
 Open access  Journal Article  DOI:10.1890/06-1060.1

What matters for predicting the occurrences of trees: techniques, data, or species'
characteristics? — Source link 

Antoine Guisan, Niklaus E. Zimmermann, Jane Elith, Catherine H. Graham ...+2 more authors

Institutions: University of Lausanne, University of Melbourne, Stony Brook University, AT&T Labs ...+1 more institutions

Published on: 01 Nov 2007 - Ecological Monographs (Ecological Society of America)

Topics: Sample size determination

Related papers:

 Novel methods improve prediction of species' distributions from occurrence data

 Maximum entropy modeling of species geographic distributions

 Predictive habitat distribution models in ecology

 A review of methods for the assessment of prediction errors in conservation presence/absence models

 Very high resolution interpolated climate surfaces for global land areas.

Share this paper:    

View more about this paper here: https://typeset.io/papers/what-matters-for-predicting-the-occurrences-of-trees-
1qj2kzdbwk

https://typeset.io/
https://www.doi.org/10.1890/06-1060.1
https://typeset.io/papers/what-matters-for-predicting-the-occurrences-of-trees-1qj2kzdbwk
https://typeset.io/authors/antoine-guisan-4pdjcoizt4
https://typeset.io/authors/niklaus-e-zimmermann-dpre1m5loe
https://typeset.io/authors/jane-elith-xwc212z3wh
https://typeset.io/authors/catherine-h-graham-y6q8ifjft8
https://typeset.io/institutions/university-of-lausanne-3tkqg8t1
https://typeset.io/institutions/university-of-melbourne-3f5hujv0
https://typeset.io/institutions/stony-brook-university-2afaoni7
https://typeset.io/institutions/at-t-labs-39pqkmbo
https://typeset.io/journals/ecological-monographs-21c60a0u
https://typeset.io/topics/sample-size-determination-1n7zfcvj
https://typeset.io/papers/novel-methods-improve-prediction-of-species-distributions-3cmioqeu6v
https://typeset.io/papers/maximum-entropy-modeling-of-species-geographic-distributions-4xioiw5pjl
https://typeset.io/papers/predictive-habitat-distribution-models-in-ecology-4ij7c4re86
https://typeset.io/papers/a-review-of-methods-for-the-assessment-of-prediction-errors-33lw8ngq8s
https://typeset.io/papers/very-high-resolution-interpolated-climate-surfaces-for-n7lgkku6z5
https://www.facebook.com/sharer/sharer.php?u=https://typeset.io/papers/what-matters-for-predicting-the-occurrences-of-trees-1qj2kzdbwk
https://twitter.com/intent/tweet?text=What%20matters%20for%20predicting%20the%20occurrences%20of%20trees:%20techniques,%20data,%20or%20species'%20characteristics?&url=https://typeset.io/papers/what-matters-for-predicting-the-occurrences-of-trees-1qj2kzdbwk
https://www.linkedin.com/sharing/share-offsite/?url=https://typeset.io/papers/what-matters-for-predicting-the-occurrences-of-trees-1qj2kzdbwk
mailto:?subject=I%20wanted%20you%20to%20see%20this%20site&body=Check%20out%20this%20site%20https://typeset.io/papers/what-matters-for-predicting-the-occurrences-of-trees-1qj2kzdbwk
https://typeset.io/papers/what-matters-for-predicting-the-occurrences-of-trees-1qj2kzdbwk


Ecological Monographs, 77(4), 2007, pp. 615–630
� 2007 by the Ecological Society of America

WHAT MATTERS FOR PREDICTING THE OCCURRENCES OF TREES:

TECHNIQUES, DATA, OR SPECIES’ CHARACTERISTICS?

A. GUISAN,1,7 N. E. ZIMMERMANN,2 J. ELITH,3 C. H. GRAHAM,4 S. PHILLIPS,5 AND A. T. PETERSON
6

1Department of Ecology and Evolution, University of Lausanne, CH-1015 Lausanne, Switzerland
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Abstract. Data characteristics and species traits are expected to influence the accuracy
with which species’ distributions can be modeled and predicted. We compare 10 modeling
techniques in terms of predictive power and sensitivity to location error, change in map
resolution, and sample size, and assess whether some species traits can explain variation in
model performance. We focused on 30 native tree species in Switzerland and used presence-
only data to model current distribution, which we evaluated against independent presence–
absence data. While there are important differences between the predictive performance of
modeling methods, the variance in model performance is greater among species than among
techniques. Within the range of data perturbations in this study, some extrinsic parameters of
data affect model performance more than others: location error and sample size reduced
performance of many techniques, whereas grain had little effect on most techniques. No
technique can rescue species that are difficult to predict. The predictive power of species-
distribution models can partly be predicted from a series of species characteristics and traits
based on growth rate, elevational distribution range, and maximum elevation. Slow-growing
species or species with narrow and specialized niches tend to be better modeled. The Swiss
presence-only tree data produce models that are reliable enough to be useful in planning and
management applications.

Key words: data treatment; grain size; location error; model performance; niche-based modeling;
sample size; species traits; Switzerland native tree species; tree occurrences.

INTRODUCTION

The various human-induced threats imposed on

nature have recently reinvigorated the study of species’

distributions, and more particularly the use of predictive

models to describe and quantify them (Guisan and

Thuiller 2005, Guisan et al. 2006). These empirical

models relate known occurrences of species to environ-

mental predictors using statistically derived response

curves that aim to best reflect the species’ environmental

responses. The fitted model is then used to project the

niche into geographic space, providing a spatial

prediction of the most suitable/unsuitable areas for a

given species.

Presence-only data currently represent the largest—

and in many cases the only—source of information on

species’ distributions (Graham et al. 2004). These data,

commonly compiled from natural-history collections in

museums, herbaria, and national biological-data record

centers, are often recorded without a sampling strategy,

and thus contain sampling bias (Stockwell and Peterson

2002a, Kadmon et al. 2004). Depending on the species,

date of collection, and geographic location, the amount

of data and its spatial accuracy can also be highly

variable (Hijmans et al. 2000, Loiselle et al. 2003,

Graham et al. 2004). Bias and small sample sizes, in

particular, have been shown to weaken model perfor-

mance (Stockwell and Peterson 2002a, b, Kadmon et al.

2003, 2004). While these characteristics pose many

technical problems when modeling species’ distributions

(Hirzel et al. 2002, Brotons et al. 2004, Engler et al.

2004, Pearce and Boyce 2006), the importance of

presence-only records as a data source demands ongoing

attention to determine the best methods for modeling

them.

A large range of techniques now exists to predict

species distributions (Guisan and Thuiller 2005, Elith et

al. 2006). Some techniques were specifically designed for

modeling presence-only data (Busby 1991, Walker and

Cocks 1991, Carpenter et al. 1993, Hirzel et al. 2002).

Alternatively, pseudo-absences can supplement pres-

ence-only records and then presence–absence techniques

can be used (Manly et al. 1993, Stockwell and Peters

1999, Zaniewski et al. 2002, Engler et al. 2004).

Recently, a large international modeling experiment—

the largest comparison of techniques conducted to

date—assessed the reliability of 16 different modeling
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techniques to predict species’ occurrence with six data

sets from study areas around the world (Elith et al.

2006). Models were trained with a set of presence-only

records from natural-history collections (NHC; Graham

et al. 2004) and tested with an independent, generally

more accurate, set of observations that include both

presence and absence data, thus providing a measure of

the predictive power of each technique. Novel tech-

niques, such as boosted regression trees or maximum

entropy models, consistently outperformed more estab-

lished techniques, such as simple rectilinear envelopes

(e.g., BIOCLIM) or regression-based approaches (e.g.,

generalized additive models). However, several extrinsic

properties of occurrence data, such as the choice of

mapping resolution (grain size), the choice of predictors,

location error associated with species’ observations, or

sample size, might also affect model performance,

possibly unequally across different techniques.

Most studies show that it is difficult to create accurate

models for all species regardless of the technique used.

This suggests that model performance may also be

influenced by species’ intrinsic ecological characteristics,

such as commonness (Karl et al. 2002, Kadmon et al.

2003), range size (Schwartz et al. 2006), niche width, and

niche position (Boone and Krohn 2002, Kadmon et al.

2003, Thuiller et al. 2004, Hernandez et al. 2006). Other

traits, such as successional status, light requirements,

leaf longevity, or drought tolerance may also influence

predictive performance.

Determining how species’ characteristics influence

model performance is particularly important because it

could provide the means to use theoretical or expert

knowledge to predict which species are suitable for

modeling. For example, in plants one might expect

models for species of late-succession stages to perform

better and more consistently across techniques than

those for pioneer species. Our rationale is that the

realized niches of species are likely to be better

quantified when geographic distributions are stable, as

should be expected for dominant late-successional

species. In contrast, distributions of early-successional

species are likely to be conditioned by stochastic

dynamics of gap openings and disturbances, which

might make it difficult to determine their environmental

requirements and to fit empirical models.

In this paper, we assess:

1) The ability of 10 modeling techniques to predict

current Swiss tree distributions from presence-only data,

and particularly their robustness to three data treat-

ments: addition of location error, changes in resolution

and changes in sample size;

2) Whether some species characteristics (traits) can

explain variation in predictive success; and

3) The respective importance of data quality, species

identity, or modeling technique to determine predictive

success.

We used the Swiss tree data set used in Elith et al.

(2006) because: (a) it contains thousands of evaluation

sites and is therefore large enough to provide sufficient

power to discriminate between modeling methods; (b) it

includes environmental variables that are functionally

relevant and likely to provide models with enough

explanatory power to compare across ecological traits;

(c) it provided a range of model performances, including

some of the best-predicted species; and (d) detailed

ecological information is available for all species.

METHODS

Species data

Study species.—We used 30 tree species commonly

found in Switzerland, representing various sample sizes

for modeling (Table 1; exemplar maps in Fig. 1) and

diverse ecological traits. Species selection included all

native tree species that had at least 35 occurrences in

both data sets. Compared with other data sets in Elith et

al. (2006), the Swiss data set is the most comprehensive

in terms of species records in both the training

(presence-only) and test (presence–absence) sets. Spe-

cies’ traits (Table 2) were drawn from various sources:

(a) species parameters from FORCLIM (Bugman 1996)

and TREEMIG (Lischke et al. 2006) forest gap dynamic

models; (b) forest plots database (Wohlgemuth 1992);

and (iii) expert knowledge (A. Guisan and N. E.

Zimmermann, personal observations).

Training data set.—The Forest Plots (FP) database

contains irregularly and nonsystematically sampled

forest vegetation relevés (inventories of all species within

given plots) throughout Switzerland. The individual

observers had their own particular sampling design or

had no design. Hence, this data set has some similar

properties to natural-history collection data (Graham et

al. 2004) except that, here, exhaustive lists of species are

available for each relevé, meaning that absences are fully

recorded, and there is a substantial number of records

for a relatively small area. The absences were ignored in

our present study, and only presence observations were

used for fitting the models. We reduced the data set so

that only one record was allowed per 100-m grid cell, the

highest resolution of the environmental maps. Absolute

number of occurrences for modeling ranged from 36

(e.g., Populus nigra, Salix alba) to 5822 (Picea abies)

occurrences, with many values in the range 100–1000

(first and third quartiles of 119 and 855 records,

respectively).

Test data set.—The Forest Inventory (FI) is a regular

1-km lattice across Switzerland (Brassel and Braendli

1999). Approximately 25% of Switzerland is covered by

forest, resulting in roughly 10 600 forest-inventory

points. We used information on the presence and

absence of tree species from the 1985 inventory. Subsets

of this data set were also used to fit models in the ‘‘error’’

experiment (see Modeling experiments, below). The data

were cleaned to allow only one sample per 100-m grid

square and no sites were allowed in the same cells as the

training data. In the rare cases with more than one

record per cell, a presence for a species was recorded if
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any of the records was a presence. This resulted in a final

set of 10 013 test sites. Absences are unlikely to be a

result of forest management because Swiss forest

management relies on fostering natural regeneration

from local seed sources, so species are unlikely to be

eliminated from stands within their natural range.

Pseudo-absences.—As several modeling techniques

required records of absences, 10 000 pseudo-absences

were generated at random across the whole country. For

many techniques, these were weighted when fitting the

models to give them a similar weight as for the sum of

presences (mimicking prevalence¼ 0.5, but not implying

any a priori knowledge).

Environmental Predictors

We used 13 spatially explicit environmental variables

reflecting ecologically meaningful information to predict

tree distributions (Table 3). Among these, seven climatic

variables and two topographic variables were derived

from spatial climate mapping and GIS modeling,

following Zimmermann and Kienast (1999). Climatic

predictors were chosen to reflect physiological needs and

included: growing degree-days (DDEG), average tem-

perature of the coldest month (TAV), the sum of frost

events during the frost-sensitive time (SFRO), the yearly

sum of all monthly precipitation (PREC), the number of

summer (June–August) precipitation days with rainfall

.1 mm (PDSUM), the site water balance (SWB; also

integrating soil parameters) and the potential yearly

global radiation (SRAD; daily clear-sky average). All

basic climatic variables (temperature, precipitation) were

based on 1961–1990 monthly normals. One hundred

eighty stations were available for temperature and 360

for precipitation. The two topographic predictors, were:

slope (SLOPE), summarizing the intensity of gravita-

tional processes, and a relative index of topographic

position (TOPO; a multi-scale measure of convexity/

concavity), ranging from positive values expressing

ridges, peaks, and exposed sites to negative values,

describing sinks, gullies, valleys or toe slopes. The two

variables reflecting the type of substratum were: nutrient

availability (NUTRI), derived from the Swiss soil

suitability map (Anonymous 1980), and the presence

of strictly calcareous bedrock type (CALC), reclassified

from the Swiss Geotechnical map. Finally, two variables

related to leaf type were derived from a Landsat TM

(thematic mapper)-based forest composition map (GE-

OSTAT; BFS 2001). BCC is a continuous measure of

the broadleaved tree cover, while CCC represents the

cover fraction of needle-leaf trees. All predictors,

TABLE 1. Identification of and information about the 30 modeled tree species.

Trees Species used
in data

experiment

No. presence records
Mean AUC
value across
techniques� pAUC§Code Genus Species

Training
data set

Test
data set�

abialb Abies alba 3357 3326 0.730 useful
acecam Acer campestre 710 119 0.841 useful
acepla Acer platanoides x 482 107 0.795 useful
acepse Acer pseudoplatanus x 2800 1520 0.686 poor
alnglu Alnus glutinosa 297 134 0.771 useful
alninc Alnus incana 293 278 0.592 poor
betpen Betula pendula x 468 391 0.699 poor
carbet Carpinus betulus 857 222 0.897 useful
cassat Castanea sativa 458 308 0.957 good
fagsyl Fagus sylvatica x 5528 4246 0.781 useful
fraexc Fraxinus excelsior 2830 1366 0.730 useful
lardec Larix decidua x 986 1493 0.725 useful
ostcar Ostrya carpinifolia 91 35 0.969 good
picabi Picea abies 5822 6953 0.702 useful
pincem Pinus cembra x 279 238 0.955 good
pinmug Pinus mugo 89 22 0.795 useful
pinsyl Pinus sylvestris 2142 978 0.771 useful
pinunc Pinus uncinata x 291 142 0.654 poor
popnig Populus nigra 36 19 0.892 useful
poptre Populus tremula x 154 100 0.648 poor
pruavi Prunus avium 613 271 0.740 useful
quepet Quercus petraea 1452 477 0.834 useful
quepub Quercus pubescens 382 26 0.889 useful
querob Quercus robur 734 395 0.829 useful
salalb Salix alba 37 20 0.6340 poor
sorari Sorbus aria x 1245 298 0.7182 useful
sorauc Sorbus aucuparia 426 224 0.7032 useful
tilcor Tilia cordata 560 182 0.8235 useful
tilpla Tilia platiphyllos x 749 104 0.8226 useful
ulmgla Ulmus glabra 937 306 0.7525 useful

� Out of a total of 10 013 sites.
� AUC¼ area under the curve.
§ ‘‘pAUC’’ represents the classes of performance according to Swets (1988).
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originally available at 25 m-resolution, were resampled

to a 100 m resolution (1000 m for the grain experiment)

using the ‘‘aggregate’’ function in ArcGIS (ESRI 2005).

Additional details for each predictor are in Appendix A.

Modeling techniques

We compared 10 single-species modeling techniques

(Appendix B): BIOCLIM, BRUTO, BRT, DOMAIN,

GDMSS GAM, GLM, MAXENT, MARS, and OM-

FIG. 1. Distribution maps for four of the 30 modeled Swiss tree species: (a) Acer pseudoplatanus, (b) Carpinus betulus, (c)
Castanea sativa, and (d) Fagus sylvatica.

TABLE 2. Biological and ecological traits for the 30 tree species modeled.

Traits
Variable
type Details

Classes in Fig. 6

Code Description [source] Lower Upper

LLON leaf longevity [1] 2 classes evergreen deciduous
MGR maximum growth rate [1] continuous range 82–310; 103 (mm/year) ,167 �167
DDGM minimum degree-days for

growth [1]
continuous range 323–1339 ,898 �898

DRTOL drought tolerance [1] 5 classes range 1–5; 1 ¼ weak, 5 ¼ high ,3 �3
LREQ light requirement of adult

E7smp;trees [1]
9 classes range 1–9; 1 ¼ low, 9 ¼ high ,5 �5

PREV prevalence (relative sample
size) [2]

continuous absolute number; max is 10 610 ,270 �270

ELVMIN minimum elevation [2] continuous range 200–1400; observed from
the data (empirical)

,250 �250

ELVMAX maximum elevation [2] continuous range 650–2300; observed from
the data (empirical)

,1550 �1550

ELVRNG elevation range [2] continuous range 450–2000; difference
between max and min

,1275 �1275

SUCC successional status [3] 2 classes early (pioneer) late
HUMAN human influence [3] 2 classes planted frequently never planted
AVABU50 relative mean basal area

(BA) [2]
2 classes larger than

median BA
smaller than

median BA

Notes: The ‘‘lower’’ and ‘‘upper’’ classes of each trait are represented in Fig. 6 by ‘‘�’’ and ‘‘þ,’’ respectively. For continuous
variables the boundary between the two classes is the median. Sources: [1], species parameters of FORCLIM/TreeMig (Bugmann
1996, Lischke et al. 2006); [2], derived from the Swiss forest plots database (Wohlgemuth 1992); [3], expert knowledge.
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GARP. Some techniques, like BIOCLIM and DO-

MAIN, only need presence data and can be called

‘‘profile techniques,’’ whereas others, like GAM or BRT,

require absences and can be called ‘‘group discrimina-

tion techniques’’ (Robertson et al. 2001).

BIOCLIM fits simple rectilinear envelopes and was

applied within DIVA-GIS (Hijmans et al. 2001), an

alternative implementation to the original climate-based

method by Nix (1986). DOMAIN (Carpenter et al.

1993) differs from BIOCLIM by using Gower metric to

define point-wise similarities rather than outlining

envelopes. OM-GARP is an improved, recently released

version of the GARP package (Stockwell and Peters

1999) that uses genetic algorithms to select a set of rules

that best describes the species’ distribution. Rule types

include range rules akin to BIOCLIM models, negated

range rules (i.e., not within a given range), and ‘‘atomic’’

rules (i.e., specifying single values as opposed to ranges),

as well as a simple logistic regression analogue.

All remaining techniques generally require presence

and absence data to model probabilities of occurrence,

but here were implemented with pseudo-absences

instead of true absences. GAM (generalized additive

models), GLM (generalized linear models), MARS

(multivariate adaptive regression splines), and BRUTO

are all forms of generalized multiple regressions, with

differences in the fitting procedures and the methods

used to model complex responses. GAMs are similar to

GLMs, with nonparametric smoothers replacing the

parametric functions in a GLM. MARS is similar to

GAM but relies on fitting piecewise linear basis

functions rather than smoothed functions (Leathwick

et al. 2005) , and includes a recursive simplification

procedure. This makes it faster than a GAM and simpler

to transfer to a GIS. BRUTO is a generalized additive

model with a different and faster fitting procedure

(Leathwick et al. 2006a).

BRT (boosted regression trees) comprises two algo-

rithms (boosting and regression trees) and computes a

sequence of simple regression trees, where each succes-

sive tree is fitted to the residuals of the existing set of

trees (Leathwick et al. 2006b). By allowing trees with

more than one node, interactions can be modeled

automatically. BRT can be prone to overfitting, but

this was controlled here by using cross-validation to

select the final model.

MAXENT is a maximum-entropy approach recently

applied to predict species distributions (Phillips et al.

2006). The general idea behind MAXENT is to find a

probability distribution, defined over the study area,

that satisfies a set of constraints derived from the

occurrence data. Each constraint requires that the

expected value of an environmental variable (or function

thereof) must be within a confidence interval of its

empirical mean (the mean over the presences). Among

distributions that satisfy the constraints, MAXENT

chooses the one that maximizes entropy, i.e., is the

closest to uniform, as any other choice would represent

constraints on the distribution that are not justified by

the data.

GDMSS is the single-species implementation of the

generalized dissimilarity modeling approach usually

applied in a community context (Ferrier et al., in press).

It differs from the community version by only using data

from one species to generate the dissimilarities and to

transform the environmental space More detail and

specifics of settings used are published elsewhere (Elith

et al. 2006).

TABLE 3. Predictor variables used for the modeling of tree species using the 10 predictive techniques.

Code Variable type� Description (units)

Climatic�
DDEG C growing degree-days above the threshold of 08C (8C 3 days)
TAV C average temperature of the coldest month (8C)
SFRO C summer frost frequency (no. days)
PREC C average yearly precipitation sum (mm)
PDSUM C number of days with rainfall .1 mm (no. days)
SWB C site water balance (mm)
SRAD C potential yearly global radiation (daily average) (kJ�m�2�d�1)
Topographic§
SLOPE C slope (degrees)
TOPO C topographic position (range)
Substratum
NUTRI C soil nutrients (index between 0 and 45) (milival/cm2)||
CALC B bedrock strictly calcareous vs.

other type (present or absent)
Leaf type
BCC C broadleaved continuous cover (TM-based classification) (%)
CCC C coniferous continuous cover (TM-based classification) (%)

Notes: The 13 spatially explicit environmental variables reflect ecologically meaningful information to predict tree distributions.
See Appendix A for details on their calculation. Summer¼ June–August.

� C ¼ continuous, B¼ binary.
� Chosen to reflect physiological needs. Site water balance integrates soil parameters. Temperature and precipitation were based

on 30-year average (1961–1990 monthly normals).
§ Slope summarizes the intensity of gravitational processes. TOPO is a relative index of convexity–concavity.
|| Explanation of units: 1 milival/cm2

¼ 1 mmol/cm2 if the valence is 61.
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Modeling experiments

As part of a prior modeling exercise (Elith et al. 2006),

we conducted experiments on a subset of 10 species per

region to compare the robustness of the various

techniques to changes in parameters. Here we bring

together the Swiss results for manipulations of three

parameters—location error, sample size, and grain

size—to compare model responses to data perturbation.

Nine of the 10 techniques reported here were applied

(excluding GDMSS), and some experiments had more

than one treatment.

The aim of the first experiment, the error experiment

(E), was to mimic locational error in presence-only data,

and to assess how error affected predictive performance

(see also C. H. Graham, J. Elith, R. Hijmans, A. Guisan,

A. T. Peterson, B. A. Loiselle, and the NCEAS species

distribution group, unpublished manuscript). To control

for data quality we used only the higher quality test data

set (forest inventory, FI) for this experiment. We used

21% of presence records for modeling, and the

remaining 79% for evaluation, along with all the absence

records. Error was added to the data used for modeling

by shifting the coordinates by an amount sampled from

a normal distribution with a mean of zero and a

standard deviation of 5 km (this resulted in shifted

values ranging between 6 m and 16 km for easting, and

between 9 m and 17 km for northing). The shifts were

constrained so that the sites did not move outside of the

region. Model performance based on these shifted data

was compared to performance on the same data,

unshifted, and both sets of models were evaluated using

the independent evaluation data set (i.e., the 79% of

presence records that were set aside).

In the remaining two experiments, grain size and

sample size, models were fit with the training data (forest

plots, FP) and tested with the full evaluation set (FI).

The grain-size experiment (G) investigated the effect

of grain size of environmental data on model perfor-

mance (see also Guisan et al. 2007). Grain size was

enlarged by a factor of 10, changing pixel size for

environmental predictors from 100 m to 1 km. All

environmental and species data were aggregated accord-

ingly in a GIS to build models at the coarser resolution.

At the finer grain size, there was a maximum of one

species record per cell. At the coarse grain size there

were sometimes multiple records per cell, but overall

sample size remained the same.

The sample-size experiment (S) investigated the effect

of sample size on predictive performance. From all

available records, two smaller sample sizes of 10 and 30

occurrences were created, using random sampling.

Model evaluation and comparison

A strength of this study is that models were fitted

using presence-only data (FP data set) but evaluated

using presences and absences (FI data set), thus ensuring

proper independence when testing their predictive

capacity. We used the area under the curve (AUC) of

a receiver-operating characteristic plot (ROC-plot;

Swets 1988, Fielding and Bell 1997) as the evaluation

measure, because it is threshold independent. AUC

values were interpreted on the scale proposed by Swets

(1988): AUC . 0.90: good; 0.90 . AUC . 0.70: useful;

AUC , 0.70: poor. As the choice of the evaluation

metrics may influence the results, we also tested model

predictions with a second measure, the maximized

kappa (Manel et al. 2001). Because max-kappa provided

similar results we present only the AUC results here.

Analyses of model performance

Variances of techniques across species were compared

to variances of species across techniques. To assess

whether some techniques are consistently better than

others, we found the best-performing technique for each

species. For each technique, we then compared its

performance across all species to the vector of best

performance (Wilcoxon test), and plotted the corre-

sponding P values, which provide an index of the

deviation from the best performance. Variation in AUC

across the 10 techniques was also tested using a

generalized linear mixed model (GLMM) with the

AUC as the response (Elith et al. 2006). Technique

was fitted as a fixed effect, and Species as a random

effect. Analyses were performed using WinBUGS

(Spiegelhalter et al. 2003) and the 50 000 iterations were

summarized in terms of the percentage of runs where the

AUC for method A was greater than that for method B.

More details on the GLMM procedure are given in

Appendix C.

To visualize results from the experimental data

manipulations, boxplots by techniques were drawn and

pairwise comparisons (Wilcoxon tests) were conducted

to assess the respective robustness of each technique

against error, change in resolution, and sample size.

To explore whether individual species’ traits could

explain variation in model performance, we fitted a

generalized linear model (GLM), with Gaussian family

and identity link, relating model performance (AUC) to

multiple species traits. Predictors were selected by AIC-

based stagewise selection procedure. No quadratic or

higher polynomial terms were included, as no unimodal

relationship was expected a priori.

RESULTS

Performance of the tree-distribution models varied

significantly more within techniques across species

(0.10297 6 0.00907 [mean 6 SD]) than within species

across techniques (0.04191 6 0.02028; with both t or

Wilcoxon signed-ranks test, P ; 0). Even so, the effect

of modeling technique was statistically important,

because the deviance information criterion (DIC) in

the generalized linear mixed model (GLMM) changed

by 192 (full model compared to a model without an

effect for modeling technique), where changes in DIC of

.10 are considered important (Burnham and Anderson

2002).
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Differences can be seen in the resulting prediction

maps prepared for four selected species (Acer pseudo-

platanus, Carpinus betulus, Castanea sativa and Fagus

sylvatica) and four techniques (GARP, MARS,

GDMSS, and MAXENT; Fig. 2) representing a range

of performances. Based on mean performance of species

across techniques, 3 species fell into the category of

‘‘good’’ models (Ostrya carpinifolia, Castanea sativa,

Pinus cembra), 21 species fell into the category ‘‘useful,’’

and 6 species were rated ‘‘poor.’’

Ranking of overall model performance (area under

the curve, AUC) was (from best to worst): (1) BRT

(boosted regression tree), (2) MAXENT (maximum

entropy), (3) GAM (generalized additive model; regres-

sion), (4) MARS (multivariate adaptive regression

splines), (5) GDMSS (generalized dissimilarity model,

single species), (6) BRUTO (a fast GAM), (7) GLM

(generalized linear model), (8) OM-GARP (new version

of GARP), (9) DOMAIN (multivariate distance model),

and (10) BIOCLIM (envelope model) (Figs. 3 and 4).

The GLMM analyses (Table 4) consistently showed that

BRT and MAXENT ranked first, all regression-based

techniques (GAM, MARS, BRUTO, GLM; little

evidence for true differences between them) ranked

next, and the techniques that include profile-based

information (i.e., relying only on presence data) ranked

last (BIOCLIM, DOMAIN). The single-species dissim-

ilarity approach (GDMSS) showed similar performance

to the regression approaches. OM-GARP ranked just

below these regression and dissimilarity techniques, and

above the two envelope approaches (DOMAIN, BIO-

CLIM), but there was no detectable difference between

these latter two.

Results from the experiments testing the response of

model performance to experimental data manipulation

showed significant and consistent effects, with all

treatments causing a decline in the predictive perfor-

mance (Fig. 5). The patterns in mean AUC per

technique across the 10 species selected for these

experiments were generally consistent with trends from

the full suite of 30 species, though for these 10 species

OM-GARP was closer to the regression methods than to

the profile methods. Most modeling techniques respond-

ed significantly to error introduced in the geographic

coordinates of the species data (P¼ 0.0039; Fig. 5), with

profile-based algorithms (DOMAIN, BIOCLIM) being

more affected. Coarsening the grain (resolution) had a

consistent but almost negligible effect (Fig. 5).

Models performed more poorly with smaller sample

size (P¼ 0.0020 for n¼ 10, 0.0039 for n¼ 30; Fig. 5c, d),

but techniques varied in robustness. DOMAIN, OM-

GARP, and MAXENT maintained average perfor-

mance close to their original levels even at n ¼ 10. At

n¼30 all methods were recovering towards their original

effectiveness (Fig. 5). Even though the regression

methods were relatively more degraded at N ¼ 10, they

were still close to DOMAIN in terms of average

performance.

The ability to model species’ distributions can be

successfully predicted from a series of additional species

traits (58% variance explained). Only maximum growth

rate (MGR), maximum elevation (ELVMAX), and

elevation range (ELVRNG) showed significant effects

on model performance (P , 0.05; Fig. 6). The multiple

GLM of AUC evaluation as a function of quantitative

species traits confirmed the strong influence of MGR

and identified ELVRNG as another important variable

(Table 5).

DISCUSSION

Elith et al. (2006) compared the predictive power of 16

modeling techniques to predict species distribution using

six data sets. In this study we look more extensively

within one region, comparing the robustness of 10

techniques to various data issues—errors, sample size,

and grain—and assessing species’ predictability as a

function of biological and ecological species’ character-

istics.

Species vary more than techniques

The variance in model effectiveness across species

proved to be higher than the variance across techniques.

This result confirms results from previous studies (e.g.,

Austin and Meyers 1995, Ferrier and Watson 1997, Elith

2000, Moisen and Frescino 2002, Thuiller 2003), but

across a larger sample of techniques and with a focus on

presence-only data. For the Swiss data set, species

poorly modeled by one technique tend also to be poorly

modeled by other techniques. Clearly, the variance

results depend on the selection of species and techniques,

but it is notable that the result is a repeatable one.

We found less evidence in the literature showing

consistency in the ranking of techniques across species,

as demonstrated by our study. In some data sets there

are trends for more variation across techniques for

species that are harder to model (Elith et al. 2006), so

our result might be most relevant to data sets with

functionally relevant predictors, strong environmental

gradients, reasonable numbers of presence records for

modeling, and enough evaluation data to distinguish

between methods. In such cases, these results might be

used to select a single best technique, for instance to test

a hypothesis in biogeography or macro-ecology, or to

develop a ready-to-use model-based management tool.

Ranking species

Model accuracy varied by species. The models for

three species—Castanea sativa, Ostrya carpinifolia, and

Pinus cembra—ranked as ‘‘good.’’ These three species all

have narrow ecological niches (specialized on specific

substrates or for high elevations) and narrow geograph-

ical distribution in Switzerland. Castanea sativa and

Ostrya carpinifolia are mainly found in the Southern

Alps in the state of Ticino, and C. sativa in a small

number of sites in the Jura mountains, whereas Pinus
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cembra is mainly found in the dry and continental

internal valleys of the Alps.

Next, 21 species had models that were judged

‘‘useful.’’ Several of these species—e.g., Abies alba,

Fagus sylvatica, Fraxinus excelsior, Larix decidua, Picea

abies, Pinus sylvestris, Quercus petraea—are dominant

species in at least one type of forest in Switzerland,

possibly reflecting some degree of environmental deter-

minism. Their suboptimal ranking might partly result

from the fact that some have been managed by humans

in a number of places (mostly F. sylvatica, L. decidua, P.

abies). Fraxinus excelsior can dominate forests in moist

gullies and on sites close to springs (preferring subsur-

face water), but the extent of this type of forest was

FIG. 2. Prediction maps for the four species in Fig. 1 and four modeling techniques. Species: (a–d) Acer pseudoplatanus, (e–h)

Carpinas betulus, (i–l) Castanea sativa, (m–p) Fagus sylvatica. Techniques (see Appendix B): row 1 (a, e, i, m) is OM-GARP, row 2

(b, f, j, n) is MARS, row 3 (c, g, k, o) is GDMSS, and row 4 (d, h, l, p) is MAXENT. See Methods: Species data and Modeling

techniques and Tables 1 and 4 for details on species and techniques. See Fig. 1 for actual species-distribution maps. The area-under-

the-curve (AUC) values below each map were calculated on the independent test data set.
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locally reduced by drainage practices over the last

century. Yet this species still has a relatively narrow

ecological niche, which might explain its position in this

usefully modeled group. Some nondominant species are

also partly influenced by human activities, including

Quercus robur, Populus nigra, and P. tremulus. A bias in

occurrence data may sometime result from human

activities, but recorded absences should be more reliable

since human management in Switzerland never attempt-

ed to eradicate a species from its natural range. Other

species may have intermediate performance because

their ecological requirements are difficult to map.

Quercus pubescens needs highly thermal environments

(e.g., shallow and stony soils), frequent in the southern

slopes of the internal Alps but scattered elsewhere. Pinus

mugo is only found in subalpine heaths of the eastern

Swiss Alps. Acer pseudoplatanus can dominate on screes.

These features are not frequent in the plateau and can be

difficult to capture in these models. For instance,

detailed soil characteristics are likely to be important

additional predictors for many species, as recently

illustrated for Acer campestre in France (Coudun et al.

FIG. 2. Continued.
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2006), but are not available as spatially explicit

predictors. A few other species in this category were

affected by historical events, as was the case for Ulmus

glabra whose populations in western Europe were

decimated by a fungal disease (Ophiostoma ulmi) during

the 1970s.

Finally, six species had ‘‘poor’’ models. Three of

them—Acer pseudoplatanus, Betula pendula, Populus

tremula—rarely dominate in the landscape and tend to

occur scattered throughout forests dominated by other

species. For these species, the bulk of unexplained

variance may result from the models’ inability to either

account for competitive performance (Acer) and/or the

unstable occurrence of early successionals (Betula,

Populus). Other species in this category have very

specialized ecological requirements that could not have

been distinguished using the available predictors. Alnus

incana and Salix alba are only found in wet, potentially

flooded environment (e.g., lake sides, remnant alluvial

zones), but no predictor of aquatic habitats was included

in the modeling. Finally, one species—Pinus uncinata—

is mostly found on peat bogs and in mountains on

subalpine rocky outcrops, and may have been affected

by taxonomic confusion with its sister species P. mugo

with which it is known to hybridize.

Based on expert knowledge, the following trend can

be suggested: (1) best modeled species have distinct

(narrow) distribution and are good competitors; (2)

dominant and widespread species still support useful

models; (3) species with low competitive strength, early

successional status, or with narrowly specialized topo-

graphic requirements that are hard to model in a GIS

are the most difficult to model. Although certainly

oversimplified, these results may be helpful in predicting

which species can be modeled well.

Ranking techniques

The fairly consistent ranking of techniques across

species is consistent with results of Elith et al. (2006).

The top two techniques were BRT and MAXENT,

followed by GAM, MARS, GDMSS, BRUTO, and

GLM (all approximately equal), all outperforming

BIOCLIM, OM-GARP, and DOMAIN (see Appendix

B for model information).

Not all available techniques were included in this

study. For instance, ENFA (ecological niche factor

analysis; Hirzel et al. 2002) is a profile technique that

was not tested because it requires a dynamic link with a

GIS and could not be run effectively for many species

and many experiments. RF (random forest; Breiman

2001) is a machine-learning method (as neural networks)

FIG. 3. Performance of species for each technique, in order of decreasing mean performance (area under the curve, AUC) of
species across techniques. Techniques in the key are ordered by their mean performance across species (from best to worst); for
species codes, see Table 1.
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used occasionally in ecology with promising results

(Lawler et al. 2006, Schwartz et al. 2006, Broennimann

et al. 2007). It would also be interesting to test regression

methods with other model-selection techniques such as

the lasso (Reineking and Schro der 2006), because these

are likely to be more robust to poor data than the

stepwise methods used here.

BRT and MAXENT are new in ecological modeling,

with few ecological applications available (e.g., Kawakita

et al. 2005, Leathwick et al. 2006a, Moisen et al. 2006,

Phillips et al. 2006). All regression techniques—GLM,

GAM, BRUTO, and MARS—showed similar overall

performance. The single-species dissimilarity approach

(GDMSS) also showed comparable performance to the

regression approaches. In the other regions tested,

GDMSS performed relatively better (Elith et al. 2006).

OM-GARP is based on a mix of logistic regression

(GLM) and BIOCLIM-like approaches, so its intermedi-

ate performance (between profile techniques and regres-

sion approaches) is unsurprising. Yet, statistically, its

FIG. 4. Performance of modeling techniques compared to the best prediction (throughout all techniques) for each species. (Top
panel) Boxplots give the distribution of performance measures (area under the curve, AUC) for each technique (second to last
boxplots) compared to the distribution of the best performance for each species (first boxplot, dark gray). The line across the box
indicates the median; the box boundaries show the interquartile range; and whiskers identify extreme data points that are no more
than 1.5 times the interquartile range on both sides. (Bottom panel) For each technique, the histograms give the P value of
differences from the best technique.

TABLE 4. Pairwise comparisons of predictive performance (area under the curve, AUC) of the 10 modeling techniques.

BIOCLIM BRT BRUTO DOMAIN GAM GDMSS GLM OMGARP MARS

BRT 0.000

BRUTO 0.000 0.996

DOMAIN 0.005 1.000 1.000

GAM 0.000 0.960 0.184 0.000

GDMSS 0.000 0.994 0.440 0.000 0.773
GLM 0.000 1.000 0.732 0.000 0.933 0.781
OMGARP 0.000 1.000 0.998 0.000 1.000 0.999 0.984

MARS 0.000 0.991 0.385 0.000 0.730 0.447 0.184 0.001

MAXENT 0.000 0.853 0.052 0.000 0.237 0.071 0.013 0.000 0.093

Notes: For details of modeling techniques, see Appendix B; for details of generalized linear mixed model (GLMM) see Appendix
C. Values were obtained from a GLMM of performance as a function of techniques and species (random effect) and were
summarized over 50 000 Monte Carlo iterations. Values indicate the probability that the true difference between the techniques is
greater than zero. Low values indicate that the technique in the row tends to give higher AUC than the technique in the column, and
vice versa. Values outside the arbitrary limits P¼ (0.025, 0.975) are highlighted in bold for this two-tailed test.
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performance is not distinguishable from those of profile

models. We note that the profile methods, particularly

BIOCLIM, were originally introduced to enable broad-

scale biogeographic analyses of species (e.g., Nix 1986).

While not originally intended for the finer-grained scales

here, we included them because their use has not been

confined to broad scales. Methods that define unsuitable

environments within broadly suitable envelopes are more

successful at finer grains, as in this study.

Influence of extrinsic parameters of the data

Error.—Most modeling techniques were weakened by

artificially introduced errors in the data set, with profile-

based algorithms being more affected. Consistent

degradation of model performance (area under the

curve [AUC] always lower for the faulty data, except for

some cases for DOMAIN) suggests that this is a

significant issue. Overall, this result was expected.

Introducing errors in the geographic coordinates should

result in incorrect values for environmental predictors.

The particularly consistent and significant effect on

model performance here may be due to the high

geographic accuracy of the Swiss data set. BIOCLIM

may have been particularly affected because predictor

variables are not weighted and erroneous extreme values

(e.g., max/min or some lower percentiles) have a large

potential effect on the fitting of the species’ realized

niche compared to regression-based techniques.

The same errors likely had less impact on techniques

that fit more complex response curves (e.g., smoothing

splines in GAM), where the influence of observations on

the fitting process strongly depends on their position and

their density along each environmental gradient.

Grain.—Coarsening the grain (resolution) had only a

weak effect on the performance of techniques. GLM

exhibited a somewhat greater sensitivity, but this likely

resulted from three outlying species for which no

satisfactory models could be obtained at the coarser

scale. In general, coarsening the grain can both increase

and decrease predictive capacity. Increased performance

may originate from averaging or smoothing errors in

both environmental and species data, for instance in the

case of mobile species accessing resources available in a

large neighborhood (Guisan and Thuiller 2005). Re-

duced performance may result from a lack in spatial

matching between species observations—specifically of

sessile organisms like trees—and their associated envi-

ronments (Guisan and Thuiller 2005) and/or from

limited/reduced precision of environmental predictors

at the coarser grain (Guisan et al. 2007).

The effect of changing grain size might be confounded

with a change in sample sizes of presence data between

models built at coarse and fine grain. Coarsening the

FIG. 5. Results of the modeling experiments. Response of the different techniques to various treatments of the data, with model
performance measured by the area under the curve (AUC) (seeMethods: Model evaluation and comparison for explanations). The x-
axis shows baseline modeling (control); the y-axis is the experiment. The dashed lines represent the 1:1 relationship (perfect
correspondence). For each method, the position of the label represents the mean value across 10 species. On average, all experiments
either degrade the performance of techniques or provide similar results. The P value of a two-sided Wilcoxon signed-ranks test
between the baseline modeling and experiment is provided in the upper-left corner of each panel (all significant with one-sided tests).
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grain requires either (a) aggregating the environmental

and species data, or (b) allowing multiple species

observations per coarser cell (to keep the sample size

constant). In the second case—the one chosen in our

study—the likelihood of finding both presence and

(pseudo)absence data co-occurring in coarser cells

increases. This should therefore result in a reduction of

model fit, because such cells reduce the model’s ability to

distinguish between suitable and unsuitable locations.

With only a few such cases, the model fit should not be

seriously affected, whereas with many such cases, the fit

could be decreased considerably, cancelling out positive

effects of coarsening grain. The similar model perfor-

mance observed across species at the two grain sizes may

also indicate that the important environmental gradients

in Switzerland can still be captured at the coarser grain,

but this result is likely to be regionally variable, and will

depend on the complexity of the environmental space.

Sample size.—Sample size had an important effect on

model performance. At the smallest sample size (n¼ 10),

the performance of all regression approaches, together

with BRT and BIOCLIM, was strongly degraded

compared to the full sample. By contrast, techniques

that were able to maintain similar performance at very

small sample size were, by decreasing order of perfor-

mance: MAXENT, OM-GARP and DOMAIN. Main-

tenance of performance does not imply a better

performance overall compared with other methods;

regression methods still performed as well as DOMAIN

at small sample sizes. Sample sizes of 30 produced the

same trend but loss of performance was smaller. Among

the two best techniques, BRT only remains superior to

MAXENT until the sample size gets very small, showing

the superiority of some techniques with small data sets.

Techniques fitting simpler response curves (like

DOMAIN or GARP) tend to be less affected by

decreased sample sizes than more complex (and data-

FIG. 6. Boxplots of mean AUC (area under the curve) values per species across techniques for the binary classes of species traits
(30 species in total). The ‘‘�’’ on the x-axis represents the lower class whereas the ‘‘þ’’ represents the upper class (e.g., low and high
growth rate). For each continuous trait, separation between the two classes is obtained by taking the median value as threshold (see
Table 1). The difference is only significant for (b), (g), and (i). The line across the box indicates the median; the box boundaries
show the interquartile range. Whiskers identify extreme data points that are no more than 1.5 times the interquartile range on both
sides. Horizontal lines outside the square brackets denote outliers.

TABLE 5. Results of ANOVA of the GLM (generalized linear
model) of mean AUC (area under the curve) performance as
a function of species’ traits.

Predictor� Deviance df
Residual
deviance F P

MGR 0.025141 1, 27 0.254315 5.49336 0.027008
ELVRNG 0.135322 1, 26 0.118992 29.56820 0.000011

Note: Overall, the model explained 51.6% of the deviance.
� Species traits (predictors): MGR, maximum growth rate;

ELVRNG, elevation range.
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hungry) techniques (like GAM,MARS and BRT) that fit

more complex response curves of species along environ-

mental predictors. More observations are usually re-

quired to fit group-discrimination models (e.g., GAM)

compared to profile techniques (e.g., DOMAIN); the

techniques generally performing most poorly cannot

make use of additional data in the same way as the best-

performing techniques. MAXENT probably remains

fairly robust at small sample sizes because the settings

used vary with sample size, and simpler models are fitted

with smaller samples (Elith et al. 2006, Phillips et al.

2006). Equivalent approaches (adjusting model complex-

ity with sample size) could be applied to other methods

(e.g., BRT and regression), but were not tested here.

Results from all these experiments need to be considered

with caution because, with only 10 species, one or two

species can have substantial impacts on the results. It

would be instructive to build more comprehensive

evaluations with comparative analyses of fitted functions

and mapped predictions (Hernandez et al. 2006).

Influence of species traits

Predicting how well species’ distributions can be

modeled as a function of a given set of environmental

predictors and biological traits is important in optimiz-

ing investment in, for example, conservation of partic-

ular target species. Among species traits tested here,

growth rate and elevation range had significant effects

on model performance, and maximum elevation had a

marginal effect.

Maximum growth rate is closely related to species’

successional status, since fast growth rates are linked to

low shade tolerance (Shugart 1984, Bugmann 2001).

Fast-growing pioneer species are more difficult to model,

since they require early successional stages that are

neither easily mapped nor evaluated, and may not be

frequent over the landscape. Hence, from a habitat

perspective, absence of early successional species does

not necessarily represent low habitat suitability (Guisan

and Thuiller 2005), assuming that light is the primary

factor for competitive exclusion. In contrast, species with

slow growth rates are often late-successional, dominant,

restricted-habitat specialists, which are more persistent in

the landscape. Such persistence should allow better

distinction between suitable and unsuitable habitats.

We found that species with narrower elevation ranges

and with slow growth rate are also more likely to be

modeled successfully. Stenoecious species with narrow

elevation ranges have already been shown to be modeled

more efficiently than ubiquitous species that occur widely

along environmental gradients (e.g., Guisan and Hofer

2003). The importance of the maximum growth rate and

the elevation range was confirmed in a multiple GLM

model relating AUC performance to these traits. This

result supports the idea that some species might be easier

to model than others, and that this ability can be partly

predicted froma limited number of species’ traits.Oneway

to overcome difficulties inmodeling the actual distribution

of pioneer species may be to expand models to include

more dynamic components (Guisan and Thuiller 2005).

Other species traits, such as dispersal or population-

dynamic properties (e.g., dispersal-limited species; Pulliam

2000) or types of geographic distribution (core, satellite,

urban, or rural species; see Collins et al. 1993), may affect

model performance and should be explored.

Conclusion

We point out that the modeling reported in this study

focuses on one particular problem: that of modeling

species’ distributions and maximizing discrimination

between presences and absences. This challenge may

not always coincide with the uses to which such models

are to be put (Peterson 2006); as such, conclusions

regarding which modeling approach is ‘‘best’’ may

depend on the goals of the modeler. For our data and

study area, our study suggests the following conclusions:

1) Presence-only data, here from the Swiss FP

inventory, can be usefully modeled to predict species’

distribution using random pseudo-absences and flexible

modeling methods.

2) Variation in performance is greater among species

than among modeling techniques, so a species modeled

well (or poorly) by one technique is likely to be also well

(or poorly) modeled by other techniques (but see point

4, below).

3) Ranking species by their average model perfor-

mance, three categories can be identified, related to

geographic distribution of the species (widespread vs.

localized) and level of habitat specialization (narrow vs.

generalist): species with both narrow distributions and

specialized habitats are easier to model, but this effect

may result in part from the fixed study extent and the

smaller sample sizes for these species.

4) Different modeling techniques yield consistently

distinctive model performance, so it is worth using the

best techniques to improve overall performance; in the

case of our Swiss forest trees data, the best two

techniques are BRT and MAXENT. Profile-based

techniques performed least well, but may still be useful

in cases of small sample sizes, such as characterizing rare

or endangered species. We have not tested comparative

performance of techniques at the broader scales for

which BIOCLIM was originally intended.

5) Among data-set properties experimentally manip-

ulated, location error and sample size affected model

performance. Changing grain had little impact on model

performance of any techniques. In this study profile-type

techniques were less sensitive to small sample size, but

more sensitive to location errors, while the opposite was

observed for regression-based approaches. This result

depends on the relative perturbation of the data in each

experiment.

6) Modeling success for particular species can be

predicted, for the current data set, from a series of

additional species traits (;52% variance explained, 30

species), based principally on growth rate, elevation
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range and maximum elevation. No technique can ‘‘save’’

difficult-to-predict species.
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APPENDIX A

Supplementary details on the derivation of environmental predictors used to predict Swiss tree distribution (Ecological Archives
M077-018-A1).

APPENDIX B

Summary table on the ten modeling techniques used to predict Swiss tree distribution (Ecological Archives M077-018-A2).

APPENDIX C

Supplementary details on the generalized linear mixed models (Ecological Archives M077-018-A3).
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