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Abstract

Recent studies on image memorability have shed light

on what distinguishes the memorability of different images

and the intrinsic and extrinsic properties that make those

images memorable. However, a clear understanding of the

memorability of specific objects inside an image remains

elusive. In this paper, we provide the first attempt to an-

swer the question: what exactly is remembered about an

image? We augment both the images and object segmenta-

tions from the PASCAL-S dataset with ground truth mem-

orability scores and shed light on the various factors and

properties that make an object memorable (or forgettable)

to humans. We analyze various visual factors that may in-

fluence object memorability (e.g. color, visual saliency, and

object categories). We also study the correlation between

object and image memorability and find that image memo-

rability is greatly affected by the memorability of its most

memorable object. Lastly, we explore the effectiveness of

deep learning and other computational approaches in pre-

dicting object memorability in images. Our efforts offer a

deeper understanding of memorability in general thereby

opening up avenues for a wide variety of applications.

1. Introduction

Consider the left image in Figure 1. Even though the

person on the right is comparable in size to the person on the

left, he is remembered far less by human subjects, indicated

by their respective memorability scores of 0.18 and 0.64.

Moreover, people tend to remember the person on the left

and the fish in the center, even after 3 minutes and more

than 70 additional visual stimuli have passed. Interestingly,

despite vibrant colors and considerable size, the boat is far

less memorable with a memorability score of 0.18.

One of the primary goals of computer vision is to aid

human-relevant tasks, such as object recognition, object de-

tection, and scene understanding. Much of the algorithms

* denotes equal contribution

Figure 1: Not all objects are equally remembered. Image showing

objects and their respective memorability scores (left) obtained from our

experiment. We note that certain objects (the fish and left person) are more

memorable than other objects. Right panel shows the ground truth map

generated from the object segments and memorability scores.

in service of this goal have to make inferences about all

objects in a scene. In comparison, humans are incredibly

selective in the information they consider from the possi-

ble visual candidates they encounter, and as a result, many

human tasks are dependent on this filtering mechanism to

be performed effectively. For this reason, it is important

for vision systems to have information on hand concern-

ing what objects humans deem important in the world, or

in our specific case, which of them are worth remembering.

Such information holds exciting promise. For example, it

can help in building assistive devices (goggles) so that the

elderly can easily memorize objects that they tend to for-

get, or help design better instructional diagrams involving

memorable graphic objects.

Going back to Figure 1, why are the fish and left per-

son more memorable and how do these objects influence

the overall memorability of the photo? The community

has made great strides in understanding comparable visual

properties of the world such as saliency [19, 15, 16, 7,

4, 11, 12] and importance [3], but we still do not have a

clear understanding of what objects are worth remember-

ing in the world. Although recent studies related to im-

age memorability [17, 22, 24, 18, 8] have explored this at

the image-level, no work has explored what exactly in an

image is remembered. Using object annotations and pre-

dictive models, such knowledge can be potentially inferred

from the memorability score of an image alone [25], but

11089



Figure 2: Object Memory Game. Participants viewed a series of images followed by a sequence of objects and were asked to indicate whether each

object was seen in the earlier sequence of full images.

these methods will ultimately require ground truth object

memorability data to be properly evaluated and analyzed.

To enable the development of such approaches, we collect

ground truth object-level memorability scores and conduct

an extensive empirical investigation of memorability at the

object level. This allows for a simple yet powerful strategy

that provides detailed answers to many interesting questions

at hand. While image memorability studies have provided

invaluable knowledge, the study of object memorability will

enable unique applications in the field of computer vision

and computational photography not possible from the study

of image memorability alone. It can guide cameras to au-

tomatically focus on memorable objects and in the process

help take photographs that are more memorable. Similarly,

it can enable intelligent ad placement software that embeds

products (objects) in adverts in such a way that humans are

likely not to forget.

In this paper, we systematically explore the memorabil-

ity of objects within individual images and shed light on the

various factors that drive object memorability. In exploring

the connection between object memorability, saliency, ob-

ject categories, and image memorability, our paper makes

several important contributions.

Contributions. (1) This paper presents the first work that

studies the problem of object memorability and provides a

deeper understanding of what makes objects in an image

memorable or forgettable. While previous work has tried

to infer such knowledge computationally [25], our work is

the first to directly quantify and study what objects in an

image humans actually remember. (2) We uncover the re-

lationship between visual saliency and object memorability

and demonstrate those instances where visual saliency di-

rectly predicts object memorability and when/why it fails

to do so. While there have been a few very recent stud-

ies that explore the connection between image memorabil-

ity and visual saliency [8, 34, 26], our work is the first to

explore the connection between object-level memorability

and visual saliency. (3) We make significant headway in

disambiguating the link between image and object memo-

rability. We show that in many cases, the memorability of

an image is primarily driven by the memorability of its most

memorable object. Furthermore, we show that our compiled

dataset can serve as a benchmark for evaluating automated

object memorability algorithms and enable/encourage fu-

ture work in this exciting line of research.

2. Measuring Object Memorability

As a first step towards understanding memorability of

objects in images, we compile an image dataset containing

a variety of objects from a diverse range of categories. We

then measure the probability that every object in each im-

age will be remembered by a large group of subjects after

a single viewing. This helps provide ground truth memo-

rability scores for objects inside images (defined as image

segments) and allows for a precise analysis of the memo-

rable elements within an image.

Toward this, we utilized the PASCAL-S dataset [30], a

fully segmented dataset built on the validation set of the

PASCAL VOC 2010 [13] segmentation challenge. To im-

prove segmentation quality, we manually refined the seg-

mentations from this dataset. We removed all homoge-

nous non-object or background segments (e.g. ground,

grass, floor, and sky), along with imperceptible object frag-

ments and excessively blurred regions. All remaining ob-

ject segmentations were tested for memorability. In sum-

mary, our final dataset comprises 850 images and 3, 412 ob-

ject segmentations (i.e. an average of 4 objects per image),

for which we gathered ground truth memorability through

crowd sourcing.

2.1. Object Memory Game

To measure the memorability of individual objects in

each dataset image, we created an alternate version of the

Visual Memory Game through Amazon Mechanical Turk

following the basic design in [18], with the exception of

a few key differences (refer to Figure 2). In our game,

participants first viewed a sequence of 35 images one at a

time, with a 1.5 second interval between image presenta-

tions. The subjects were asked to remember the contents

and objects inside these images to the best of their abil-

ity. To ensure that subjects would not only just look at the

salient or center objects, they were given unlimited time to

freely view the images. Once they were done viewing an

image, they could press any key to advance to the next im-

age. After the initial image sequence, participants viewed

a sequence of 45 objects, their task then being to indicate
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through a key press which of those objects was present in

one of the previously shown images. Each object was dis-

played for 1.5 seconds, with a 1.5 second gap between each

object in the sequence. Pairs of corresponding image and

object sequences were broken up into 10 blocks. Each block

consisted of 80 total stimuli (35 images and 45 objects), and

lasted approximately 3 minutes. At the end of each block,

the subject could take a short break. Overall, the experiment

takes approximately 30 minutes to complete.

Unknown to the subjects, each sequence of images in-

side each block was pseudo-randomly generated to consist

of 3 “target” images taken from the PASCAL-S dataset,

whose objects were later presented to the participants for

identification. The remaining images in the sequence con-

sisted of 16 “filler” images and 16 “familiar” images. Filler

images were randomly selected from the DUT-OMRON

dataset [39], while the familiar ones were randomly sam-

pled from the MSRA dataset [32]. In a similar fashion, the

object sequence in each block was also generated pseudo-

randomly to consist of 3 target objects (1 object taken ran-

domly from each previously shown target image). The re-

maining objects in the sequence consisted of 10 control, 16
filler, and 16 familiar objects. Filler objects were sampled

randomly from the 80 different object categories in the Mi-

crosoft COCO dataset [31], while the familiar objects were

sampled from objects taken from the previously displayed

familiar images in the image sequence. The familiars en-

sured that the subject were always engaged in the task and

the fillers helped provide spacing between the target images

and target objects. While the fillers and familiars (both im-

ages and objects) were taken from datasets of real world

scenes and objects, the control objects were artificial stimuli

randomly sampled from the dataset proposed in [6]. Control

objects were meant to be easy to remember and served as a

criteria to ensure quality [6, 18]. Target images and their

corresponding target objects were spaced 70 − 79 stimuli

apart, while familiar images and their objects were spaced

1− 79 stimuli apart.

All images and objects appeared only once, and each

subject was tested on only one object from each target im-

age. Objects were centered within the image they originated

from and non-object pixels were set to grey. Participants

were required to complete the entire task, which included

10 blocks (∼30 minutes) and could not participate in the

experiment a second time. The maximum time that sub-

jects could take to finish the experiment was 1 hour. Af-

ter collecting the data, we assigned a memorability score to

each target object in our dataset, defined as the percentage

of correct detections by subjects (refer to Figure 1 for an

example). Strict criteria was undertaken to screen subjects’

performance and to ensure that our final dataset consisted

of quality subjects. We discarded all subjects whose accu-

racy on the control objects was below 70%. The accuracy

of these subjects on filler objects and familiar objects was

greater than chance (> 75%) demonstrating that our data

consists of subjects who were paying attention to the task

at hand. The mean time taken by the subjects to view an

image was 2.2 seconds with a standard deviation of 1.6 sec-

onds. In total, we had 1, 823 workers from Mechanical Turk

each having at least 95% approval rating in Amazon’s sys-

tem. On average, each object was scored by 16 subjects and

the average memorability score was 0.33 with a standard

deviation of 0.28.

2.2. Consistency Analysis

To assess human consistency in remembering objects,

we repeatedly divided our entire subject pool into two equal

halves and quantified the degree to which memorability

scores for the two sets of subjects were in agreement us-

ing Spearmans rank correlation (ρ), a nonparametric mea-

sure for testing monotonic relationship between two vari-

ables. We computed the average correlation over 25 of

these random split iterations, yielding an average correla-

tion of ρ = 0.76. This high consistency in object memora-

bility indicates that, like full images, object memorability is

a shared property across subjects. People tend to remember

(and forget) the same objects in images, and exhibit simi-

lar performance in doing so. Thus memorability of objects

in images can potentially be predicted with high accuracy.

In the next section, we study the various factors that drive

object memorability in images.

3. Understanding Object Memorability

In this section, we aim to better understand how object

memorability is influenced by visual factors that manifest

themselves in natural images. Specifically, we study the

relationship between simple color features, visual saliency,

object semantics, and how memorable or forgettable an ob-

ject in an image is to humans. The results of this study can

be used to guide the development and innovation of auto-

mated algorithms that can predict object memorability.

3.1. Can simple features explain memorability?

While simple low-level image features are traditionally

poor predictors of image memorability [18] (with good rea-

son [27]), the question arises whether such features play

any role in determining object memorability in images. To

address this question and following a similar strategy as

in [18], we compute the mean and variance of each HSV

color channel for each object in our dataset, and compute

the Spearman rank correlation with the corresponding ob-

ject memorability score (refer to Figure 3). We see that the

mean (ρ = 0.1) and variance (ρ = 0.25) of the V chan-

nel correlates weakly with object memorability, suggesting

that brighter and higher contrast objects may be more mem-

orable. On the other hand, essentially no relationship ex-

ists between memorability and either the H or S channels.
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This deviates slightly from the findings in [18], which show

mean hue to be weakly predictive of image memorability.

This difference could be due to the fact that the dataset in

[18] contains blue and green outdoor landscapes that are

less memorable than the warmly colored human faces and

indoor scenes. In contrast, outdoor scene-related segments

such as sky and ground were not included as objects in our

dataset. From these results, we see that, like image memo-

rability, simple pixel statistics do not play a significant role

in determining object memorability in images.

3.2. What is the role of saliency in memorability?

Intuitively, we expect that objects within an image that

are most salient are likely to be remembered, since they

tend to draw a viewer’s attention, i.e. a majority of his/her

eye fixations will lie within those object regions. On the

other hand, it is conceivable that some visually appealing

regions will not be memorable, especially since aesthetic

images are known to be less memorable [18]. When can vi-

sual saliency predict object memorability and what are the

possible differences between the two? Studying the rela-

tionship between saliency and memorability is paramount

for understanding object memorability in greater depth.

To address this query, we utilize the eye fixation data

made available for the PASCAL-S dataset [30]. First, we

compute the number of unique fixation points within the im-

age segment of each object and the correlation between this

metric and the object’s memorability score (refer to Figure

4 (left)). We find this correlation to be positive and con-

siderably high (ρ = 0.71), suggesting that fixation count

and visual saliency may drive object memorability consid-

erably. However, the large concentration of points on the

bottom left part of the scatter plot in Figure 4 (left) suggests

that part of the reason for this high correlation is that objects

that have not been viewed (i.e. no fixation points associ-

ated with them) at all have essentially no memorability, and

Figure 3: Simple color features do not explain object memorability.

Correlations of object memorability scores with hue and saturation are near

zero. Only value shows a weak correlation.

Figure 4: Correlations between memorability, fixation count, and

number of objects. Left: Memorability and fixation counts correlate pos-

itively. Middle: Memorability and number of objects are negatively corre-

lated. Right: Fixations and object counts are weakly negatively correlated.

Figure 5: Correlation between object memorability and object fixation

count as a function of minimum number of objects (left) and minimum

number of fixations (right).

therefore will always imply correlation. If we remove these

simple cases, we can examine whether or not the full range

of memorability scores is predicted by fixation count. To

investigate this, we plot the change in correlation between

object memorability and fixations as the minimum number

of fixations inside objects increases. For each minimum fix-

ation count, we compute the memorability-fixation correla-

tion again but only using objects that contain at least this

number of fixations (refer to Figure 5 (right)). The decreas-

ing trend in correlation indicates that as the number of fixa-

tions inside an object increases, the predictive ability dimin-

ishes significantly, indicating that the full range of memo-

rability scores are not well predicted. In addition, Figure 5

(left) plots this correlation as a function of total number of

objects in an image. Interestingly, as the number of objects

in an image increases, the correlation between saliency, i.e.

number of fixations, and memorability decreases sharply.

The two remaining scatter plots in Figure 4 (middle) and

(right) provide additional clues about the relationship be-

tween memorability and fixation count. Note that object

count is negatively correlated with both memorability and

fixation count. This makes sense, since people have more

to look at in an image when more objects are present. In this

case, they tend to look less at any single object, especially

if some of these objects compete for saliency, and therefore

may have a more difficult time remembering those objects.

In summary, saliency is a surprisingly good predictor of

object memorability in simple contexts where few objects

exist in an image or when an object has few interesting

points, but it is a much weaker predictor of object memo-

rability in complex scenes containing multiple objects that

have many points of interest (refer to Figure 6).

Center Bias: Figure 7 illustrates another example where

saliency and memorability diverge. Previous studies related
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Figure 6: Memorability prediction by saliency in complex scenes.

Top row: the memorability of the dog is low even though many humans

fixate on it. Bottom row: Humans look at the person more than the horse

although the horse is more memorable than the person.

to visual saliency have shown that saliency is heavily influ-

enced by center bias [21, 40], primarily due to photographer

bias (also evident in Figure 7 (left)) and viewing strategy

[38]. Since our data collection experiment tries to control

for the viewing strategy, memorability exhibits compara-

tively less center bias than saliency. This is most apparent

when considering the difference in the solid ellipse in the

right plot (shows where 95% of fixations are located), and

the dashed ellipse (shows where 95% of the above-median

memorable objects are located).

To the best of our knowledge, this work is the first to

give an in-depth study of the relationship between saliency

and memorability and to highlight how the two phenomena

differ from each other.

3.3. How do object categories affect memorability?

In the previous section, we explored the relationship be-

tween visual saliency and object memorability. Now, we

explore how an object’s category influences the probability

that it will be remembered.

3.3.1 Are some object categories more memorable?

For this analysis, we had three in-house annotators manu-

ally label the object segmentations in our dataset. The anno-

Figure 7: Memorable objects and fixation locations. Left: Normalized

object locations for entire image data set. Both center of object bounding

boxes (CBB, blue) and object center of mass (COM, red) are shown. Mid-

dle: Locations for memorable objects only. Right: Average ground truth

saliency map across the entire dataset. The solid yellow line marks the re-

gion with 95% of all normalized fixation locations. The dashed blue line

marks the region with above-median memorable objects. Center bias is

more strongly expressed in the fixation locations.

tators were provided the original image (for reference) and

the object segmentation and asked to assign a single cate-

gory to the segment out of 7 possible categories: animal,

building, device, furniture, nature, person, and vehicle. We

chose these categories so that a wide range of object classes

could be covered. For example, category “device” includes

objects like utensils, bottles, and televisions, while “nature”

includes objects like trees, mountains, and flowers etc. Fig-

ure 8 shows the distribution of the memorability scores of

all 7 object categories in our dataset.

Results in Figure 8 give a sense of how memorability

changes across different object categories. Animal, person,

and vehicle are all highly memorable classes, each asso-

ciated with an average memorability score greater than or

close to 0.5. Interestingly, all other categories have an aver-

age memorability lower than 0.25, indicating that humans

do not remember objects from these categories very well.

In particular, furniture is the least memorable category with

an average score of only 0.14. This is possibly due to the

fact that most objects in the furniture, nature, and build-

ing categories either appear mostly in the background or are

occluded, which likely decreases their memorability signif-

icantly. In contrast, objects from the animal, person, and

vehicle categories appear mostly in the foreground, leading

to a higher memorability score on average. Interestingly,

the most memorable objects from building, furniture, and

nature tend to have an average memorability in the range of

0.4− 0.8, whereas the score of the most memorable objects

from person, animal and vehicle is higher than 0.9. While

the differences in the memorability of different object cat-

egories could be driven due to factors like occlusion, size,

background/foreground, or photographic bias, the distribu-

tion in Figure 8 suggests that humans remember some ob-

ject classes such as person, animal, and vehicle irrespective

of external nuisance factors and these categories are intrin-

sically more memorable than others.

Figure 8: Some object categories are more memorable than others.

Categories like furniture, nature, building, and device tend to have a large

majority of objects with very low memorability scores. Objects belonging

to animal, person, and vehicle categories are remembered more often.
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Figure 9: Memorability of object categories. Most memorable, medium memorable and least memorable objects from each of the 7 categories.

3.3.2 Exploring category-specific memorability

As demonstrated above, some object categories (i.e. ani-

mal, person, and vehicle) tend to be more memorable than

others. However, not all objects in the same category are

equally memorable. The examples in Figure 9 show the

most memorable, medium memorable, and least memo-

rable objects for each category. Across categories, medium

to high memorable objects tend to have little to no occlu-

sion. However, less memorable objects tend to be those

that are occluded and obstructed by other objects. What

other category-related factors could influence the memora-

bility of objects? Among the possible factors, we explore

how category-specific object memorability is influenced by

(i) the number of objects in an image and (ii) the presence

of other object categories.

Number of objects: Figure 10 shows the change in aver-

age memorability for the different categories when the min-

imum number of objects within an image is increased. Re-

sults indicate that the number of objects present in an im-

age is an important factor in determining memorability. For

example, as the number of objects in an image increases,

the memorability of animals and vehicles decreases sharply,

most likely as a result of competition for attention. Al-

though the memorability of vehicles starts to show a slight

increase for objects greater than 8, this arises only due to

insufficient data (number of images is less than 30). Inter-

estingly, the memorability of the person category does not

change significantly when an increasing number of objects

exist in the image. This suggests that people are not only

one of the most memorable object categories, but that their

memorability is the least sensitive to the presence of object

clutter in an image.

Inter-category memorability: How much is the memora-

bility of a particular object category affected when it co-

occurs with another object category (or another instance of

the same category)? To quantify the effect of one category

on another, we consider each pairwise combination of cate-

gories and gather all images that contain at least one object

from both categories. By taking one category as the refer-

ence and the other as the distractor, we compute the aver-

age memorability score mR|D of the reference in the im-

ages common to the reference and distractor. To isolate the

Figure 10: Object number affects category-specific memorability.

For each category, a curve is plotted that shows the change in average

memorability with an increase in the number of objects. The memorabil-

ity of objects belonging to categories like animals and vehicles goes down

significantly with an increase in object number.

effect of the distractor, we compute the memorability differ-

ence ∆m = (mR|D −mR), where mR is the memorability

score of the reference in all images where it exists. Fig-

ure 11 shows ∆m for all possible reference and distractor

pairs. It is clear that ∆m for low-memorability categories

(i.e. nature, furniture, device, and building) is not signifi-

cantly affected by the presence of other categories.

Also, the memorability of the animal category maintains

its high score in the presence of other categories, except ve-

hicles, people, and itself, where it decreases substantially.

Figure 11: Inter-category object memorability relationship. Effect

of distractor categories on the memorability of reference categories
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Figure 12: Memorability of people in presence of other categories.

Top row: Images where a person co-occurs with other categories. Bottom

row: Ground truth object memorability maps. In the presence of build-

ings, the memorability of person can drop. In the presence of a vehicle or

animal, the person is usually more memorable.

The memorability of people tends to be unaffected by the

presence of most other categories including itself. However,

it decreases in the presence of vehicles and buildings. This

could be due to the fact that people in images containing

vehicles or buildings are usually zoomed out and smaller in

size (refer to Figure 12). The memorability of the vehicle

category is strongly affected by the presence of other object

categories. In particular, it drops significantly in the pres-

ence of other vehicles, people, and animals.

In summary, when an animal, vehicle, or person co-occur

in the same image, the memorability of all three categories

usually decreases. However, this pattern of change in mem-

orability is category-specific in general. For example, when

a vehicle and animal are present in the same image, the an-

imal is generally more memorable, even though both their

memorability scores drop significantly. When a vehicle or

an animal co-occurs with a person, the person is generally

more memorable (also shown in Figure 12).

3.4. How are object & image memorability related?

Until now, we have studied what objects people remem-

ber and the factors that influence their memorability, but to

what extent does the memorability of individual objects af-

fect the overall memorability of an image? Moreover, if

an image is highly memorable, what can we say about the

memorability of the objects inside those images (and vice

versa)? To shed light on these queries, we conducted a sec-

ond large-scale experiment on Amazon Mechanical Turk

for all images in our dataset to gather their respective im-

age memorability scores. For this experiment, we followed

the same strategy as the memory game experiment proposed

in [23]. A series of images from our dataset and Microsoft

COCO dataset [31] (i.e. ‘filler’ images) were flashed for

1 second each, and subjects were instructed to press a key

whenever they detected a repeat presentation of an image.

A total of 350 workers participated in this experiment with

each image being viewed 80 times on average. The rank

correlation after averaging over 25 random splits was 0.7,

determining consistency in the image memorability scores.

Using results from the previous experiments, we com-

puted the correlation between the scores of the single most

memorable object in each image and the memorability score

of each image. This correlation is moderately high with

Figure 13: Max object memorability predicts image memorability.

Top row: most memorable images taken from our dataset along with their

highest memorable object and their respective memorability scores. Bot-

tom row: least memorable images in the dataset along with their most

memorable object and their respective memorability scores. We notice

that maximum object memorability correlates strongly with image memo-

rability in both cases.

ρ = 0.4, suggesting that the most memorable object in an

image plays a crucial role in determining the overall memo-

rability of an image. To investigate this finding in relation to

some extreme cases, we repeated the same analysis as above

but on a subset of the data containing the 100 most mem-

orable images and the 100 least memorable images. The

correlation between maximum object memorability and im-

age memorability for this subset of images increased sig-

nificantly to ρ = 0.62. This means that maximum object

memorability serves as a strong indicator of whether an im-

age is highly memorable or not memorable at all. In other

words, images that are highly memorable contain at least

one highly memorable object and images with low memo-

rability usually do not contain a single highly memorable

object (refer to Figure 13).

To study the effect of maximum object memorability

across categories, we computed the correlation between

maximum object and image memorability for each indi-

vidual object category. The correlation for the categories

were: animal (ρ = 0.38), building (ρ = 0.22), device

(ρ = 0.47), furniture (ρ = 0.53), nature (ρ = 0.64), per-

son (ρ = 0.54), and vehicle (ρ = 0.30) which shows that

certain categories are more strongly correlated than others.

For example, images containing animals, buildings, or ve-

hicles as the most memorable objects tend to have varying

degree of image memorability (indicated by their lower ρ

values). On the other hand, device, furniture, nature, and

person are strongly correlated with image memorability, in-

dicating that if an image’s most memorable object belongs

to one of these categories, the object memorability score is

strongly predictive of the image memorability score. We

can imagine scenarios in which this information is poten-

tially useful. For example, in vision systems that are tasked

to predict scene memorability, a single object and its cate-

gory can serve as a strong prior in predicting this score.

4. Predicting Object Memorability

This work makes available the very first dataset contain-

ing ground truth memorability of constituent objects from a
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highly diverse image set. In this section, we show that our

dataset can be used to benchmark computational memora-

bility models and serve as a stepping stone in the direction

of automated object memorability prediction.

Baseline models: As a first step, we propose a simple base-

line model that utilizes a conv-net [28, 20] trained on the

ImageNet dataset [37]. Since object categories play an im-

portant role in determining object memorability (Section

3.3), and deep learning models have recently been shown to

achieve state-of-the-art results in various recognition tasks,

including object recognition [14, 29], we believe that this

simple model can serve as an adequate baseline for object

memorability prediction. We first generated object seg-

ments by using MCG, a generic object proposal method

proposed in [2]. Next, we trained a support vector regres-

sor (SVR) using 6-fold cross-validation on the original ob-

ject segments to map deep features to memorability scores.

We used this model to predict memorability scores for the

top K = 20 object segments obtained using the MCG algo-

rithm. After predicting these memorability scores, memora-

bility maps were generated by averaging the scores of these

top K segments at the pixel level. Since image features

like SIFT [33] and HOG [10] have previously been shown

to achieve good performance in predicting image memora-

bility [18], we built a second baseline model using these

features for comparison. Training and testing of this model

was performed similar to the conv-net model.

Evaluation: To evaluate the accuracy of the predicted

object memorability maps, we computed the rank correla-

tion between the mean predicted memorability score inside

each of the object segments and their ground truth mem-

orability scores. These results are reported in Figure 14.

Clearly, the conv-net baseline, DL-MCG, performs consid-

erably well (ρ = 0.39). In contrast, the baseline trained

using HOG and SIFT, H+S, achieves a much lower perfor-

mance (ρ = 0.27). Saliency maps generated from saliency

algorithms are also likely to have some degree of overlap

with memorability and are therefore worth comparing to our

Figure 14: Rank correlation of predicted object memorability. Ac-

curacy of the baseline and saliency algorithms on proposed benchmark.

baseline, especially given the absence of other memorabil-

ity prediction methods. To this end, we included 8 state-of-

the-art saliency methods (top performing methods accord-

ing to benchmarks in [5, 4]): GB [15], AIM [7], DV [16],

IT [19], GC [9], PC [35], SF [36], and FT [1] to our com-

parison. Figure 14 shows that the H+S baseline is outper-

formed by most saliency methods. Thus, even though mod-

els using SIFT and HOG have previously demonstrated high

predictive power for image memorability, they may not be

as well suited for the task of predicting object memorabil-

ity. The deep-net baseline model, DL-MCG performs better

than all other saliency methods with only PC (ρ = 0.38),

SF (ρ = 0.37), and GB (ρ = 0.36) showing compara-

ble performance. A common factor between these saliency

methods is that they explicitly add center bias to their im-

plementation. Although object memorability exhibits less

center bias when compared to eye fixations, it still tends

to be biased somewhat towards the center due to photogra-

pher bias (see Section 3.2), which could be a reason for the

high performance of these saliency methods. While DL-

MCG performed favorably in predicting object memorabil-

ity, its accuracy is highly dependent on the quality of the

segmentations used. To illustrate this fact, we redo the pre-

diction task but with the ground truth segments replacing

the MCG segments. The resulting baseline is referred to as

DL-UL, which can be considered the gold standard or the

upper bound on automated object memorability prediction.

Its correlation score is very high and close to human perfor-

mance (ρ = 0.7), which suggests that the conv-net model

does have high predictive ability but that it is sensitive to

the image segmentations it is applied to.

5. Conclusion

In this paper, we propose the problem of understanding

the memorability of objects in images. To this end, we ob-

tained ground truth data that helps to study and analyze this

problem in depth. We show that the category of an object

has meaningful influence on its memorability, and that vi-

sual saliency can predict object memorability to some de-

gree. Moreover, we studied the relationship between image

and object memorability and compiled a benchmark dataset

for automated object memorability prediction. Future work

will involve studying the influence of non-object image re-

gions and scene context on memorability.
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