 
mobilities for three different values of the effective DOS (Neff = 1018, 1019, 1020 cm-3). Lower 
DOS leads to slightly higher optimum efficiency but also at higher optimum thicknesses. (c, 
d) Efficiency (solid lines), Jsc (dotted lines) and Voc (dashed lines) assuming finite mobilities 
depending on effective mass as ( ) 2/5

eff0 / mmµµ =  for two different values of the effective 
DOS ((c) Neff = 1018 cm-3 and (d) 1020 cm-3). 
 

Figure 12a shows how the prefactor α0 of the absorption coefficient, the inverse 

equilibrium recombination rate τ/n0 and the mobility as a function of the effective density of 

states Neff. Higher Neff leads to better absorption, because more states are available, but 

recombination and mobility become slightly worse. Figure 12b shows how the maximum 

efficiency (solid lines) as a function of thickness changes with effective DOS when we 

assume the mobility to be infinitely high and the SRH lifetime τ = 100 ns. The higher 

absorption for higher Neff leads to Jsc (dotted lines) increasing and saturating at a lower 

thicknesses. The higher the thickness, the lower the Voc (dashed lines) will become. This 
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combination of trends leads to an optimum efficiency that is slightly increasing with lower 

density of states. However, the thickness required to reach that optimum increases as well.  

Figures 12c and d show the efficiency, Jsc and Voc as a function of thickness for the case 

where the mobility is finite and given by ( ) 2/5
eff0 / mmµµ = . Within each panel, we varied µ0 

which assumes the values µ0 = 10-3, 10-1, 10 cm2/Vs (black, dark grey, light grey lines). 

Figure 12c shows the case for a lower effective DOS (Neff = 1018 cm-3) and fig. 12d for a 

higher DOS (Neff = 1020 cm-3). As previously observed in Fig. 12b, the lower effective DOS 

requires higher thicknesses to achieve full collection and a high Jsc (dotted lines). The higher 

thicknesses necessary for the low effective DOS are partly compensated by the higher 

mobilities and reduced recombination rates. The final result is that in this example, the lower 

effective DOS leads to a slightly higher peak efficiency, however, it also requires thicker 

layers and is therefore not necessarily the better option for a technological implementation. 

Thus, we conclude that the effective mass is a typical example for a parameter whose 

influence on photovoltaic performance is varied and complex with the different effects mostly 

compensating each other.   

 

7. Summary and Outlook 

The primary goal of the present paper was to provide a clear recipe how to connect 

fundamental material properties with a proper thermodynamic description of a solar cell made 

from the specific material. Such an approach must be able to be consistent with the SQ 

approach as the ultimate reference. Depending on the amount of input parameters, there are 

different variations and extensions of the SQ approach that may be used for relating material 

properties to device functionality. In the SQ limit itself only band gap and temperature are 

used to calculate efficiency. Related to the SQ limit are approaches to describe the solar cell 

based on external, measureable properties such as the external solar cell quantum efficiency 
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and the external luminescence quantum efficiency. However, if one wants to relate true 

material properties for instance obtained by ab-initio calculations, one needs to be able to 

relate e.g. the internal luminescence quantum efficiency (as opposed to the external 

luminescence quantum efficiency) to photovoltaic performance. In this situation, a consistent 

description requires knowledge of its complex refractive index combined with an optical 

model which has to make assumptions with regard to the light-trapping scheme. We also 

show that any assessment of performance based on material properties has to make some 

assumptions on the absorber layer thickness. We propose here to always scan the whole range 

of thicknesses and compare efficiencies at the optimum thickness. In order to study the 

influence of the structure of materials, we have to relate properties such as the effective mass, 

the phonon energy or the dielectric permittivity to properties such as absorption coefficient, 

mobility and charge carrier lifetime.  

While there is no simple general answer to our title question, there are a range of 

microscopic material properties that have been identified as either beneficial or detrimental 

for photovoltaic performance and future work is likely to identify more. A key criterion is to 

have a low likelihood of deep defects that maximize multiphonon transition rates as achieved 

for instance in lead-halide perovskites.[20,124] Another one is to avoid the combination of low 

band gaps and light elements due to the energy gap law and the occurrence of high energy 

vibrational modes in semiconductors made from light elements such as organic 

semiconductors.[128] A third criterion is the impact of mechanical properties controlled for 

instance by the choice of ligands in quantum dot solids, where the stiffness of the ligands 

affects the Huang-Rhys factor and subsequently non-radiative recombination.[148] An 

example for a relatively influential parameter that cannot directly be regarded as either clearly 

positive or negative is the effective mass and effective density of states. Both parameters are 

related and affect absorption coefficient, recombination rates and mobilities and therefore 
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have a substantial influence on photovoltaic functionality that is however largely cancelling 

each other out if efficiencies are compared at the optimized thickness.  

Future work may use the methods outlined in this progress report and investigate how 

additional microscopic parameters such as the dielectric permittivity of the material, the 

polarizability of the material, the phonon energy, the deformation potential constant, the 

reduced mass of the atomic oscillator and others affect photovoltaic functionality. It is our 

hope and aim that a continuation of this work will lead to an improved methodology to 

interpret and explain the performance of actual photovoltaic materials but also to identify 

promising candidates via computational or experimental material screening studies.  
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TOC Entry: The progress report aims to explain how microscopic structural properties of 

solar cell absorber materials affect properties such as absorption coefficient, mobility and 

charge carrier lifetime and how these properties in turn affect photovoltaic performance. The 

report provides the necessary theoretical background to describe solar cells on different levels 

of abstraction which helps our understanding of what makes some materials good solar cell 

materials.  
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