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Abstract

The groundbreaking discovery of the optical transient AT2017gfo associated with GW170817 opens a unique
opportunity to study the physics of double neutron star (NS) mergers. We argue that the standard interpretation of
AT2017gfo as being powered by radioactive decay of r-process elements faces the challenge of simultaneously
accounting for the peak luminosity and peak time of the event, as it is not easy to achieve the required high mass,
and especially the low opacity of the ejecta required to fit the data. A plausible solution would be to invoke an
additional energy source, which is probably provided by the merger product. We consider energy injection from
two types of the merger products: (1) a post-merger black hole powered by fallback accretion; and (2) a long-lived
NS remnant. The former case can only account for the early emission of AT2017gfo, with the late emission still
powered by radioactive decay. In the latter case, both early- and late-emission components can be well interpreted
as due to energy injection from a spinning-down NS, with the required mass and opacity of the ejecta components
well consistent with known numerical simulation results. We suggest that there is a strong indication that the
merger product of GW170817 is a long-lived (supramassive or even permanently stable), low magnetic field NS.
The result provides a stringent constraint on the equations of state of NSs.

Key words: accretion, accretion disks – gravitational waves – stars: black holes – stars: neutron

1. Introduction

The discovery of the first gravitational wave (GW) event,
i.e., GW150914 from a merger of double black holes (BHs),
marked the beginning of the era of GW astronomy (Abbott
et al. 2016). On 2017 August 17, the Laser Interferometer
Gravitational-Wave Observatory (LIGO)/Virgo detector net-
work further detected a historical event GW170817, the first
GW event from the merger of a neutron star–neutron star (NS–
NS) binary (Abbott et al. 2017a), which was followed by a
short-duration gamma-ray burst (GRB) dubbed GRB 170817A,
captured by the Fermi satellite 1.7 s after the GW merger event
(Goldstein et al. 2017; Savchenko et al. 2017; Zhang
et al. 2018). The GW170817/GRB 170817A association
robustly confirmed the long-standing hypothesis that short
GRBs originate from compact star mergers involving at least
one NS. The apparently low radiation luminosity and energy of
GRB 170817A are consistent with having this GRB being
observed at a large viewing angle from the jet axis (Abbott
et al. 2017b), which causes the missing afterglow emission
during the first ∼10 days in follow-up observations (Troja
et al. 2017). Nevertheless, during this period, a significant
ultraviolet–optical–infrared (UVOIR) transient was detected,
first announced by Coulter et al. (2017) and subsequently
observed by many groups (e.g., Arcavi et al. 2017; Lipunov
et al. 2017; Tanvir et al. 2017; Valenti et al. 2017). This
transient, named as AT2017gfo/SSS17a/DLT17ck (hereafter
AT2017gfo), was thought to be associated with an NS–NS
merger (Li & Paczyński 1998) that has been called a
“kilonova” (Metzger et al. 2010) or a “mergernova” (Yu
et al. 2013; Li & Yu 2016). In this Letter, we use the term
“mergernova” for the following two reasons: (1) a “kilonova”
is defined as being powered by radioactive decay. As shown
below, we invoke energy injection from a central engine to

account for the observations. The term “mergernova” broadly
defines the merger-associated UVOIR transients, regardless of
the energy power. (2) The reason for adopting the kilonova
terminology was that the peak luminosity is about 1000 times
of that of a typical nova, which is 1041 erg s−1. The earliest
observational data point of AT2017gfo already has a
luminosity above 10 erg s42 1- , at least one order of magnitude
brighter than the typical luminosity of kilonovae. As shown by
Yu et al. (2013) and Metzger & Piro (2014), the existence of a
long-lived NS as the post-merger product can increase the peak
luminosity significantly. A BH central engine with additional
accretion activities may also act as a source of energy injection
to the mergernova (Ma et al. 2018; Song et al. 2018).
The property of a radioactivity-powered mergernova pri-

marily depends on the mass and the opacity of the ejecta. In
particular, the existence of lanthanides, even with a small mass
fraction (e.g., ∼10−4), would increase the Planck mean opacity
by as much as ∼(10–100) cm2 g−1 (Kasen et al. 2013), so that
the peak time of the event will be shifted to about one week
after the merger, with a redder spectrum at the peak (Barnes &
Kasen 2013; Tanaka & Hotokezaka 2013). In any case, a polar
outflow, most likely launched by a disk wind and irradiated by
neutrino emission, may still give rise to an early “blue”
component because lanthanide synthesis is probably inefficient
there (Metzger & Fernández 2014). The observed AT2017gfo
emission can be indeed understood with such a “blue+red”
radioactivity-powered mergernova model (e.g., Cowperthwaite
et al. 2017; Nicholl et al. 2017; Smartt et al. 2017;
Tanaka et al. 2017; Villar et al. 2017).6 Specifically, the
interpretation of the peak luminosity ∼1042 erg s−1 and the
peak time ∼1 day in this model requires a relatively low
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6 In some papers, the dynamical ejecta is interpreted as “blue”, whereas the
disk wind outflow as “red” (e.g., Kasen et al. 2017).
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opacity ( 0.3 cm g2 1k ~ - ), a relatively large ejecta mass
(M∼ 0.04Me), and a relatively high characteristic velocity
(v∼ 0.3c) for the blue component. These requirements push the
boundary of numerical simulations regarding the ejected mass
(Dessart et al. 2009; Fernández & Metzger 2013; Perego
et al. 2014; Just et al. 2015; Richers et al. 2015; Shibata
et al. 2017) and the expected opacity, which is believed to be,
at least, not much lower than ∼1 cm2 g−1 (Kasen et al. 2013;
Tanaka et al. 2018).

Metzger et al. (2018) argued that a short-lived hypermassive
NS with a surface magnetic field of B∼1014 G could help to
increase the mass of a disk wind. Radice et al. (2018) also
suggested that the viscous ejecta can be as much as 0.1Me.
These can partially decrease the difficulty of the radioactive
mergernova model, but the required low opacity may not be
readily accounted for. Alternatively, if the remnant NS is long-
lived, then the mergernova emission itself would be signifi-
cantly affected by the NS due to the additional energy injection
from the NS and the effect of ionization (Yu et al. 2013;
Metzger & Piro 2014). Recently, Yu et al. (2018) showed that
the observed emission from AT2017gfo can be accounted for
by a hybrid model, with the early emission powered by
radioactivity and later emission powered by energy injection
from a long-lived, low-field pulsar.7 In their modeling, all of
the emission comes from the same ejecta component, with a
single uniform opacity around 1 cm2 g−1 and a total mass of
∼0.03Me. The latter is less than half of the total mass invoked
to interpret the event using the radioactive heating alone (e.g.,
0.065Me; Villar et al. 2017). It remains unclear whether
ionization by the pulsar wind can penetrate deep enough to
reduce the opacity of the entire ejecta to around ∼1 cm2 g−1.

This Letter includes two parts. The first part (Section 2)
presents an argument against the traditional radioactivity-
powered mergernova model; specifically, the difficulty in
simultaneously accounting for both the high luminosity (high
mass) and early peak time (low opacity). Encouraged by Yu
et al. (2018), the second part (Section 3) presents our modeling
of AT2017gfo within the framework of engine-powered
mergernova. We show that without an ad hoc mechanism to
drastically reduce the opacity of the merger ejecta and with a
reasonable amount of ejecta mass (a few M10 3-

), the
observational data can be accounted for, given that the merger
left behind a long-lived, low-B NS.

2. The Radioactivity Power

In the traditional radioactivity-powered mergernova (kilo-
nova) model, the parameters of the blue-component ejecta (the
polar disk wind) can be estimated from the peak of
the observational bolometric light curve of AT2017gfo by the
following analytical method. According to Arnett (1982),
the peak bolometric luminosity is equal to the heating rate at
the peak time, i.e.,

L M t , 1p th ph e= ( ) ( )

where ηth is the thermalization efficiency, M is the ejecta mass,
and ε is the heating rate per unit mass. The heating rate first
remains constant for a duration of about one second and then

decays following a power law that can be roughly estimated as
Metzger et al. (2010), Korobkin et al. (2012)
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where α=1.3. One can further use the characteristic diffusion
timescale of the ejecta to estimate the peak emission time,
which reads (Metzger 2017)

t
M

vc

M

M

v

c

3

4

1.6 days
0.01 0.1 1 cm g

, 3

p

1 2

1 2 1 2

2 1

1 2

k
pb

k

=

»
-

-


⎜ ⎟

⎛
⎝⎜

⎞
⎠⎟
⎛
⎝⎜

⎞
⎠⎟

⎛
⎝

⎞
⎠

⎛
⎝⎜

⎞
⎠⎟ ( )

where β=3 is a dimensionless parameter characterized by the
density profile of the ejecta. As a result, the peak luminosity
can be determined to
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where the thermalization efficiency is adopted as 0.5thh ~
following Barnes et al. (2016). By taking the observational
peak values of Lp∼1042 ergs−1 and tp∼1 day, we can
constrain M and κ from Equations (3) and (4) given a range of
allowed ejecta velocity. The high Lp demands large M,
large v, and small κ. In order to get a small tp, again a large
v and small κ is preferred. We adopt a relatively large velocity
v∼0.3c, but allow a range of ±0.1c in our discussion. The
required parameters are centered around M M0.04~  and
κ∼0.3 cm2 g−1, as shown in Figure 1. Waxman et al. (2017)

Figure 1. Constraints on the opacity κ and ejecta mass M for the blue
component of AT2017gfo. The constraints from the peak time and peak
luminosity are shown in the blue and red stripes, respectively, with the velocity
constrained to (0.3 ± 0.1)c. The preferred parameter regime based on
numerical simulations and theoretical calculations is marked as gray area at
the upper-left corner. The uniform+striped gray area and the striped gray area
are for the dynamical ejecta and disk wind, respectively. Considering
inefficient heating due to a large Ye (favorable for a low κ) would reduce the
heating rate by one order of magnitude (lower yellow stripe). Fixing
κ∼1 cm2 g−1, the required heating rate is larger than what radioactive
heating can provide (upper magenta stripe), suggesting the existence of a
central engine heating source.

7 The relatively low luminosity of the prompt emission and broadband
afterglow of GRB 170817A has also significantly constrained the properties of
a putative underlying NS, with a dipolar magnetic field that should be
significantly below the range of a typical magnetar (Ai et al. 2018; Geng
et al. 2018).
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also gave a constraint about the required opacity under the
radioactivity-powered model, which should be at least

0.3 cm g2 1 - . For comparison, we also present the allowed
values of the parameters Mej and κ in Figure 1, as shown by the
gray area, where the upper limit on the ejecta mass is taken as
M<0.1Me for the dynamical ejecta (uniform+striped gray
area) and M<0.01Me for the disk wind (striped gray area;
Bauswein et al. 2013; Hotokezaka et al. 2013; Rosswog 2013;
Just et al. 2015; Richers et al. 2015; Shibata et al. 2017; Siegel
& Metzger 2018). The lower limit on opacity is taken as

1 cm g2 1k > - by considering the high velocity of the merger
ejecta (Kasen et al. 2013; Tanaka et al. 2018). It is clearly
shown that the required parameters by the radioactivity-
powered mergernova model are far from the allowed parameter
regions. This makes this model a disfavored one.

More specifically, although M∼0.04Me is already too
high for a disk wind, it could still be acceptable if the merger
product is a highly magnetized NS (Metzger et al. 2018). The
more serious issue comes from the small opacity

0.3 cm g2 1k ~ - demanded by the data. Detailed studies
showed that the opacity depends on the electron fraction Ye,
which defines how “neutron rich” the ejecta is. According to
these studies, the r-process reactions are only efficient for an
electron fraction of Ye0.25, in which case a remarkable
number of heavy elements of a mass number A>130 can be
synthesized (Kasen et al. 2015; Rosswog et al. 2017).
However, in the polar direction, the electron faction of a disk
wind is probably higher than 0.25 due to the irradiation by the
neutrino emission from the disk and, sometimes, from a
remnant NS. Specifically, the electron fraction could be within
the range of Ye∼0.2–0.4 if the remnant is a promptly formed
BH (Fernández & Metzger 2013; Fernández et al. 2015) or
Ye∼0.3–0.5 if the remnant is a short-lived hypermassive NS
(Metzger & Fernández 2014; Metzger et al. 2018). Therefore,
as the first impression, the low opacity of κ∼0.3 cm2 g−1 for
the peak emission of AT2017gfo seems reasonable, if the
remnant NS can live for a short time. However, we would like
to point out that the opacity can actually be increased
significantly due to the Doppler broadening of bound–bound
transitions (Karp et al. 1977), if the material has a very high-
velocity gradient, which is indeed the situation in a merger
ejecta. Specifically, the Doppler effect due to the velocity
gradient can force the photons, with energies that do not strictly
match the energy-level differences, to be absorbed, which is
forbidden in the laboratory. Therefore, this so-called expansion
opacity is dependent on the distributions of density, temper-
ature, and velocity gradient of the ejecta. For a homogenous
explosion, the velocity gradient depends on the maximum
velocity of the ejecta. In a SN Ia ejecta with a velocity that
is about several thousands of km s 1- , its typical opacity is
on the order of 0.1 cm g2 1- for Fe-peak elements (Pinto &
Eastman 2000). In contrast, an NS–NS merger typically
launches with much greater velocities, reaching a significant
fraction of the speed of light. The opacity of such merger ejecta
can easily reach 1 cm g2 1- , even if only the contributions from
open d-shell elements (i.e., Fe, Co, Ni, Ru, et al.) are
considered and the effects of lanthanides are ignored (Kasen
et al. 2013; Tanaka et al. 2018). In other words, the value of
∼1 cm2 g−1 gives a conservative lower limit of the opacity of
the merger ejecta, which has been widely adopted for
lanthanide-free ejecta in the studies before the detection of

AT2017gfo (see reviews by Fernández & Metzger 2016;
Metzger 2017). As a result, we believe that the low opacity of
κ∼0.3 cm2 g−1 required by the radioactivity-powered mer-
gernova model poses a great challenge to the radioactivity-
powered mergernova (or kilonova) model.
Making things worse, for Ye>0.25 that corresponds a low

opacity, not only is the lanthanides synthesis blocked, but the
synthesis of other heavy elements could also be suppressed
significantly. In other words, the radioactive heating rate
decreases with an increasing electron fraction (Grossman
et al. 2014; Wanajo et al. 2014; Lippuner & Roberts 2015).
Specifically, the heating rate as presented in Equation (2) may
be relevant for Ye∼(0.1–0.3) but would start to decrease as the
electron fraction becomes larger than ∼0.3. For a relatively
high Ye∼(0.4–0.5) that is favored by a low opacity, the
heating rate could be reduced by one order of magnitude. This
further raises the required ejecta mass (e.g., M0.4~ ) to the
unacceptable range.
In summary, the radioactivity-powered mergernova model

faces a great challenge, if it is not completely ruled out. As a
possible solution to these difficulties, an extra heating source is
needed. Such a heating power cannot be provided by the
radioactive decay of heavy elements, but can be provided by an
underlying engine.

3. Engine-powered Mergernova Model

The chirp mass of the progenitor binary of GW170817 was
derived to M M1.188c 0.002

0.004= -
+

 from LIGO observations. This
constrains the individual masses of the component NSs to
be in the range of 1.17–1.6Me by assuming low spins for
the NSs and the total gravitational mass of the binary to be
about 2.74Me (Abbott et al. 2017a). After the GW chirp and
mass ejection, the gravitational mass of the remnant object
could be around MRNS∼2.6Me (Ai et al. 2018; Banik &
Bandyopadhyay 2017). The nature of this remnant is subject to
debate because of the uncertainties of an NS equation of state.
Let us denote the maximum mass of a non-rotating NS by
MTOV and the maximum NS mass of a maximally rotating NS
as Mmax. The remnant would collapse into a BH promptly, or
after a brief hypermassive NS phase, if Mmax<MRNS. For
MTOV<MRNS<Mmax, the NS is supramassive and can
survive for an extended period of time until centrifugal support
can no longer hold against gravity. If MTOV>MRNS, then the
NS can live permanently. Depending on the outcome of the
remnant, the central engine can give rise to different properties
of energy injection to power the mergernova.
In the following, we discuss two types of central engines

within the framework of the engine-driven mergernova model
(Yu et al. 2013, see Appendix).

3.1. BH with Fallback Accretion

We first consider the case that the merger product of
GW170817 is a BH (including a prompt BH or a BH formed
after a brief hypermassive NS phase). In this case, energy
injection from the remnant BH could only be due to fallback
accretion. Although most of the ejecta would be unbound, there
is still a fraction of mass that is gravitationally bound and
would fallback onto the BH during a range of timescales
(Rosswog 2007). Initially, the fallback accretion rate keeps
constant over a small period of time ∼0.1 s, and then decays
following a power law ∝t−5/3. The heating rate to a
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mergernova due to this accretion may be calculated by
assuming that it is proportional to the accretion rate. We then
have (Metzger 2017)

L M c 5fb fb fb
2h= ˙ ( )

M

M

t
2 10 erg s

0.1 10 s 0.1 s
, 651 1 fb fb,i

3 1

5 3h
» ´ -

- -

-
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where Mfb˙ is the accretion rate with the subscript “i” standing
for “initial”, and ηfb represents the fraction of the accretion
energy that can be ejected outwards (i.e., accretion feedback
efficiency).

Tentative fitting with such an accretion-induced heating rate
to the multiband light curves of AT2017gfo is presented in
Figure 2. Without a radioactive power included (solid curves),
the model can only account for the early blue component. In
this fitting, the opacity is fixed to κ=1 cm2 g−1 for the polar
blue ejecta and κ=5 cm2 g−1 for the equatorial ejecta,
corresponding to the lanthanide-free and lanthanide-rich ejecta,
respectively. The values of the other parameters are taken
freely and their values are presented in Table 1. For the adopted
feedback efficiency of ηfb=0.1 (Metzger 2017), the initial
accretion rate is required to be M M3 10 sfb,i

3 1= ´ - -
˙ ˙ , which

corresponds to a total mass of 7.5×10−4Me of the fallback
material. In principle, the feedback efficiency fbh can be (much)
smaller than 0.1, which would lead to a requirement of a much
higher and even unacceptable fallback accretion rate. In any
case, because the accretion heating decays very quickly
( t 5 3µ - ), the late-time emission of AT2017gfo always needs
to be powered by radioactive decay so that the required ejecta
mass is still substantial (e.g., ∼0.05Me; Villar et al. 2017).
According to numerical simulations, such a high ejecta mass is
only available for BH-NS mergers (Foucart et al. 2013), but not
for an NS–NS merger like GW170817. We therefore conclude
that energy injection due to BH fallback accretion cannot
satisfactorily interpret the data.

3.2. Spinning-down NS

The difficulty of the fallback accretion model suggests that
the central engine of AT2017gfo should be long lasting, at least
for more than 10 days. The merger product can only be a
supramassive or even a permanently stable NS. Such an NS has
long been suggested as the central engine of GRBs (Dai &
Lu 1998a, 1998b; Zhang & Mészáros 2001; Dai et al. 2006),
superluminous supernovae (Kasen & Bildsten 2010; Woosley
2010), and also mergernovae (Yu et al. 2013; Metzger &
Piro 2014; Yu et al. 2018). Different from Yu et al. (2018), who
invoked an NS to interpret the late-time emission of
AT2017gfo, this Letter invokes the NS power to interpret the
entire (blue and red) emission of AT2017gfo.
As analyzed by Yu et al. (2018), the surface dipolar

magnetic filed of the remnant NS of GW170817 cannot be very
high if the NS spins at a near-Keplerian frequency initially,
because of the constraints posed by the mergernova luminosity
and timescale. A similar constraint can be also derived from the
multi-wavelength data (Ai et al. 2018). In order to spin down
the NS significantly, efficient secular GW spindown is needed.
In the GW-spindown-dominated regime, the temporal evol-
ution of the luminosity of the magnetic dipole radiation of the
NS, which is absorbed by the merger ejecta, can be expressed
as

L L
t

t
1 7md md,i

sd,gw

1

= +
-⎛

⎝⎜
⎞
⎠⎟ ( )

with

L R B P9.6 10 erg s 8md,i
42 1

6
6

12
2

i, 3
4= ´ -
-
- ( )

and

t I P9.1 10 s 9sd,gw
3

3
2

45
1

i, 3
4= ´ -

- -
- ( )

where R, B, Pi, and I are the radius, surface magnetic field,
initial spin period, and the moment of inertia of the NS,
respectively. The conventional notation Qx=Q/10x is adopted
in cgs units.
A model fit to the multi-wavelength light curves of

AT2017gfo with energy injection of a low-B NS is presented in
Figure 3, which shows that both the early and late emission of
AT2017gfo can well be accounted for by this model. The
model parameters are collected in Table 1. In this model, one
also needs two ejecta components. The masses of the polar and
equatorial ejecta are both required to be on the order of
10−3Me, which comfortably match the values of NS–NS
merger simulations. The heating due to radioactive decay is no
longer important during the entire emission episode, and the
mergernova is dominantly powered by energy injection from
the NS. The GW-dominated spindown timescale is adopted as
tsd,g=500 s, which is inspired by the extended emission or
plateaus in SGRBs (Rowlinson et al. 2013; Lü et al. 2015). The
initial magnetic dipole luminosity can be then constrained to be
Lmd,i=3.4×1044 erg s−1. For an initial Keplerian spin period
Pi=1 ms, the ellipticity and the surface dipolar magnetic field
of the NS can be derived as

0.0035 10 = ( )

and

B 3.4 10 G, 1112= ´ ( )

Figure 2. Fitting to the multiband light curves of AT2017gfo with the BH
fallback accretion engine. The fitting parameters are shown in Table 1. The
solid curves are for central engine-powered emission only. The dotted curves
include the contribution from radioactive decay. The data are taken from Villar
et al. (2017). The distance is adopted as D=40 Mpc.
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where a stellar radius of R=1.2×106 cm and a moment of
inertia of I=1.5×1045 g cm2 are adopted. According to these
parameters, the remnant NS during the mergernova timescale
should have a very high deformation but a relatively normal
poloidal surface magnetic field. These results are consistent
with the constraints recently given by Ai et al. (2018) and Yu
et al. (2018), and is also consistent with the requirement of
interpreting internal X-ray plateaus in short GRBs (Fan
et al. 2013; Gao et al. 2016). Specifically, the surface magnetic
field found here is about an order of magnitude higher than that
found by Yu et al. (2018), i.e., ∼1012 G versus ∼1011 G. This
relatively normal strength of the dipolar magnetic field could be
just an effective strength corresponding to the required spin-
down luminosity. The high ellipticity of the remnant NS
strongly suggests that its internal (probably toroidal) magnetic
fields are ultrahigh, i.e., the NS is a magnetar. Then, the surface
magnetic field of the NS could also be intrinsically much
higher than ∼1012 G, which could however be significantly
buried and/or exist in the form of a multipolar filed (see Yu
et al. 2018 for a detailed discussion). In any case, the existence
of a long-lived NS is also helpful to interpret the broadband
afterglow of the event (Geng et al. 2018).

4. Summary and Conclusions

Based on the traditional radioactivity-powered mergernova
(kilonova) model, we used the peak bolometric luminosity and
peak emission time of AT2017gfo to estimate the parameters of
the merger ejecta and obtained a large ejecta mass ∼0.04Me
and a low opacity of κ∼0.3 cm2 g−1. These are broadly
consistent with more detailed modeling by many authors. On

the other hand, we argue that this set of parameters is difficult
to achieve within the framework of NS–NS mergers without a
long-lasting central engine. In particular, the required κ is too
low even for lanthanide-free ejecta. Even though a high Ye is
achieved, it is hard to reduce κ to the desired value.
Furthermore, radioactive heating becomes inefficient with a
high Ye, so that an even larger ejecta mass is needed to achieve
the desired peak flux. These pose a problem for the standard
model.
We then argue that a simple fix for this problem is to

introduce a central engine that can provide continuous energy
injection to power the mergernova emission. We find that a BH
with fallback accretion may power the bright early blue
emission component of AT2017gfo, but the late red component
still needs radioactive heating of a massive ejecta inconsistent
with the numerical results of NS–NS mergers. This only leaves
us the option of having a long-lived, low-B NS as the central
engine. We show that the multiband light curves of AT2017gfo
can well be reproduced by such an engine-driven mergernova
model, where both the opacity κ and the ejected mass values
for both the blue and red components fall into the reasonable
ranges of known numerical simulations. This enhances the
suggestion (Yu et al. 2018) of a long-lived NS as the merger
remnant of GW170817 (see also Ai et al. 2018; Geng
et al. 2018).
In addition to the engine-powered mergernova model

discussed here, we would also like to mention that Piro &
Kollmeier (2018) suggested that the blue emission component
of AT2017gfo can be explained by the cooling of a shocked
cocoon. The cocoon energy is generated by the shock
interaction between a relativistic GRB jet and the surrounding
envelope. In principle, this shock interaction may be also
regarded as a kind of energy injection. Furthermore,
Matsumoto et al. (2018) suggested that both the blue and
red emission components could be powered by energy
injections from a jet and X-rays, respectively (see Kisaka
et al. 2016 for the original suggestion of X-ray powered
macronova, which is the kilonova and mergernova discussed
in this Letter). Murase et al. (2018) discussed the possibility
of differentiating the BH versus NS engine using high-energy
emission from NS–NS merger systems.
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11473008 and 11573014), and the Self-Determined Research
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operation of MOE. S.-Z. Li and L.-D. Liu are supported by
scholarships from the China Scholarship Council (No.
201706770050 and No. 201706190127) to conduct research
at the University of Nevada, Las Vegas (UNLV).

Table 1
Fitting Parameters

Mfb,i/Me s−1 Lmd,i/erg s
−1 tsd,gw/s B/G ò Ejecta Mej/Me κ/cm2 g−1 vej,i/c Ω δ ζ A

Fallback 3×10−3 L L L L Polar 3×10−3 1 0.25 2π −1 10 6
Equatorial 5×10−2 5 0.15 2π −1 10 6

NS L 3.4×1044 500 3.4×1012 0.0035 Polar 1×10−3 1 0.35 2π −1 10 6
Equatorial 5×10−3 5 0.2 2π −1 10 6

Figure 3. Same as in Figure 2 but for energy injection from a spinning-down
NS. The fitting parameters are also shown in Table 1. With small ejecta masses
for both the polar and equatorial components, heating due to radioactive decay
is no longer important for powering the observed emission during the entire
duration of the event.
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Appendix
The Model

Because the merger ejecta turns out to be mild relativistic,
we reduce the mergernova model (Yu et al. 2013) into the
Newtonian form. This semi-analytical model is also developed
by involving the density profile of the ejecta in order to give a
better description about the multiband light curves. Numerical
simulations suggest that the density profile of the dynamical
ejecta cannot be fitted with only one single power law (Piran
et al. 2013). In addition, a central engine may significantly
modify the density profile into a shell-like structure (Kasen
et al. 2016). Here we generally adopt a broken power-law
profile

r
r

R
r R, , 12a0

ej
ejr r=

d-⎛
⎝⎜

⎞
⎠⎟( ) ( )

r
r

R
r R, , 12b0

ej
ejr r= >

z-⎛
⎝⎜

⎞
⎠⎟( ) ( )

where Rej is the radius of the main ejecta, 30r d= -( )
M R3 4ej ej

3z p z d- -( ) ( ) is the density at Rej, and Mej is the
mass. This is very similar to the density profile of a supernova
(Kasen et al. 2016). The difference here is that the parameter δ
is adopted as a negative value to represent a shell-like structure.
The density profile is expected to be shallow in the inner ejecta,
r�Rej, but become very steep in the outer ejecta, r>Rej. So
the parameter ζ is adopted as a relatively large positive value.
This profile avoids the infinite integral mass problem, so that a
sudden cut-off is not introduced.

The basic energy conservation equation is

dE

dt
P

dV

dt
L L , 13e in= - - + ( )

where E is internal energy, Le is emission luminosity, Lin is
energy injection rate, V R4 3ej

3p= is the main volume, and

P
E

V

L

R c3 4
14e

ej
2p

= - ( )

is the effective (radiation dominated) pressure (with the second
term in Equation (14) taking care of the leakage of radiation
pressure), and PdV represents the energy lose due to adiabatic
expansion. Since the density out of Rej drops fast due to large ζ,
the velocity of ejecta is defined as vej=dRej/dt. The initial
velocity vej,i is treated as a free parameter. Due to continuous
energy injection, the ejecta would be accelerated with

dv

dt

R P

M

4
. 15

ej ej
2

ej

p
= ( )

Our treatment includes both central engine heating and
radioactive heating. The difference is that the former has the
heating source at the bottom, while the latter has heating
throughout the ejecta. This result is a small difference in
calculating the optical depth of the ejecta, with

R

1 1
160 ejt

z d kr
d z

=
-

- -

( )
( )( )

( )

denoting the integral optical depth from the bottom, which is
relevant for central engine heating, and

17t t b˜ ( )

is relevant for radioactive heating, where β∼3 is a
dimensionless parameter reflecting the averaging effect in the
ejecta (Arnett 1982; Metzger et al. 2010).
The emission luminosities for the central engine (subscript

“c”) and radioactive (subscript “r”) components can be written
as (Kasen & Bildsten 2010; Yu et al. 2013)
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where c is the speed of light, and the total internal energy is
E=Ec+Er.
For a central engine, the bolometric light curve would peak

at the photon diffusion timescale (Kasen & Bildsten 2010; Yu
et al. 2015), i.e.,

t M v c3 4 , 20d ej ej
1 2k p» ( ) ( )

if the density is uniform (δ= 0). When the density profile is
fully considered, this gives

t
M

v c

3 3

1 1 4
, 21d
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1 2d z k
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»
- -

- -
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which depends on the parameters δ and ζ.
The spectrum of emission is a blackbody when τ�1 but

would be somewhat deviated when τ<1. Near the peak, the
ejecta is still optically thick. One can define the effective
temperature T L R4eff e ph

24 p s= , where Rph is the photosphere
radius at which the optical depth from Rph to the outer edge of
ejecta drops to unity.8 In our calculation, the spectrum is
assumed to be a blackbody all of the time. This is valid before
and slightly after the peak, but would not be valid at later times.
When the ejecta becomes optically thin, a modified photo-
sphere radius R R V V R4ph ej ej ph ej

2p¢ = - -( ) instead of Rph is
used to calculate effective temperature. The observed flux can
be then given by

F
h

c h k T

R

D

2 1

exp 1
, 22

3

2
B eff

ph
2p n

n
=

-
n

⎛
⎝⎜

⎞
⎠⎟[ ]

( )

where ν is frequency, D is distance, and h and kB are the Plank
constant and Boltzmann constant, respectively.
The injected energy from the central engine would not be

fully deposited into ejecta. For simplicity, an efficiency of
η0=0.5 is adopted for both central engine heating and
radioactive heating. When the ejecta becomes optically thin,
the efficiency of central engine heating would be related to the

8 Notice that once a velocity is derived from a spectrum analysis, the velocity
should be the photosphere velocity that is determined by v v R Rph ej ph ej= .
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optical depth, i.e.,

e1 , 23A
c 0h h= - t-( ) ( )

where the parameter A represents a characteristic efficiency
decay rate. Similarly, the efficiency corresponding to radio-
active heating is given by

e1 . 24A
r 0h h= - t-( ) ( )˜

The total energy injection from both central engine and
radioactive heating can be expressed as

L L L L M , 25in c r c c r ejh h e= + = + ( )

where Lc is the central engine and ε is the heating rate from
radioactive decay. So, once Lc and ε are given, the differential
equations can be solved.

When two heating sources are invoked, separate differential
equations analogous to Equations (13)–(15) for both the central
engine heating and radioactive heating are solved.

In the above treatment, an isotropic ejecta (with solid angle
4π) is assumed. When fitting the data of AT2017gfo, we have
divided the ejecta into two components, a blue polar
component with solid angle Ωp and a red equatorial component
with solid angle Ωe. In our model fitting, both components have
a solid angle 2π, and the relevant ejecta parameters (κ and M)
are fitted separately (see Table 1).
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