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Research in neuroscience faces the challenge of integrating information across different

spatial scales of brain function. A promising technique for harnessing information at a range

of spatial scales is multivariate pattern analysis (MVPA) of functional magnetic resonance

imaging (fMRI) data. While the prevalence of MVPA has increased dramatically in recent

years, its typical implementations for classification of mental states utilize only a subset of

the information encoded in local fMRI signals.We review published studies employing mul-

tivariate pattern classification since the technique’s introduction, which reveal an extensive

focus on the improved detection power that linear classifiers provide over traditional analy-

sis techniques. We demonstrate using simulations and a searchlight approach, however,

that non-linear classifiers are capable of extracting distinct information about interactions

within a local region. We conclude that for spatially localized analyses, such as searchlight

and region of interest, multiple classification approaches should be compared in order to

match fMRI analyses to the properties of local circuits.
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INTRODUCTION

Our ability to understand brain function is limited by the scale

and accuracy with which we can quantify neural activity. Knowl-

edge about brain function comes from different research methods,

depending on the spatial scale: individual neurons (Koch, 1997;

Dayan and Abbott, 2001; Gerstner and Kistler, 2002), cortical

columns, larger brain regions (Rolls and Treves, 1998; Frackowiak,

2004), and functional networks spanning the whole brain (Fox

et al., 2005). As one example, recording from single neurons pro-

vides exquisitely detailed temporal records of action potentials

(up to the millisecond scale) but limits our coverage of the brain

to a small volume surrounding the electrode a cross-section of

about three square micrometers (Boulton et al., 1990). Conversely,

functional magnetic resonance imaging (fMRI) provides informa-

tion about neural metabolic changes, not neuronal activity, but

allows an unparalleled combination of spatial resolution (down

to sub-millimeter resolution) and whole brain coverage (Huet-

tel et al., 2008). In spite of this, the spatial resolution of fMRI in

typical experiments is still inadequate to describe even columnar

structures (Mountcastle, 1997). Gaps between levels of description

present barriers both to integrated basic science research and to a

more refined treatment of mental disorders.

Recent technological, methodological, and analytical innova-

tions have promised to bridge knowledge across levels of spatial

resolution (Kim et al., 2000; Logothetis et al., 2001; Kamitani

and Tong, 2005; Kriegeskorte and Bandettini, 2007; Kriegeskorte

et al., 2008). Here we inspect the recent introduction of statis-

tical learning techniques to fMRI, often grouped under the term

multivariate pattern analysis (MVPA; Haynes and Rees, 2006; Nor-

man et al., 2006; Pereira et al., 2009; Weil and Rees, 2010). MVPA

simultaneously examines the disparate signals carried within a set

of voxels rather than examining individual voxels in parallel, as is

done in the univariate approaches that are used in the vast majority

of fMRI studies. By considering multiple responses jointly, MVPA

can reveal signal components that are independent of the aver-

age regional response. Extending this principle to whole brain

fMRI data, MVPA can be used to provide an information-theoretic

framework for the isolation of regions that uniquely represent a

behavior (Hampton and O’doherty, 2007; Carter et al., 2012). In

principle, MVPA also holds the capability to describe brain func-

tion at sub-voxel levels (Kriegeskorte et al., 2010), filling the glaring

gap between our knowledge of small groups of neurons and the

body of research describing functional characteristics of the brain.

While a number of techniques from statistical learning have

been applied to fMRI data, here we focus on the use of multivari-

ate pattern classification (MVPC) to decode mental states. Due to

the poor generalization of models that utilize whole brain data,

most analyses apply some form of feature selection to limit model

complexity and improve generalizability. Here we utilize a com-

mon MVPC feature selection method which isolates local spheres

of voxels and generates a separate model for each sphere, com-

monly referred to as the searchlight approach (Kriegeskorte et al.,

2006). The use of searchlights focuses inference on patterning of

information within a given localized area, meeting our goal of

bridging voxel-wise information and regional coding.

The classification algorithms used in MVPC can generally

be divided into two categories. Linear classification algorithms

(Figure 1A, top) use a weighted combination of signals from vox-

els within a feature set (e.g., a brain region) to decode perceptual

or cognitive states. These methods show a measurable benefit in
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FIGURE 1 | Learning algorithms in multivariate pattern classification

(MVPC) of fMRI studies. (A) Pattern classification problems can be identified

as linearly separable or inseparable, depending upon how component

features encode information. Solutions for linear and non-linear pattern

separation are depicted as detailed by Mangasarian (1965). If linearly

separable, an n-dimensional planar surface defined by the point x weighted

by the vector d and offset by the scalar γ can successfully separate the

patterns A and B (xd−γ = 0 | Ad – eγ > 0, Bd – lγ < 0). In the case of quadratic

separability shown here, an additional term can be added creating a non-linear

surface that separates A and B (xEx ’ + xd – γ = 0 | AiEAi’ +Aid – γ > 0,

BjEBj’ + Bjd – γ < 0). (B) Number of publications using linear and non-linear

algorithms in our meta-analysis of the neuroscience literature broken down by

year, showing recent growth in the use of linear rather than non-linear

algorithms. The analysis was accomplished by searching PubMed on August

29, 2011 for the terms (fMRI or MRI) and [MVPA or decoding or (pattern

classification)], identifying studies from that search that used pattern

classification to study brain function – with the assistance of the AntConc

corpus analysis toolkit (Anthony, 2011).

signal detection beyond using a univariate general linear model.

However, each individual voxel must still contain information that

can separate the stimuli of interest (see Mangasarian, 1965 for a

mathematical description). In contrast, non-linear classification

algorithms (Figure 1A, bottom) use a complex combination of

information across voxels (e.g., a polynomial, sinusoid, or Gauss-

ian function) so that even voxels that contain no useful informa-

tion by themselves may still improve the classification performance

of a larger set of voxels. Thus, linear and non-linear classifiers are

capable of characterizing different types of neural representations

(Rasmussen et al., 2011).

In addition to characterizing the type of information encoded

within a brain region, comparing linear and non-linear classi-

fiers may offer insight into how activation may be read out or

manipulated through subsequent processing steps. For example,

if the activation of a region can be decoded using linear classi-

fication, functionally connected regions could make use of the

identified differences directly; without additional processing (for

further discussion, see Norman et al., 2006; Misaki et al., 2010).

Conversely, a significant non-linear classification (in the absence

of linear decoding) suggests any information represented in that

region will require further processing in order to be utilized (Kouh

and Poggio, 2008). An example of the distinction is present in work

by Kamitani and Tong (2005), where linear ensemble classifiers

are sufficient to decode the orientation of perceived lines from

patterns of fMRI activity in early visual cortex. Orientation infor-

mation has been identified, and is being utilized immediately with-

out extended processing. Using a non-linear classifier could allow

decoding of face representations in these same voxels, even though

their underlying neuronal activity would not be explicitly coding

for those representations (i.e., the integration process would hap-

pen at a later stage in processing). In this regard, contrasting the

decoding capability of linear and non-linear classification may give

insight into whether multivariate information is at an early or late

stage of a processing stream.

The capacity of non-linear classification algorithms to decode

complex patterns comes with a cost. As the complexity of a classi-

fier is increased relative to the quality and amount of data available

(e.g., by increasing the number of features or by using algo-

rithms with more parameters), the possibility of overfitting is more

likely (Duda and Hart, 1973). Measures of complexity, such as

the Vapnik–Chervonenkis dimension (Vapnik and Chervonenkis,

1971) or Rademacher complexity (Bartlett and Mendelson, 2001),

are useful in constructing classifiers because they allow one to

assess the feasibility of learning on out of sample data (Blumer

et al., 1989). For example, non-linear classifiers may estimate an

overly complex decision boundary, resulting in poor performance

in tests of generalization. Overfitting a complex function may
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obscure linear relationships that are present in the data, although

methods such as regularization and cross-validation have been

developed to mitigate this problem (Mitchell, 1997). One such

approach is the use of spatial regularization, whereby prior infor-

mation about the spatial relationships of voxels is used to guide

classification (Martinez-Ramon et al., 2006; Meyer and Xilin, 2008;

Xiang et al., 2009). While the potential for overfitting is high in

the case of fMRI (Misaki et al., 2010; Pereira and Botvinick, 2011),

several studies (e.g., Hanson et al., 2004; Rasmussen et al., 2011)

have demonstrated that pattern classifiers are capable of decoding

information bound in non-linear relationships across multivari-

ate samples. Thus, while overfitting is conventionally considered

a drawback it can also serve as a marker for excessive model

complexity.

Accordingly, the complexity of decoding algorithms should ide-

ally reflect the way in which information is encoded. For example,

the neural coding of motion in the occipital gyrus has been investi-

gated at multiple levels of analysis. Brain structures responsible for

encoding visual motion (Zeki et al., 1991; Tootell et al., 1995) have

been identified using univariate approaches, while more specific

information such as the direction of perceived motion has been

successfully decoded using linear pattern classification (Kamitani

and Tong, 2006). Indeed, the use of pattern analysis is redefining

the limits of fMRI, revealing information encoded at spatial scales

thought to be beyond the resolution afforded by current tech-

nology (Kamitani and Sawahata, 2010; Kriegeskorte et al., 2010),

although the origin of this information is debated (Op De Beeck,

2010a,b; Shmuel et al., 2010; Freeman et al., 2011). These findings

demonstrate that the improved sensitivity and use of spatial infor-

mation by multivariate classifiers permit the decoding of more

complex information than standard univariate approaches.

Linear and non-linear classifiers are capable of solving different

types of classification problems and therefore can provide differ-

ential insight into brain function – yet, in practice they are applied

to similar research questions. To characterize the usage of these

two classes of decoding methods in the literature, we conducted a

meta-analysis of fMRI studies employing MVPA methods. Strik-

ingly, 110 of 115 studies (95.7%) used linear algorithms while only

16 (13.9%) utilized a non-linear approach and 11 studies imple-

mented both methods. Although interpretability and resilience to

overfitting in high dimensional datasets warrants the utilization

of linear algorithms, their disproportionate use critically limits

the types of information that can be decoded from patterns of

neural activity. As MVPC is capable of decoding information at

multiple levels of complexity and is being used at a rapidly increas-

ing rate (Figure 1B), understanding what information is extracted

by these different methods can guide future research.

ENCODING AND DECODING SIGNALS

To examine how a focus on linear classifiers limits the scope of

MVPC, we created simulated data with different spatial distribu-

tions of information and attempted to decode them using standard

univariate, linear multivariate, and non-linear multivariate mod-

els. The simulations were tailored to demonstrate how different

schemes of information encoding are decoded with markedly

different performance depending on the classification method

applied. For the sake of simplicity, the data contained properties

similar to those from a single slice acquisition of blood-oxygen-

level-dependent (BOLD) fMRI. We crafted four datasets where

embedded signals differentiated between an alternating sequences

of time (referred to as states A and B), as is common to exper-

imental tasks with a blocked design (Figure 2; MATLAB code

for constructing and analyzing the datasets is available online at

http://www.duke.edu/∼pak5/). Each dataset consisted of a 12-by-

12 matrix sampled at 240 time points in which consecutive blocks

of 10 time points alternate between states A and B. Signal discrim-

inating the two states was incorporated within a circle of radius

3 voxels above 10 dB white Gaussian noise. Finally, a spatial filter

(Gaussian kernel with FWHM of 3 voxels) was applied to reflect

the inherent smoothness of fMRI data.

In particular, we were interested in the relative sensitivity

of each analytical approach to information with particular spa-

tiotemporal properties. In the case of univariate analyses, we

compared the mean of each voxel during state A and B using a

two tailed paired t -test. Classification was performed using linear

and radial basis function support vector machines implemented

in libSVM (Chang and Lin, 2011). We implemented a search-

light approach (Kriegeskorte et al., 2006) constructing multiple

classifiers using data from each sample and its four nearest neigh-

bors. This approach highlights how spatial smoothing inherent in

fMRI acquisition may impact detection of information of nearby

sources. To produce a generalized estimate of accuracy, twelve-fold

leave-one-out cross-validation was performed (i.e., the analyses

were repeated twelve times, each time partitioning a different

block of data for an independent test). The statistical significance

of accuracy estimates were then computed using binomial tests

against chance levels of performance. Statistical maps produced

from univariate and MVPC analyses were then thresholded at

a family wise error corrected level of p < 0.05. Additionally, to

compare the relative sensitivity and specificity of different signal

detection methods, the area under the receiver operating char-

acteristic curve was computed for all analyses. The hit rate was

calculated as the proportion of significant voxels above threshold

within the source of information. The false positive rate was simi-

larly calculated using the same procedure, only on data containing

smooth noise – no informative signal was added.

In our first example (univariate encoding ), we simulated

a dataset whose spatial properties were well-matched to the

strengths of univariate statistics. We focused on two key prop-

erties in constructing this simulation. First, spatial location is not

relevant to the information contained in the signal, so independent

random sampling from the circle should yield consistent results.

Second, the voxels do not interact and can be considered one at

a time without a loss of information. Thus, performing a statisti-

cal test on each sample separately should be sufficient to identify

where the signal is contained. To meet these requirements, we

made each sample within the circle deactivated during state A

and activated state B, resulting in a square waveform. We found

that all statistical approaches correctly identified the majority of

voxels within the circle. The enhanced sensitivity of MVPC was

evident around the boundary of the activated region, where spa-

tial smoothing decreased the information content of voxels. While

the univariate approach only identified voxels within the circle, the

pattern classifiers could identify voxels just outside the boundary
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FIGURE 2 |The relative information sensitivity of different fMRI analysis

approaches. Simulated datasets comprised a 12-by-12 matrix sampled at 240

time points in which consecutive blocks of 10 time points alternate between

two states (A and B). Signal discriminating the two states is present in a circle

of radius 3 voxels above 10 dB white Gaussian noise. Circles marked with

white lines indicate amount of encoded information, with the inner circle

containing informative patterns when sampled with a searchlight, while the

outer circle may contain some information as a result of spatial smoothing

(Gaussian kernel with FWHM of 3 voxels). Red coloring indicates successfully

decoded voxels at a family wise error corrected threshold of p < 0.05. Signal

detection is quantified using area under the receiver operating characteristic

curve (AUC). In the univariate encoding simulation, information that is

encoded by the mean activity of each sample independently, with a

homogeneous spatial distribution, is successfully decoded by all methods. For

the example with sparse encoding, information present in the mean activity

and spatial location of each sample is detected by all three analysis

approaches, although MVPC provides increased sensitivity. In the inverted

encoding simulation, detection performance is greater for both MVPC

approaches than for univariate approaches. And, in the interactive encoding

simulation, where embedded signals interact in a state dependent manner to

produce information, only the non-linear approach was capable of

successfully identifying the embedded signal.

where only a small amount of information was present due to the

smoothness of the data. Thus, for this simplest case, the advantage

of MVPC was that of increased sensitivity compared to univariate

techniques.

For our second exemplar dataset (sparse encoding ), we simu-

lated a sparsely distributed signal within an activated region by

randomly retaining one quarter of the voxels within the circle and

increasing their amplitude four fold, ensuring the total amount

of signal within the source remained constant. In this case, only

some spatial locations provide information that differentiates the

two states. For this reason, univariate tests may fail to identify a

sample with low or intermediate amplitude, whereas multivari-

ate methods can utilize spatial information to successfully classify

the data. Statistical analysis on this dataset revealed that while all

three methods could successfully identify that task-related signal

was present in the dataset, the univariate analysis failed to identify

some regions within the circle.

In the third example (inverted encoding ), our goal was to

demonstrate a less conventional dependence on spatial location.

To accomplish this, we made every sample contain signal but

reversed its sign in half the voxels selected at random. By revers-

ing the sign of activity in half of the voxels, both the sign of the

signal and its spatial location are required to decode the cur-

rent state. Consistent with the previous example, multivariate

pattern classifiers excelled at decoding spatial information while

univariate analysis failed to detect the majority of voxels within

the source. Taken together, the results from examples two and

three demonstrate the increased sensitivity of MVPC over univari-

ate approaches, with linear and non-linear classifiers exhibiting

similar performance.
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For the fourth example (interactive encoding ), we created a

source in which information is carried exclusively through the

interaction of voxels. This was accomplished by randomly dis-

tributing two signals throughout the circle in a fashion similar

to example three, but allowing the direction of activation to vary

over time. In state A the regions alternate between being positive

or negative with opposite signs, whereas in state B neither region is

active. Classifying the current state requires creating a model that

incorporates the interactions between voxels, because the overall

activation of any voxel (or the region as a whole) carries no infor-

mation. As expected, statistical analysis revealed that non-linear

classification was the only approach that successfully identified

the source of information in the data.

EXPANDING THE USE OF PATTERN CLASSIFICATION

Consistent with its increasing prevalence in the literature, MVPC

has several distinct advantages over conventional univariate

approaches. It has greater sensitivity for identifying small effects,

especially when the spatial distribution of activity is heteroge-

neous. This result is consistent with studies finding functional

organization in brain structures, such as visual cortex (Kamitani

and Tong, 2005) and the hippocampus (Hassabis et al., 2009), that

had been previously missed using univariate methods. Studies

using linear classifiers to extract unexpected effects have popu-

larized pattern analysis. We found, however, that the benefits of

MVPC go well beyond a simple increase in detection power. Linear

classifiers provide access to spatial information on top of that car-

ried in the mean level of activity, while non-linear classifiers reveal

information likely to be carried in complex computational maps.

The defining properties of linear MVPC are its use of spatial

information and focus on individual voxels. Because the distribu-

tion of neurons sampled in a voxel can vary with spatial location,

spatially sparse fMRI activity is likely a result of heterogeneity in

underlying neural populations. While univariate methods gloss

over these distinctions by examining each voxel separately, linear

classification carries intuitive advantages. As has been commonly

noted (Kamitani and Tong, 2005; Norman et al., 2006; Pereira et al.,

2009), linear classifiers pool the information contained within

individual voxels. This is a useful property when the goal of clas-

sification is to leverage fine scale spatial organization in studying

brain function because the location of voxels, rather than interac-

tions between them, will drive performance of classification. The

combination of these two properties allows the method to reveal

information beyond univariate approaches (Jimura and Poldrack,

2012) in a manner that is straightforward to interpret. Thus, lin-

ear classification should be employed when neural signals do not

interact and are expected to be in a fixed spatial configuration, as

in the sparse encoding and inverted encoding simulations.

Non-linear classification, on the other hand, should be har-

nessed when cognitive states do not necessarily correspond to the

activation of individual voxels, but instead have differential effects

depending on the functional properties of those voxels. Because

non-linear algorithms treat the activity of a voxel as part of a com-

binatorial code rather than a unitary piece of information, they are

better served to decode more complex representations across asso-

ciation cortex (Hanson et al., 2004) that build upon basic features

in primary sensory cortex (e.g., Kamitani and Tong, 2005).This

capacity may prove critical in representing multiple different cat-

egories from more basic properties in a robust, efficient manner

(Op De Beeck et al., 2008). Further, our results demonstrated that

non-linear algorithms can identify combinatorial patterns that

are not time invariant, but drastically change over time despite

containing the same information content. These findings suggest

that non-linear classification is an advantageous methodological

choice when neural signals are highly intricate and vary over time,

for example in interactive encoding.

Despite their benefits and unique capacities, both linear and

non-linear classifiers utilize information contained in the activ-

ity and spatial location of a sample, which can lead them to

show similar results in many cases. The performance of MVPC

methods must be compared to univariate results before claims

about spatial information can be made. More specifically, a

linear classifier must reveal information beyond that which is

detectable by univariate methods before the spatial location of

inputs can be considered important. Similarly, non-linear classi-

fiers do not only decode pattern activity; mean levels of activity

or spatial location can also drive the performance of these learn-

ing algorithms. We found comparisons between analysis meth-

ods to be infrequent in our meta-analysis, with comparisons

to univariate methods being made in 16 (13.9%) studies and

comparisons between non-linear and linear algorithms in only

11 (9.6%) studies. This is especially important since sensitiv-

ity in MVPC varies with signal amplitude (Smith et al., 2011).

Additionally, given that non-linear classifiers can properly model

decision boundaries that linear classifiers are incapable of solv-

ing (e.g., the XOR problem or our related interactive encoding

example), the application of non-linear classifiers may lead to

refinement of models already established with linear approaches.

Model comparisons are essential in revealing information con-

tained in non-linear relationships above and beyond the capacity

of linear classifiers. While linear classifiers can be successfully

applied to improve the sensitivity of fMRI in cases of function-

ally organized neural activity, they need to be complemented

with non-linear algorithms to be a true advance over traditional

approaches.
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