
What Makes ATL∗ Decidable?
A Decidable Fragment of Strategy Logic

Fabio Mogavero1?, Aniello Murano1??, Giuseppe Perelli1, and Moshe Y. Vardi2? ? ?

1Università degli Studi di Napoli "Federico II", Napoli, Italy. 2Rice University, Houston, TX-USA.
{mogavero, murano}@na.infn.it perelli.gi@gmail.com vardi@cs.rice.edu

Abstract Strategy Logic (SL, for short) has been recently introduced by Mo-
gavero, Murano, and Vardi as a formalism for reasoning explicitly about strategies,
as first-order objects, in multi-agent concurrent games. This logic turns out to be
very powerful, strictly subsuming all major previously studied modal logics for
strategic reasoning, including ATL, ATL∗, and the like. The price that one has to
pay for the expressiveness of SL is the lack of important model-theoretic properties
and an increased complexity of decision problems. In particular, SL does not have
the bounded-tree model property and the related satisfiability problem is highly
undecidable while for ATL∗ it is 2EXPTIME-COMPLETE. An obvious question
that arises is then what makes ATL∗ decidable. Understanding this should enable
us to identify decidable fragments of SL. We focus, in this work, on the limitation
of ATL∗ to allow only one temporal goal for each strategic assertion and study the
fragment of SL with the same restriction. Specifically, we introduce and study the
syntactic fragment One-Goal Strategy Logic (SL[1G], for short), which consists of
formulas in prenex normal form having a single temporal goal at a time for every
strategy quantification of agents. We show that SL[1G] is strictly more expressive
than ATL∗. Our main result is that SL[1G] has the bounded tree-model property
and its satisfiability problem is 2EXPTIME-COMPLETE, as it is for ATL∗.

1 Introduction
In open-system verification [4, 14], an important area of research is the study of modal
logics for strategic reasoning in the setting of multi-agent games [2, 11, 22]. An important
contribution in this field has been the development of Alternating-Time Temporal Logic
(ATL∗, for short), introduced by Alur, Henzinger, and Kupferman [2]. ATL∗ allows
reasoning about strategic behavior of agents with temporal goals. Formally, it is obtained
as a generalization of the branching-time temporal logic CTL∗ [6], where the path
quantifiers there exists “E” and for all “A” are replaced with strategic modalities of the
form “〈〈A〉〉” and “[[A]]”, for a set A of agents. Such strategic modalities are used to
express cooperation and competition among agents in order to achieve certain temporal
goals. In particular, these modalities express selective quantifications over those paths that
are the results of infinite games between a coalition and its complement. ATL∗ formulas

? Part of this research was done while visiting the Rice University.
?? Work supported in part by University of Naples Federico II under the F.A.R.O. project.

? ? ? Work supported in part by NSF grants CNS 1049862 and CCF-1139011, by BSF grant 9800096,
and by gift from Intel.

2 F. Mogavero, A. Murano, G. Perelli, and M.Y. Vardi

are interpreted over concurrent game structures (CGS, for short) [2], which model
interacting processes. Given a CGS G and a set A of agents, the ATL∗ formula 〈〈A〉〉ψ
holds at a state s of G if there is a set of strategies for the agents in A such that, no matter
which strategy is executed by the agents not in A, the resulting outcome of the interaction
in G satisfies ψ at s. Several decision problems have been investigated about ATL∗; both
its model-checking and satisfiability problems are decidable in 2EXPTIME [26].

Despite its powerful expressiveness, ATL∗ suffers from the strong limitation that
strategies are treated only implicitly through modalities that refer to games between
competing coalitions. To overcome this problem, Chatterjee, Henzinger, and Piterman
introduced Strategy Logic (CHP-SL, for short) [3], a logic that treats strategies in two-
player turn-based games as first-order objects. The explicit treatment of strategies in this
logic allows the expression of many properties not expressible in ATL∗. Although the
model-checking problem of CHP-SL is known to be decidable, with a non-elementary
upper bound, it is not known if the satisfiability problem is decidable [3]. While the basic
idea exploited in [3] of explicitly quantify over strategies is powerful and useful [8],
CHP-SL still suffers from various limitations. In particular, it is limited to two-player
turn-based games. Furthermore, CHP-SL does not allow different players to share the
same strategy, suggesting that strategies have yet to become truly first-class objects in
this logic. For example, it is impossible to describe the classic strategy-stealing argument
of combinatorial games such as Hex and the like [1].

These considerations led us to introduce a new Strategy Logic, denoted SL, as a more
general framework than CHP-SL, for explicit reasoning about strategies in multi-agent
concurrent games [18]. Syntactically, SL extends the linear-time temporal-logic LTL [24]
by means of strategy quantifiers, the existential 〈〈x〉〉 and the universal [[x]], as well as
agent binding (a, x), where a is an agent and x a variable. Intuitively, these elements
can be read as “there exists a strategy x”, “for all strategies x”, and “bind agent a to
the strategy associated with x”, respectively. For example, in a CGS G with agents α,
β, and γ, consider the property “α and β have a common strategy to avoid a failure”.
This property can be expressed by the SL formula 〈〈x〉〉[[y]](α, x)(β, x)(γ, y)(G ¬fail).
The variable x is used to select a strategy for the agents α and β, while y is used to select
another one for agent γ such that their composition, after the binding, results in a play
where fail is never met. Additional material can be found in [16].

The price that one has to pay for the expressiveness of SL w.r.t. ATL∗ is the lack of
important model-theoretic properties and an increased complexity of decision problems.
In particular, in [18], it was shown that SL does not have the bounded-tree model property
and the related satisfiability problem is highly undecidable, precisely, Σ1

1 -HARD. Hence,
a natural question that arises is what makes ATL∗ decidable. Understanding the reasons
for the decidability of ATL∗ should enable us to identify decidable fragments of SL.

In this work, we focus on the limitation of ATL∗ to allow only one temporal goal
for each strategic assertion and study the fragment of SL with the same restriction.
Specifically, we introduce the syntactic fragment One-Goal Strategy Logic (SL[1G],
for short), which consists of formulas in a special prenex normal form having a single
temporal goal at a time, for every strategy quantification of agents. This means that every
temporal formula ψ is prefixed with a quantification-binding prefix that quantifies over a
tuple of strategies and bind all agents to strategies. It is worth noting that SL[1G] still

What Makes ATL∗ Decidable? A Decidable Fragment of Strategy Logic 3

retains the ability to alternate strategy quantifiers as it is for SL, which is not allowed in
ATL∗. Roughly speaking, SL[1G] is ATL∗ augmented with this no-limitation on quantifier
alternation and with the possibility to force agents to share strategies. This makes SL[1G]
strictly more expressive and much more flexible than ATL∗, as is shown in [16]. With
SL[1G] one can express, for example, visibility constraints on strategies among agents,
i.e., only some agents from a coalition have knowledge of the strategies taken by those in
the opponent coalition, via the quantifier alternation. Also, by means of strategy sharing,
one can describe the fact that, in the Hex game, the strategy-stealing argument does not
let the player who adopts it to win. Observe that these properties cannot be expressed
neither in ATL∗ nor in CHP-SL.

In this paper, we show that the satisfiability problem for SL[1G] is also 2EXPTIME-
COMPLETE. Thus, in spite of its expressiveness, SL[1G] has the same computational
complexities as ATL∗. From this result, we conclude that the one-goal restriction is the
key aspect to the elementary complexity of ATL∗, while the arbitrary quantifier alternation
does not let the complexity of the satisfiability problem to rise to non-elementary, as it
usually happens in other logics, such as MSOL [25]. In [16], we also introduce SL[NG]
and SL[BG] as two additional fragments of SL that strictly include SL[1G]. In SL[NG]
we allow writing nesting and boolean combinations of temporal goals, while in SL[BG]
we forbid the nesting, but still allow the boolean combinations. Both fragments do not
satisfy important model-theoretic properties and have an highly undecidable satisfiability
problem. Hence, at the present time, SL[1G] is the most general fragment of SL that
subsumes ATL∗ while keeping its positive model-theoretic and computational properties.

To achieve our main result, we use a fundamental property of the semantics of
SL[1G] called elementariness, which allows us to simplify reasoning about strategies by
reducing it to a set of reasonings about actions. This intrinsic characteristic of SL[1G]
means that, to choose an existential strategy, we do not need to know the entire structure
of universally-quantified strategies, as it is the case for SL, but only their values on
the histories of interest. Technically, to formally describe this property, we make use
of the machinery of dependence maps, which is introduced to define a Skolemization
procedure for SL, inspired by the one in first-order logic. Using elementariness, we show
that SL[1G] satisfies the bounded tree-model property. This allows us to efficiently make
use of a tree automata-theoretic approach [27, 29] to solve the satisfiability problem.
Given a formula ϕ, we build an alternating co-Büchi tree automaton [13, 21], whose
size is only exponential in the size of ϕ, accepting all bounded-branching tree models of
the formula. Then, together with the complexity of automata-nonemptiness checking,
we get that the satisfiability procedure for SL[1G] is 2EXPTIME. For completeness, we
report that in [16] we already prove that the model-checking problem for SL[1G] remains
2EXPTIME-COMPLETE, while it is non-elementarily decidable for SL.

Related works. Several works have focused on extensions of ATL∗ to incorporate more
powerful strategic constructs. Among them, we recall the Alternating-Time µCALCULUS
(AµCALCULUS, for short) [2], Game Logic (GL, for short) [2], Quantified Decision
Modality µCALCULUS (QDµ, for short) [23], Coordination Logic (CL, for short) [7],
and some other extensions considered in [5], [19], and [30]. AµCALCULUS and QDµ
are intrinsically different from SL[1G] (as well as from CHP-SL and ATL∗) as they are
obtained by extending the propositional µ-calculus [12] with strategic modalities. CL is

4 F. Mogavero, A. Murano, G. Perelli, and M.Y. Vardi

similar to QDµ, but with LTL temporal operators instead of explicit fixpoint constructors.
GL and CHP-SL are orthogonal to SL[1G]. Indeed, they both use more than a temporal
goal, GL has quantifier alternation fixed to one, and CHP-SL only works for two agents.

Due to lack of space, proofs are reported in [17]. Also, see [16] for more on SL[1G].

2 Preliminaries
A concurrent game structure (CGS, for short) [2] is a tuple G , 〈AP,Ag,Ac,St, λ, τ,
s0〉, where AP and Ag are finite non-empty sets of atomic propositions and agents, Ac
and St are enumerable non-empty sets of actions and states, s0 ∈ St is a designated
initial state, and λ : St → 2AP is a labeling function that maps each state to the set
of atomic propositions true in that state. Let Dc , AcAg be the set of decisions, i.e.,
functions from Ag to Ac representing the choices of an action for each agent. Then,
τ : St×Dc→ St is a transition function mapping a pair of a state and a decision to a
state. If the set of actions is finite, i.e., b = |Ac| < ω, we say that G is b-bounded, or
simply bounded. If both the sets of actions and states are finite, we say that G is finite.

A track (resp., path) in a CGS G is a finite (resp., an infinite) sequence of states
ρ ∈ St∗ (resp., π ∈ Stω) such that, for all i ∈ [0, |ρ| − 1[(resp., i ∈ N), there exists a
decision d ∈ Dc such that (ρ)i+1 = τ((ρ)i, d) (resp., (π)i+1 = τ((π)i, d)). A track ρ
is non-trivial if |ρ| > 0, i.e., ρ 6= ε. Trk ⊆ St+ (resp., Pth ⊆ Stω) denotes the set of
all non-trivial tracks (resp., paths). Moreover, Trk(s) , {ρ ∈ Trk : fst(ρ) = s} (resp.,
Pth(s) , {π ∈ Pth : fst(π) = s}) indicates the subsets of tracks (resp., paths) starting
at a state s ∈ St.

A strategy is a partial function f : Trk ⇀ Ac that maps each non-trivial track in its
domain to an action. For a state s ∈ St, a strategy f is said s-total if it is defined on all
tracks starting in s, i.e., dom(f) = Trk(s). Str , Trk ⇀ Ac (resp., Str(s) , Trk(s)→
Ac) denotes the set of all (resp., s-total) strategies. For all tracks ρ ∈ Trk, by (f)ρ ∈ Str

we denote the translation of f along ρ, i.e., the strategy with dom((f)ρ) , {lst(ρ) · ρ′ :

ρ · ρ′ ∈ dom(f)} 1 such that (f)ρ(lst(ρ) · ρ′) , f(ρ · ρ′), for all ρ · ρ′ ∈ dom(f).
Let Var be a fixed set of variables. An assignment is a partial function χ : Var ∪

Ag ⇀ Str mapping variables and agents in its domain to a strategy. An assignment χ is
complete if it is defined on all agents, i.e., Ag ⊆ dom(χ). For a state s ∈ St, it is said
that χ is s-total if all strategies χ(l) are s-total, for l ∈ dom(χ). Asg , Var∪Ag ⇀ Str
(resp., Asg(s) , Var ∪Ag ⇀ Str(s)) denotes the set of all (resp., s-total) assignments.
Moreover, Asg(X) , X→ Str (resp., Asg(X, s) , X→ Str(s)) indicates the subset of
X-defined (resp., s-total) assignments, i.e., (resp., s-total) assignments defined on the set
X ⊆ Var∪Ag. For all tracks ρ ∈ Trk, by (χ)ρ ∈ Asg(lst(ρ)) we denote the translation
of χ along ρ, i.e., the lst(ρ)-total assignment with dom((χ)ρ) , dom(χ), such that
(χ)ρ(l) , (χ(l))ρ, for all l ∈ dom(χ). For all elements l ∈ Var∪Ag, by χ[l 7→ f] ∈ Asg

we denote the new assignment defined on dom(χ[l 7→ f]) , dom(χ)∪ {l} that returns f
on l and χ otherwise, i.e., χ[l 7→ f](l), f and χ[l 7→ f](l′),χ(l′), for all l′∈dom(χ)\{l}.

A path π ∈ Pth(s) starting at a state s ∈ St is a play w.r.t. a complete s-total
assignment χ ∈ Asg(s) ((χ, s)-play, for short) if, for all i ∈ N, it holds that (π)i+1 =
τ((π)i, d), where d(a) , χ(a)((π)≤i), for each a ∈ Ag. The partial function play :

1 By lst(ρ) , (ρ)|ρ|−1 we denote the last state of ρ.

What Makes ATL∗ Decidable? A Decidable Fragment of Strategy Logic 5

Asg× St ⇀ Pth, with dom(play) , {(χ, s) : Ag ⊆ dom(χ) ∧ χ ∈ Asg(s) ∧ s ∈ St},
returns the (χ, s)-play play(χ, s) ∈ Pth(s), for all (χ, s) in its domain.

For a state s ∈ St and a complete s-total assignment χ ∈ Asg(s), the i-th global
translation of (χ, s), with i ∈ N, is the pair of a complete assignment and a state
(χ, s)i , ((χ)(π)≤i

, (π)i), where π = play(χ, s).
From now on, we use CGS names with subscript to extract the components from

their tuple-structures. For example, s0G = s0 is the starting state of the CGS G.

3 One-Goal Strategy Logic
In this section, we introduce syntax and semantics of One-Goal Strategy Logic (SL[1G],
for short), as a syntactic fragment of SL, which we also report here for technical reasons.
For more about SL[1G], see [16].

SL Syntax SL syntactically extends LTL by means of two strategy quantifiers, exis-
tential 〈〈x〉〉 and universal [[x]], and agent binding (a, x), where a is an agent and x is a
variable. Intuitively, these elements can be read, respectively, as “there exists a strategy
x”, “for all strategies x”, and “bind agent a to the strategy associated with the variable
x”. The formal syntax of SL follows.

Definition 1 (SL Syntax). SL formulas are built inductively from the sets of atomic
propositions AP, variables Var, and agents Ag, by using the following grammar, where
p ∈ AP, x ∈ Var, and a ∈ Ag:

ϕ ::= p | ¬ϕ | ϕ ∧ ϕ | ϕ ∨ ϕ | X ϕ | ϕ U ϕ | ϕ R ϕ | 〈〈x〉〉ϕ | [[x]]ϕ | (a, x)ϕ.

By sub(ϕ) we denote the set of all subformulas of the SL formula ϕ. By free(ϕ)
we denote the set of free agents/variables of ϕ defined as the subset of Ag ∪ Var
containing (i) all agents a for which there is no binding (a, x) before the occurrence of
a temporal operator and (ii) all variables x for which there is a binding (a, x) but no
quantification 〈〈x〉〉 or [[x]]. A formula ϕ without free agents (resp., variables), i.e., with
free(ϕ) ∩ Ag = ∅ (resp., free(ϕ) ∩ Var = ∅), is named agent-closed (resp., variable-
closed). If ϕ is both agent- and variable-closed, it is named sentence. By snt(ϕ) we
denote the set of all sentences that are subformulas of ϕ.

SL Semantics As for ATL∗, we define the semantics of SL w.r.t. concurrent game
structures. For a CGS G, a state s, and an s-total assignment χ with free(ϕ) ⊆ dom(χ),
we write G, χ, s |= ϕ to indicate that the formula ϕ holds at s under the assignment χ.
The semantics of SL formulas involving p, ¬, ∧, and ∨ is defined as usual in LTL and
we omit it here (see [16], for the full definition). The semantics of the remaining part,
which involves quantifications, bindings, and temporal operators follows.

Definition 2 (SL Semantics). Given a CGS G, for all SL formulas ϕ, states s ∈ St, and
s-total assignments χ ∈ Asg(s) with free(ϕ) ⊆ dom(χ), the relation G, χ, s |= ϕ is
inductively defined as follows.
1. G, χ, s |=〈〈x〉〉ϕ iff there is an s-total strategy f∈Str(s) such that G, χ[x 7→ f], s |=ϕ;
2. G, χ, s |=[[x]]ϕ iff for all s-total strategies f∈Str(s) it holds that G, χ[x 7→ f], s |=ϕ.

6 F. Mogavero, A. Murano, G. Perelli, and M.Y. Vardi

Moreover, if free(ϕ) ∪ {x} ⊆ dom(χ) ∪ {a} for an agent a ∈ Ag, it holds that:
3. G, χ, s |= (a, x)ϕ iff G, χ[a 7→ χ(x)], s |= ϕ.

Finally, if χ is also complete, it holds that:
4. G, χ, s |= X ϕ if G, (χ, s)1 |= ϕ;
5. G, χ, s |= ϕ1U ϕ2 if there is an index i ∈ N with k≤ i such that G, (χ, s)i |=ϕ2 and,

for all indexes j∈N with k≤ j<i, it holds that G, (χ, s)j |=ϕ1;
6. G, χ, s |= ϕ1R ϕ2 if, for all indexes i ∈ N with k≤ i, it holds that G, (χ, s)i |=ϕ2

or there is an index j∈N with k≤j<i such that G, (χ, s)j |=ϕ1.

Intuitively, at Items 1 and 2, respectively, we evaluate the existential 〈〈x〉〉 and universal
[[x]] quantifiers over strategies, by associating them to the variable x. Moreover, at Item 3,
by means of an agent binding (a, x), we commit the agent a to a strategy associated with
the variable x. It is evident that the LTL semantics is simply embedded into the SL one.

A CGS G is a model of an SL sentence ϕ, denoted by G |= ϕ, iff G, ∅, s0 |= ϕ,
where ∅ is the empty assignment. Moreover, ϕ is satisfiable iff there is a model for it.
Given two CGSs G1, G2 and a sentence ϕ, we say that ϕ is invariant under G1 and G2
iff it holds that: G1 |= ϕ iff G2 |= ϕ. Finally, given two SL formulas ϕ1 and ϕ2 with
free(ϕ1) = free(ϕ2), we say that ϕ1 implies ϕ2, in symbols ϕ1 ⇒ ϕ2, if, for all CGSs G,
states s ∈ St, and free(ϕ1)-defined s-total assignments χ ∈ Asg(free(ϕ1), s), it holds
that if G, χ, s |= ϕ1 then G, χ, s |= ϕ2. Accordingly, we say that ϕ1 is equivalent to ϕ2,
in symbols ϕ1 ≡ ϕ2, if ϕ1 ⇒ ϕ2 and ϕ2 ⇒ ϕ1.

s0

∅

s1
p

s2
p, q

s3
q

00 01

10

11

∗∗

∗∗ ∗∗

Figure 1. A CGS G.

As an example, consider the SL sentence
ϕ= 〈〈x〉〉[[y]]〈〈z〉〉((α, x)(β, y)(X p)∧(α, y)(β, z)(X q)).
Note that both agents α and β use the strategy as-
sociated with y to achieve simultaneously the LTL
goals X p and X q, respectively. A model for ϕ is the
CGS G , 〈{p, q}, {α, β}, {0, 1}, {s0, s1, s2, s3}, λ, τ,
s0〉, where λ(s0) , ∅, λ(s1) , {p}, λ(s2) , {p, q},
λ(s3) , {q}, τ(s0, (0, 0)) , s1, τ(s0, (0, 1)) , s2,
τ(s0, (1, 0)) , s3, and all the remaining transitions go
to s0. See the representation of G depicted in Figure 1,
in which vertexes are states of the game and labels on
edges represent decisions of agents or sets of them, where the symbol ∗ is used in place
of every possible action. Clearly, G |= ϕ by letting, on s0, the variables x to chose action
0 (the formula (α, x)(β, y)(X p) is satisfied for any choice of y, since we can move from
s0 to either s1 or s2, both labeled with p) and z to choose action 1 when y has action 0
and, vice versa, 0 when y has 1 (in both cases, the formula (α, y)(β, z)(X q) is satisfied,
since one can move from s0 to either s2 or s3, both labeled with q).

SL[1G] Syntax To formalize the syntactic fragment SL[1G] of SL, we need first to
define the concepts of quantification and binding prefixes.

Definition 3 (Prefixes). A quantification prefix over a set V ⊆ Var of variables is a
finite word ℘ ∈ {〈〈x〉〉, [[x]] : x ∈ V}|V| of length |V| such that each variable x ∈ V
occurs just once in ℘. A binding prefix over a set V ⊆ Var of variables is a finite word
[∈ {(a, x) : a ∈ Ag ∧ x ∈ V}|Ag| of length |Ag| such that each agent a ∈ Ag occurs

What Makes ATL∗ Decidable? A Decidable Fragment of Strategy Logic 7

just once in [. Finally, Qnt(V) ⊆ {〈〈x〉〉, [[x]] : x ∈ V}|V| and Bnd(V) ⊆ {(a, x) :
a ∈ Ag ∧ x ∈ V}|Ag| denote, respectively, the sets of all quantification and binding
prefixes over variables in V.

We can now define the syntactic fragment we want to analyze. The idea is to force
each group of agent bindings, represented by a binding prefix, to be coupled with a
quantification prefix.

Definition 4 (SL[1G] Syntax). SL[1G] formulas are built inductively from the sets of
atomic propositions AP, quantification prefixes Qnt(V), for V ⊆ Var, and binding
prefixes Bnd(Var), by using the following grammar, with p ∈ AP, ℘ ∈ ∪V⊆VarQnt(V),
and [∈ Bnd(Var):

ϕ ::= p | ¬ϕ | ϕ ∧ ϕ | ϕ ∨ ϕ | X ϕ | ϕ U ϕ | ϕ R ϕ | ℘[ϕ,

with ℘ ∈ Qnt(free([ϕ)), in the formation rule ℘[ϕ.

In the following, for a goal we mean an SL agent-closed formula of the kind [ψ,
where ψ is variable-closed and [∈ Bnd(free(ψ)). Note that, since [ϕ is a goal, it is
agent-closed, so, free([ϕ) ⊆ Var. Moreover, an SL[1G] sentence ϕ is principal if it is of
the form ϕ = ℘[ψ, where [ψ is a goal and ℘ ∈ Qnt(free([ψ)). By psnt(ϕ) ⊆ snt(ϕ)
we denote the set of principal subsentences of the SL[1G] formula ϕ.

As an example, let ϕ1 = ℘[1ψ1 and ϕ2 = ℘([1ψ1 ∧ [2ψ2), where ℘ = [[x]]〈〈y〉〉[[z]],
[1 = (α, x)(β, y)(γ, z), [2 = (α, y)(β, z)(γ, y), ψ1 = X p, and ψ2 = X q. Then, it is
evident that ϕ1 ∈ SL[1G] but ϕ2 6∈ SL[1G], since the quantification prefix ℘ of the latter
does not have in its scope a unique goal.

It is fundamental to observe that the formula ϕ1 of the above example cannot be
expressed in ATL∗, as proved in [16] and reported in the following theorem, since its
2-quantifier alternation cannot be encompassed in the 1-alternation ATL∗ modalities. On
the contrary, each ATL∗ formula of the type 〈〈A〉〉ψ, where A = {α1, . . . , αn} ⊆ Ag =
{α1, . . . , αn, β1, . . . , βm} can be expressed in SL[1G] as follows: 〈〈x1〉〉 · · · 〈〈xn〉〉[[y1]]
· · · [[ym]](α1, x1) · · · (αn, xn)(β1, y1) · · · (βm, ym)ψ.

Theorem 1. SL[1G] is strictly more expressive than ATL∗.

We now give two examples in which we show the importance of the ability to write
specifications with alternation of quantifiers greater than 1 along with strategy sharing.

Example 1 (Escape from Alcatraz2). Consider the situation in which an Alcatraz prisoner
tries to escape from jail by helicopter with the help of an accomplice. Due to his
panoramic point of view, assume that the accomplice has the full visibility on the
behaviors of guards, while the prisoner does not have the same ability. Therefore, the
latter has to put in practice an escape strategy that, independently of guards moves, can
be supported by his accomplice to escape. We can formalize such an intricate situation
by means of an SL[1G] sentence with alternation 2, where the prisoner has to choose a
uniform strategy w.r.t. those chosen by the guards, as follows. First, let GA be a CGS
modeling the possible situations in which the agents “p” prisoner, “g” guards, and “a”
accomplice can reside, together with all related possible moves. Then, verify the existence
of an escape strategy by checking GA |= 〈〈x〉〉[[y]]〈〈z〉〉(p, x)(g, y)(a, z)(F freeP).

2 We thank Luigi Sauro for having pointed out this example.

8 F. Mogavero, A. Murano, G. Perelli, and M.Y. Vardi

Example 2 (Stealing-Strategy in Hex). Hex is a two-player game, red vs blue, in which
each player in turn places a stone of his color on a single empty hexagonal cell of the
rhomboidal playing board having opposite sides equally colored, either red or blue. The
goal of each player is to be the first to form a path connecting the opposing sides of the
board marked by his color. It is easy to prove that the stealing-strategy argument does not
lead to a winning strategy in Hex, i.e., if the player that moves second copies the moves
of the opponent, he surely loses the play. It is possible to formalize this fact in SL[1G]
as follows. First model Hex with a CGS GH whose states represent a possible possible
configurations reached during a play between “r” red and “b” blue. Then, verify the
negation of the stealing-strategy argument by checking GH |= 〈〈x〉〉(r, x)(b, x)(F cncr).
Intuitively, this sentence says that agent r has a strategy that, once it is copied (bound) by
b it allows the former to win, i.e., to be the first to connect the related red edges (F cncr).

4 Strategy Quantifications
We now define the concept of dependence map. The key idea is that every quantification
prefix of an SL formula can be represented by a suitable choice of a dependence map
over strategies. Such a result is at the base of the definition of the elementariness property
and allows us to prove that SL[1G] is elementarily satisfiable, i.e., we can simplify a
reasoning about strategies by reducing it to a set of local reasonings about actions [16].

Dependence map First, we introduce some notation regarding quantification prefixes.
Let ℘ ∈ Qnt(V) be a quantification prefix over a set V(℘) , V ⊆ Var of variables. By
〈〈℘〉〉 , {x ∈ V : ∃i ∈ [0, |℘|[.(℘)i = 〈〈x〉〉} and [[℘]] , V\〈〈℘〉〉we denote, respectively,
the sets of existential and universal variables quantified in ℘. For two variables x, y ∈ V,
we say that x precedes y in ℘, in symbols x<℘y, if x occurs before y in ℘. Moreover,
by Dep(℘) , {(x, y) ∈ V × V : x ∈ [[℘]], y ∈ 〈〈℘〉〉 ∧ x<℘y} we denote the set of
dependence pairs, i.e., a dependence relation, on which we derive the parameterized
version Dep(℘, y) , {x ∈ V : (x, y) ∈ Dep(℘)} containing all variables from which
y depends. Also, we use ℘ ∈ Qnt(V) to indicate the quantification derived from ℘ by
dualizing each quantifier contained in it, i.e., for all i ∈ [0, |℘|[, it holds that (℘)i = 〈〈x〉〉
iff (℘)i = [[x]], with x ∈ V. Clearly, 〈〈℘〉〉 = [[℘]] and [[℘]] = 〈〈℘〉〉. Finally, we define the
notion of valuation of variables over a generic set D as a partial function v : Var ⇀ D
mapping every variable in its domain to an element in D. By ValD(V) , V → D
we denote the set of all valuation functions over D defined on V ⊆ Var.

We now give the semantics for quantification prefixes via the following definition of
dependence map.

Definition 5 (Dependence Maps). Let ℘ ∈ Qnt(V) be a quantification prefix over a set
of variables V ⊆ Var, and D a set. Then, a dependence map for ℘ over D is a function θ :
ValD([[℘]])→ ValD(V) satisfying the following properties: (i) θ(v)�[[℘]] =v, for all v ∈
ValD([[℘]]); (ii) θ(v1)(x)=θ(v2)(x), for all v1, v2 ∈ ValD([[℘]]) and x∈〈〈℘〉〉 such that
v1�Dep(℘,x) =v2�Dep(℘,x). DMD(℘) denotes the set of all dependence maps of ℘ on D.

Intuitively, Item (i) asserts that θ takes the same values of its argument w.r.t. the universal
variables in ℘ and Item (ii) ensures that the value of θ w.r.t. an existential variable x in ℘

What Makes ATL∗ Decidable? A Decidable Fragment of Strategy Logic 9

does not depend on variables not in Dep(℘, x). To get better insight into this definition,
a dependence map θ for ℘ can be considered as a set of Skolem functions that, given a
value for each universal variable, return a possible value for all the existential variables
in a way that is consistent w.r.t. the order of quantifications in ℘.

We now state a fundamental theorem that describes how to eliminate strategy quan-
tifications of an SL formula via a choice of a dependence map over strategies. This
procedure, easily proved to be correct by induction on the structure of the formula
in [16], can be seen as the equivalent of the Skolemization in first order logic [10].

Theorem 2 (SL Strategy Quantification). Let G be a CGS and ϕ = ℘ψ an SL sen-
tence, where ψ is agent-closed and ℘ ∈ Qnt(free(ψ)). Then, G |= ϕ iff there exists a de-
pendence map θ ∈ DMStr(s0)(℘) such that G, θ(χ), s0 |= ψ, for all χ ∈ Asg([[℘]], s0).

The above theorem substantially characterizes SL semantics by means of the concept
of dependence map. In particular, it shows that if a formula is satisfiable then it is always
possible to find a suitable dependence map returning the existential strategies in response
to the universal ones. Such a characterization enables the definition of an alternative
semantics of SL, based on the choice of a subset of dependence maps that meet a certain
given property. We do this with the aim of identifying semantic fragments of SL having
better model properties and easier decision problems. With more details, given a CGS
G, one of its states s, and a property P, we say that a sentence ℘ψ is P-satisfiable in
G, in symbols G |=P ℘ψ, if there exists a dependence map θ meeting P such that, for
all assignment χ ∈ Asg([[℘]], s), it holds that G, θ(χ), s |= ψ. An alternative semantics
identified by a property P is even more interesting if there exists a syntactic fragment
corresponding to it, i.e., each satisfiable sentence of such a fragment is P-satisfiable and
vice versa. In the following, we put in practice this idea in order to show that SL[1G] has
the same complexity of ATL∗w.r.t. the satisfiability problem.

Elementary quantifications According to the above description, we now introduce a
suitable property of dependence maps, called elementariness, together with the related
alternative semantics. Then, in Theorem 3, we state that SL[1G] has the elementari-
ness property, i.e., each SL[1G] sentence is satisfiable iff it is elementarily satisfiable.
Intuitively, a dependence map θ ∈ DMT→D(℘) over functions from a set T to a set
D is elementary if it can be split into a set of dependence maps over D, one for each
element of T, represented by a function θ̃ : T → DMD(℘). This idea allows us to
greatly simplify the reasoning about strategy quantifications, since we can reduce them
to a set of quantifications over actions, one for each track in their domains.

Note that sets D and T, as well as U and V used in the following, are generic and in
our framework they may refer to actions and strategies (D), tracks (T), and variables (U
and V). In particular, observe that functions from T to D represent strategies. We prefer
to use abstract name, as the properties we describe hold generally.

To formally develop the above idea, we have first to introduce the generic concept of
adjoint function. From now on, we denote by ĝ : Y → (X→ Z) the operation of flipping
of a generic function g : X→ (Y → Z), i.e., the transformation of g by swapping the
order of its arguments. Such a flipping is well-grounded due to the following chain of
isomorphisms: X→ (Y → Z) ∼= (X×Y)→ Z ∼= (Y ×X)→ Z ∼= Y → (X→ Z).

10 F. Mogavero, A. Murano, G. Perelli, and M.Y. Vardi

Definition 6 (Adjoint Functions). Let D, T, U, and V be four sets, and m : (T →
D)U → (T→ D)V and m̃ : T→ (DU → DV) two functions. Then, m̃ is the adjoint of
m if m̃(t)(ĝ(t))(x) = m(g)(x)(t), for all g ∈ (T→ D)U, x ∈ V, and t ∈ T.

Intuitively, a function m transforming a map of kind (T → D)U into a new map of
kind (T → D)V has an adjoint m̃ if such a transformation can be done pointwisely
w.r.t. the set T, i.e., we can put out as a common domain the set T and then transform
a map of kind DU in a map of kind DV. Observe that, if a function has an adjoint, this
is unique. Similarly, from an adjoint function it is possible to determine the original
function unambiguously. Thus, it is established a one-to-one correspondence between
functions admitting an adjoint and the adjoint itself.

The formal meaning of the elementariness of a dependence map over generic func-
tions follows.

Definition 7 (Elementary Dependence Maps). Let ℘ ∈ Qnt(V) be a quantification
prefix over a set V ⊆ Var of variables, D and T two sets, and θ ∈ DMT→D(℘) a
dependence map for ℘ over T→ D. Then, θ is elementary if it admits an adjoint function.
EDMT→D(℘) denotes the set of all elementary dependence maps for ℘ over T→ D.

As mentioned above, we now introduce an important variant of SL[1G] semantics
based on the property of elementariness of dependence maps over strategies. We refer to
the related satisfiability concept as elementary satisfiability, in symbols |=E.

The new semantics of SL[1G] formulas involving atomic propositions, Boolean
connectives, temporal operators, and agent bindings is defined as for the classic one,
where the modeling relation |= is substituted with |=E, and we omit to report it here. In
the following definition, we only describe the part concerning the quantification prefixes.
Observe that by ζ[: Ag→ Var, for [∈ Bnd(Var), we denote the function associating
to each agent the variable of its binding in [.

Definition 8 (SL[1G] Elementary Semantics). Let G be a CGS, s ∈ St one of its states,
and ℘[ψ an SL[1G] principal sentence. Then G,∅, s |=E ℘[ψ iff there is an elementary
dependence map θ ∈ EDMStr(s)(℘) for ℘ over Str(s) such that G, θ(χ) ◦ ζ[, s |=E ψ,
for all χ ∈ Asg([[℘]], s).

It is immediate to see a strong similarity between the statement of Theorem 2 of SL
strategy quantification and the previous definition. The only crucial difference resides
in the choice of the kind of dependence map. Moreover, observe that, differently from
the classic semantics, the quantifications in a prefix are not treated individually but as
an atomic block. This is due to the necessity of having a strict correlation between the
point-wise structure of the quantified strategies.

Finally, we state the following fundamental theorem which is a key step in the proof
of the bounded model property and decidability of the satisfiability for SL[1G], whose
correctness has been proved in [16]. The idea behind the proof of the elementariness
property resides in the strong similarity between the statement of Theorem 2 of SL
strategy quantification and the definition of the winning condition in a classic turn-based
two-player game. Indeed, on one hand, we say that a sentence is satisfiable iff “there
exists a dependence map such that, for all all assignments, it holds that ...”. On the other
hand, we say that the first player wins a game iff “there exists a strategy for him such

What Makes ATL∗ Decidable? A Decidable Fragment of Strategy Logic 11

that, for all strategies of the other player, it holds that ...”. The gap between these two
formulations is solved in SL[1G] by using the concept of elementary quantification. So,
we build a two-player turn-based game in which the two players are viewed one as a
dependence map and the other as a valuation over universal quantified variables, both
over actions, such that the formula is satisfied iff the first player wins the game. This
construction is a deep technical evolution of the proof method used for the dualization
of alternating automata on infinite objects [20]. Precisely, it uses Martin’s Determinacy
Theorem [15] on the auxiliary turn-based game to prove that, if there is no dependence
map of a given prefix that satisfies the given property, there is a dependence map of the
dual prefix satisfying its negation.

Theorem 3 (SL[1G] Elementariness). Let G be a CGS and ϕ an SL[1G] sentence. Then,
G |=ϕ iff G |=Eϕ.

In order to understand what elementariness means from a syntactic point of view,
note that in SL[1G] it holds that ℘[X ψ ≡ ℘[X ℘[ψ, i.e., we can requantify the strategies
to satisfy the inner subformula ψ. This equivalence is a generalization of what is well
know to hold for CTL∗: EX ψ ≡ EX Eψ. Moreover, note that, as reported in [16],
elementariness does not hold for more expressive fragments of SL, such as SL[BG].

5 Model Properties
We now investigate basic model properties of SL[1G] that turn out to be important on
their own and useful to prove the decidability of the satisfiability problem.

First, recall that the satisfiability problem for branching-time logics can be solved via
tree automata, once a kind of bounded tree-model property holds. Indeed, by using it, one
can build an automaton accepting all models of formulas, or their encoding. So, we first
introduce the concepts of concurrent game tree, decision tree, and decision-unwinding
and then show that SL[1G] is invariant under decision-unwinding, which directly implies
that it satisfies an unbounded tree-model property. Finally, by using a sharp technique
that is precisely described in [17], we further prove that the above property is actually a
bounded tree-model property.

Tree-model property We now introduce two particular kinds of CGS whose structure
is a directed tree. As already explained, we do this since the decidability procedure we
give in the last section of the paper is based on alternating tree automata.

Definition 9 (Concurrent Game Trees). A concurrent game tree (CGT, for short) is a
CGS T , 〈AP,Ag,Ac,St, λ, τ, ε〉, where (i) St ⊆ ∆∗ is a ∆-tree for a given set ∆ of
directions and (ii) if t ·e ∈ St then there is a decision d ∈ Dc such that τ(t, d) = t ·e, for
all t ∈ St and e ∈ ∆. Furthermore, T is a decision tree (DT, for short) if (i) St = Dc∗

and (ii) if t · d ∈ St then τ(t, d) = t · d, for all t ∈ St and d ∈ Dc.

Intuitively, CGTs are CGSs with a tree-shaped transition relation and DTs have, in
addition, states uniquely determining the history of computation leading to them.

At this point, we can define a generalization for CGSs of the classic concept of
unwinding of labeled transition systems, namely decision-unwinding. Note that, in

12 F. Mogavero, A. Murano, G. Perelli, and M.Y. Vardi

general and differently from ATL∗, SL is not invariant under decision-unwinding, as we
show later. On the contrary, SL[1G] satisfies such an invariance property. This fact allows
us to show that this logic has the unbounded tree-model property.

Definition 10 (Decision-Unwinding). Let G be a CGS. Then, the decision-unwinding of
G is the DT GDU , 〈AP,Ag,AcG ,DcG

∗, λ, τ, ε〉 for which there is a surjective function
unw : DcG

∗ → StG such that (i) unw(ε) = s0G , (ii) unw(τ(t, d)) = τG(unw(t), d), and
(iii) λ(t) = λG(unw(t)), for all t ∈ DcG

∗ and d ∈ DcG .

Note that each CGS G has a unique associated decision-unwinding GDU .
We say that a sentence ϕ has the decision-tree model property if, for each CGS G, it

holds that G |= ϕ iff GDU |= ϕ. By using a standard proof by induction on the structure of
SL[1G] formulas, we can show that this logic is invariant under decision-unwinding, i.e.,
each SL[1G] sentence has decision-tree model property, and, consequently, that it satisfies
the unbounded tree-model property. For the case of the combined quantification and
binding prefixes ℘[ψ, we can use a technique that allows to build, given an elementary
dependence map θ satisfying the formula on a CGS G, an elementary dependence map θ′

satisfying the same formula over the DT GDU , and vice versa. This construction is based
on a step-by-step transformation of the adjoint of a dependence maps into another, which
is done for each track of the original model. This means that we do not actually transform
the strategy quantifications but the equivalent infinite set of action quantifications.

Theorem 4 (SL[1G] Positive Model Properties). For SL[1G] it holds that: (i) it is
invariant under decision-unwinding and (ii) it has the decision-tree model property.

Although this result is a generalization of that proved to hold for ATL∗, it actually
represents an important demarcation line between SL[1G] and SL. Indeed, as we show
in the following theorem, SL does not satisfy neither the tree-model property nor,
consequently, the invariance under decision-unwinding.

Theorem 5 (SL Negative Model Properties). For SL it holds that: (i) it does not have
the decision-tree model property and (ii) it is not invariant under decision-unwinding.

Bounded tree-model property We now have all tools we need to prove the bounded
tree-model property for SL[1G], which we recall SL does not satisfy [18]. Actually, we
prove here a stronger property, which we name bounded disjoint satisfiability.

To this aim, we first introduce the new concept, called disjoint satisfiability, regarding
the satisfiability of different instances of the same subsentence of the original specifica-
tion, which intuitively states that these instances can be checked on disjoint subtrees of
the tree model. With more detail, this property asserts that, if two instances use part of
the same subtree, they are forced to use the same dependence map as well. This intrinsic
characteristic of SL[1G] is fundamental to build a unique automaton that checks the
truth of all subsentences, by simply merging their respective automata, without using a
projection operation that eliminates their proper alphabets, which otherwise can be in
conflict. In this way, we can avoid an exponential blow-up.

In the following theorem, we finally describe the crucial step behind our automata-
theoretic decidability procedure for SL[1G]. At an high-level, the proof proceeds as
follows. We start from the satisfiability of the specification ϕ over a DT T , whose

What Makes ATL∗ Decidable? A Decidable Fragment of Strategy Logic 13

existence is ensured by Item (ii) of Theorem 4 of SL[1G] positive model properties.
Then, by means of Theorem 3 on the SL[1G] elementariness, we construct the adjoint
functions of the dependence maps used to verify the satisfiability of the sentences on T .
Finally, by using a fundamental and very technical property of dependence maps, called
overlapping [17], we transform the dependence maps over actions, contained in the
ranges of the adjoint functions, in a bounded version, which preserves the satisfiability
of the sentences on a bounded pruning T ′ of T .

Theorem 6 (SL[1G] Bounded Tree-Model Property). Let ϕ be an SL[1G] satisfiable
sentence. Then, there exists a bounded CGT T such that T |= ϕ. Moreover, for all
φ ∈ psnt(ϕ), it holds that T satisfies φ disjointly over the set {s ∈ St : T , ∅, s |= φ}.

6 Satisfiability Procedure
We finally solve the satisfiability problem for SL[1G] and show that it is 2EXPTIME-
COMPLETE, as for ATL∗. The algorithmic procedures is based on an automata-theoretic
approach, which reduces the decision problem for the logic to the emptiness problem
of a suitable universal Co-Büchi tree automaton (UCT, for short) [9]. From an high-
level point of view, the automaton construction seems similar to what was proposed in
literature for CTL∗ [13] and ATL∗ [26]. However, our technique is completely new, since
it is based on the novel notions of elementariness and disjoint satisfiability.

Principal sentences To proceed with the satisfiability procedure, we have to introduce
a concept of encoding for an assignment and the labeling of a DT.

Definition 11 (Assignment-Labeling Encoding). Let T be a DT, t ∈ StT one of its
states, and χ ∈ AsgT (V, t) an assignment defined on the set V ⊆ Var. A (ValAcT (V)×
2AP)-labeled DcT -tree T ′ , 〈StT , u〉 is an assignment-labeling encoding for χ on T if
u(lst((ρ)≥1))=(χ̂(ρ), λT (lst(ρ))), for all ρ ∈ TrkT (t).

Observe that there is a unique assignment-labeling encoding for each assignment over a
given DT.

Now, we prove the existence of a UCT UAc
[ψ for each SL[1G] goal [ψ having no

principal subsentences. UAc
[ψ recognizes all the assignment-labeling encodings T ′ of

an a priori given assignment χ over a generic DT T , once the goal is satisfied on T
under χ. Intuitively, we start with a UCW, recognizing all infinite words on the alphabet
2AP that satisfy the LTL formula ψ, obtained by a simple variation of the Vardi-Wolper
construction [28]. Then, we run it on the encoding tree T ′ by following the directions
imposed by the assignment in its labeling.

Lemma 1 (SL[1G] Goal Automaton). Let [ψ an SL[1G] goal without principal subsen-
tences and Ac a finite set of actions. Then, there exists an UCT UAc

[ψ , 〈ValAc(free([ψ))

×2AP,Dc,Q[ψ, δ[ψ, q0[ψ,ℵ[ψ〉 such that, for all DTs T with AcT = Ac, states t ∈ StT ,
and assignments χ ∈ AsgT (free([ψ), t), it holds that T , χ, t |= [ψ iff T ′ ∈ L(UAc

[ψ),
where T ′ is the assignment-labeling encoding for χ on T .

We now introduce a new concept of encoding regarding the elementary dependence
maps over strategies.

14 F. Mogavero, A. Murano, G. Perelli, and M.Y. Vardi

Definition 12 (Elementary Dependence-Labeling Encoding). Let T be a DT, t ∈
StT one of its states, and θ ∈ EDMStrT (t)(℘) an elementary dependence map over
strategies for a quantification prefix ℘ ∈ Qnt(V) over the set V ⊆ Var. A (DMAcT (℘)×
2AP)-labeled ∆-tree T ′ , 〈StT , u〉 is an elementary dependence-labeling encoding for
θ on T if u(lst((ρ)≥1))=(θ̃(ρ), λT (lst(ρ))), for all ρ∈TrkT (t).

Observe that also in this case there exists a unique elementary dependence-model
encoding for each elementary dependence map over strategies.

Finally, in the next lemma, we show how to handle locally the strategy quantifications
on each state of the model, by simply using a quantification over actions modeled by the
choice of an action dependence map. Intuitively, we guess in the labeling what is the
right part of the dependence map over strategies for each node of the tree and then verify
that, for all assignments of universal variables, the corresponding complete assignment
satisfies the inner formula.

Lemma 2 (SL[1G] Sentence Automaton). Let ℘[ψ be an SL[1G] principal sentence
without principal subsentences and Ac a finite set of actions. Then, there exists an
UCT UAc

℘[ψ , 〈DMAc(℘) × 2AP,Dc,Q℘[ψ, δ℘[ψ, q0℘[ψ,ℵ℘[ψ〉 such that, for all DTs
T with AcT = Ac, states t ∈ StT , and elementary dependence maps over strategies
θ ∈ EDMStrT (t)(℘), it holds that T , θ(χ), t |=E [ψ, for all χ ∈ AsgT ([[℘]], t), iff
T ′ ∈ L(UAc

℘[ψ), where T ′ is the elementary dependence-labeling encoding for θ on T .

Full sentences By summing up all previous results, we are now able to solve the
satisfiability problem for the full SL[1G] fragment.

To construct the automaton for a given SL[1G] sentence ϕ, we first consider all UCT
UAc
φ , for an assigned bounded set Ac, previously described for the principal sentences
φ ∈ psnt(ϕ), in which the inner subsentences are considered as atomic propositions.
Then, thanks to the disjoint satisfiability property, we can merge them into a unique UCT
Uϕ that supplies the dependence map labeling of internal components UAc

φ , by using
the two functions head and body contained into its labeling. Moreover, observe that the
final automaton runs on a b-bounded decision tree, where b is obtained from Theorem 6
on the bounded-tree model property.

Theorem 7 (SL[1G] Automaton). Let ϕ be an SL[1G] sentence. Then, there exists an
UCT Uϕ such that ϕ is satisfiable iff L(Uϕ) 6= ∅.

Finally, by a simple calculation of the size of Uϕ and the complexity of the related
emptiness problem, we state in the next theorem the precise computational complexity
of the satisfiability problem for SL[1G].

Theorem 8 (SL[1G] Satisfiability). The satisfiability problem for SL[1G] is 2EXPTIME-
COMPLETE.

References
[1] M.H. Albert, R.J. Nowakowski, and D. Wolfe. Lessons in Play: An Introduction to Combina-

torial Game Theory. AK Peters, 2007.
[2] R. Alur, T.A. Henzinger, and O. Kupferman. Alternating-Time Temporal Logic. JACM,

49(5):672–713, 2002.

What Makes ATL∗ Decidable? A Decidable Fragment of Strategy Logic 15

[3] K. Chatterjee, T.A. Henzinger, and N. Piterman. Strategy Logic. IC, 208(6):677–693, 2010.
[4] E.M. Clarke, O. Grumberg, and D.A. Peled. Model Checking. MIT Press, 2002.
[5] A. Da Costa, F. Laroussinie, and N. Markey. ATL with Strategy Contexts: Expressiveness

and Model Checking. In FSTTCS’10, LIPIcs 8, pages 120–132, 2010.
[6] E.A. Emerson and J.Y. Halpern. “Sometimes” and “Not Never” Revisited: On Branching

Versus Linear Time. JACM, 33(1):151–178, 1986.
[7] B. Finkbeiner and S. Schewe. Coordination Logic. In CSL’10, LNCS 6247, pages 305–319.

Springer, 2010.
[8] D. Fisman, O. Kupferman, and Y. Lustig. Rational Synthesis. In TACAS’10, LNCS 6015,

pages 190–204. Springer, 2010.
[9] E. Grädel, W. Thomas, and T. Wilke. Automata, Logics, and Infinite Games: A Guide to

Current Research. LNCS 2500. Springer-Verlag, 2002.
[10] W. Hodges. Model theory. Encyclopedia of Mathematics and its Applications. Cambridge

University Press, 1993.
[11] W. Jamroga and W. van der Hoek. Agents that Know How to Play. FI, 63(2-3):185–219,

2004.
[12] D. Kozen. Results on the Propositional mu-Calculus. TCS, 27(3):333–354, 1983.
[13] O. Kupferman, M.Y. Vardi, and P. Wolper. An Automata Theoretic Approach to Branching-

Time Model Checking. JACM, 47(2):312–360, 2000.
[14] O. Kupferman, M.Y. Vardi, and P. Wolper. Module Checking. IC, 164(2):322–344, 2001.
[15] A.D. Martin. Borel Determinacy. AM, 102(2):363–371, 1975.
[16] F. Mogavero, A. Murano, G. Perelli, and M.Y. Vardi. Reasoning About Strategies: On the

Model-Checking Problem. Technical Report 1112.6275, arXiv, December 2011.
[17] F. Mogavero, A. Murano, G. Perelli, and M.Y. Vardi. A Decidable Fragment of Strategy

Logic. Technical Report 1202.1309, arXiv, February 2012.
[18] F. Mogavero, A. Murano, and M.Y. Vardi. Reasoning About Strategies. In FSTTCS’10,

LIPIcs 8, pages 133–144, 2010.
[19] F. Mogavero, A. Murano, and M.Y. Vardi. Relentful Strategic Reasoning in Alternating-Time

Temporal Logic. In LPAR’10, LNAI 6355, pages 371–387. Springer, 2010.
[20] D.E. Muller and P.E. Schupp. Alternating Automata on Infinite Trees. TCS, 54(2-3):267–276,

1987.
[21] D.E. Muller and P.E. Schupp. Simulating Alternating Tree Automata by Nondeterministic

Automata: New Results and New Proofs of Theorems of Rabin, McNaughton, and Safra.
TCS, 141(1-2):69–107, 1995.

[22] M. Pauly. A Modal Logic for Coalitional Power in Games. JLC, 12(1):149–166, 2002.
[23] S. Pinchinat. A Generic Constructive Solution for Concurrent Games with Expressive

Constraints on Strategies. In ATVA’07, LNCS 4762, pages 253–267. Springer, 2007.
[24] A. Pnueli. The Temporal Logic of Programs. In FOCS’77, pages 46–57, 1977.
[25] M.O. Rabin. Decidability of Second-Order Theories and Automata on Infinite Trees. TAMS,

141:1–35, 1969.
[26] S. Schewe. ATL* Satisfiability is 2ExpTime-Complete. In ICALP’08, LNCS 5126, pages

373–385. Springer, 2008.
[27] M.Y. Vardi. Why is Modal Logic So Robustly Decidable? In DCFM’96, pages 149–184.

American Mathematical Society, 1996.
[28] M.Y. Vardi and P. Wolper. An Automata-Theoretic Approach to Automatic Program Verifi-

cation. In LICS’86, pages 332–344. IEEE Computer Society, 1986.
[29] M.Y. Vardi and P. Wolper. Automata-Theoretic Techniques for Modal Logics of Programs.

JCSS, 32(2):183–221, 1986.
[30] F. Wang, C. Huang, and F. Yu. A Temporal Logic for the Interaction of Strategies. In

CONCUR’11, LNCS 6901, pages 466–481. Springer, 2011.

