
What Programmers do with Inheritance in Java

and C#

B.L. Brekelmans

Master’s Thesis

20-10-2014

Master Software Engineering

Universiteit van Amsterdam

Supervisor: dr. Tijs van der Storm

Centrum voor Wiskunde en Informatica

I

Abstract

Inheritance is a widely used concept in modern object oriented software engineering.

Previous studies show that inheritance is widely used in practice yet empirical data

about how it is used in practice is scarce. An empirical study into this subject has been

done by Tempero, Yang and Noble titled “What Programmers do with Inheritance in
Java” [1]. This study replicates and extends the study by Tempero et al through

inclusion of C# and explanation of the differences and similarities between the

languages with respect to practical use of inheritance. It contributes towards the

validation and broadening of original conclusions. This study presents a comparative

analysis of 169 open source C# and Java systems totalling around 23 million lines of

code. Interesting findings are presented on the potential effects of forbidding implicit

dynamic binding and inferring types for local variables on the practical use of

inheritance amongst C# and Java open-source systems.

II

Acknowledgement

I would like to thank dr. Tijs van der Storm at the Centrum for Wiskunde & Informatica

(CWI) for his excellent supervision and advice. Additionally, I would like to thank Ewan

D. Tempero, Hong Yul Yang and James Noble for their interesting study on the use of

inheritance, used as the basis and source of inspiration for this Master’s thesis. I am
also grateful to Cigdem Aytekin, who helped in validating and understanding the

subject matter for this study, as well as reviewing this document. Lastly, I would like to

thank Laurens Knoll for his work in reviewing this document.

III

Contents

1 Introduction .. 1

2 Problem statement & context ... 2

3 Original Study .. 4

3.1 Research Questions .. 4

3.2 Definitions .. 5

3.3 Study details ... 5

3.4 Results and conclusions .. 6

4 Language differences .. 8

5 Replication Study... 16

5.1 Research questions ... 16

5.2 Changes to the original study ... 17

6 Research method .. 20

6.1 Modeling inheritance ... 20

6.2 Systems investigated .. 23

6.3 Tools used ... 24

6.4 Overview of technical implementation .. 25

7 Results ... 27

7.1 Downcalls (late-bound self-reference) ... 28

7.2 Subtyping .. 29

7.3 Replacing inheritance by composition ... 31

7.4 Other uses of inheritance ... 32

8 Analysis .. 35

8.1 RQ1: Java replication study .. 35

8.2 RQ2: Late-bound self-reference in C# .. 36

8.3 RQ3: Comparing Java and C# .. 37

9 Threats to validity.. 40

9.1 Original study ... 40

9.2 Framework problem ... 40

9.3 M3 model and Java ASTs .. 40

IV

9.4 Inheritance Model .. 41

9.5 Downcall edges ... 44

9.6 Potential consequences of implicitly typed local variables 45

9.7 Dynamic language runtime .. 46

9.8 Generalizability of results ... 46

9.9 Other discussion ... 46

10 Conclusions ... 48

11 Recommendations for future work .. 49

12 References .. 51

Appendix A. Analysis statistics .. 55

Appendix B. List of open source C# systems analysed ... 56

Appendix C. List of open source Java systems analysed .. 59

Appendix D. Cases of unexplained attribute assignments 62

Appendix E. Detailed data .. 65

Appendix F. Summary of metrics ... 70

Appendix G. Code listings ... 71

1

1 Introduction
Inheritance is widely supported by general-purpose languages such as C# and Java. How

it is used in practice however remains an open question. Tempero, Yang and Noble

present a model for empirical research on practical use of inheritance in their study

titled “What Programmers do with Inheritance in Java”. They apply their model to an
empirical investigation of 93 Java open source systems, supplemented by a longitudinal

analysis of 43 versions of two systems. Their findings indicate that subtyping is the

dominant use of inheritance, while code reuse is also prominent. This study aims to

investigate their findings for the purposes of verification and application to the C#

language. 86 open source Java systems and 83 open source C# systems are investigated

in this study using quantitative source code analysis.

The structure of this study is inspired by the model for replication studies proposed by

Carver [2]. Section 2 discusses the motivation and relevance of this replication study. A

concise summary of the original study’s motivation, research questions, study details,
results and conclusions is presented in section 3. Note that the model the original study

uses to report findings is also used in this replication study and has slightly different

parameters, therefore this model is discussed in a later section (6.1). The discussion

related to the original study is integrated with the discussion of this study, presented

in section 9. Because this study also investigates C#, differences in programming

language between C# and Java are discussed in detail in section 4. This section does not

cover all language differences, only those relevant to the purposes of investigating

inheritance usage. Section 5 discusses the replication study in more detail by defining

the research questions and presenting detailed information and discussion related to

the changes made to the original study. In section 6, the research method used for this

study is discussed. Since the main purpose of investigation remains the same, the

research method is very similar to the original study. The technical implementation and

systems investigated are different however.

A presentation and analysis of results are detailed in a comparative fashion in section

7, following the reporting structure of the original study but including results from the

C# and Java replication. Section 8 analyses the similarities and differences found, and

further investigates some of these differences. The research method, results and

analysis are discussed in section 9, where numerous threats to validity are presented.

Section 10 presents the conclusions related to the research questions. This study shows

reduced usage of inheritance patterns investigated in this study for the C# systems,

while the Java replication shows generally similar results as the original study. Section

11 wraps up this study by discussing possible avenues for future work.

2

2 Problem statement & context
Inheritance is an important concept in object-oriented software engineering. A

significant portion of educational material teaching object-orientation covers the

concepts of inheritance, books such as Head First C# [4], Head First Java [5] and

Learning Object Oriented Programming in C# [6] each contain multiple chapters

devoted to explaining the concepts of inheritance. An empirical study by Tempero et al

[7] shows that inheritance is widely used in practice, around three quarters of the

classes in the Java open source systems they investigated participate in an inheritance

tree.

To determine if using inheritance is ‘a good thing’, the effect of inheritance on the
maintainability and extensibility of a system has been investigated by previous studies.

Several empirical studies were done on the effect of inheritance on the maintainability

of systems. Harrison et al, [7] Daly et al, [8] and a replication study by Cartwright and

Shepperd [10] each investigated the effect of inheritance on modifiability through

controlled experiments. Students were tasked with making changes to small (400-1200

lines of code) C++ systems or answering questions about how the code works. The study

by Daly et al [8] reports that systems using inheritance require less time to modify,

while the study by Cartwright and Shepperd [10] reports the opposite. Cartwright and

Shepperd further conclude that inheritance usage makes code harder to modify, but

that using inheritance makes changes more compact. Harrison et al [7] report that code

without inheritance is easier to modify and understand. Two controlled experiments by

Prechelt et al [11] found that programs containing higher levels of inheritance took

longer to maintain than programs with lower levels of inheritance. Cartwright and

Shepperd [12] investigated a single system of 133.000 lines of C++ code, suggesting

increased defect density for code that uses inheritance. However, they report an

average of 3500 lines of code per class (the highest found in this study is 250), leading

one to wonder about the relevance of these results in current code.

Having determined that inheritance appears to be a critical part of object-oriented

programming with widespread use in practice, it would be interesting to investigate

how it is used. Several metrics have been defined related to the use of inheritance. For

example, the Depth of Inheritance Tree (DIT) and Number of Children (NOC) metrics

defined by Chidamber & Kemerer [13] have been used extensively in empirical

research. The Specification Ratio (SR) and Reuse Ratio (RR) metrics devised by

Henderson-Sellers [14] provide insights into the nature of the inheritance tree.

However, these metrics merely count classes and the inheritance relationships among

them, providing no information about the specific kinds of inheritance actually used.

Taivalsaari [15] and Meyer [16] present a taxonomy of different kinds of usage of

3

inheritance, identifying specific features like subtyping, late binding and code reuse.

However, empirical work demonstrating the amount of usage across each category is

scarce. An empirical study by Lämmel et al [16] investigated reuse characteristics of the

.NET Framework related to inheritance and defined a model for analysing frameworks.

Their static and dynamic program analysis found significant use of inheritance for the

purposes of code reuse and customization through late binding.

Tempero, Yang and Noble [1] investigated different types of usage of inheritance by

defining a conceptual model for measuring inheritance use, based on the taxonomies

provided by Meyer and Taivalsaari. They apply this model on an empirical investigation

of 93 open-source systems. Tempero et al found significant usage of inheritance for the

purposes of late binding to customize the behaviour of superclasses. Additionally, they

found that Java developers use inheritance mostly for subtyping, and that around a

quarter of inheritance usage could be replaced by composition. There are other uses of

inheritance, but they are generally insignificant.

This study aims to corroborate the results by Tempero et al. for a different set of Java

systems and through a different technical approach. In addition, it broadens the

applicable kinds of systems by analysing a comparable set of C# systems.

4

3 Original Study
Tempero, Yang and Noble empirically investigated the use of Java inheritance in

practice in their study What Programmers do with Inheritance in Java [1]. They looked

at purposes of use of inheritance; to provide subtyping, reuse of code, allow subclasses

to customize superclasses’ behaviour, or categorizing objects. They created a model for

different categories of usage of inheritance by defining attributes on relationships

between types. Their model is also used in this replication study, therefore a detailed

description is provided in section 6.1.

3.1 Research Questions
This section describes the four research questions defined in the original study and their

motivation. The authors mainly base their research questions on two reports of how

inheritance could be used in practice. A study done by Meyer [16] provides a taxonomy

of inheritance, defining 12 possible types of inheritance use. A similar study by

Taivalsaari [15] concludes that inheritance in general can be defined as an incremental

modification mechanism in the presence of late-bound self-reference. Late-bound self-

reference is defined as an object calling a method on itself (in Java and C# a call to this),

where that method will be bound to a different method at runtime. In Java and C# this

would mean the called method has been overridden. This definition has not been

backed by empirical evidence and was authored in 1996. Taivalsaari defining late-

bound self-reference as the most profound benefit of inheritance leads Tempero et al.

to further investigate the actual use of late-bound self-reference.

RQ1: To what extent is late-bound self-reference relied on in the designs of Java

systems?

A second form of inheritance use is subtyping, being able to replace one type with

another when an inheritance relation exists between those types. For example, in Java

and C#, a method accepting a Mammal as a parameter gladly accepts a Giraffe given

an inheritance relation between Giraffe and Mammal. Taivalsaari indirectly implies that

the subtype relationship is “rarely” used. Other work does not seem to agree; in his

book Effective Java [17](p85), Bloch claims the only appropriate use of inheritance is

where the subclass is a subtype of the superclass. Empirically investigating actual use

of subtyping would therefore be a valuable contribution in validating this.

RQ2: To what extent is inheritance used in Java in order to express a subtype

relationship that is necessary to the design?

They define ‘necessary’ as the requirement for an inheritance relationship to exist for

the code to compile. Considering the previous Mammal and Giraffe example, the code

5

would not compile correctly if an inheritance relationship between Mammal and Giraffe

did not exist.

Gamma et al instruct readers to “Favor composition over inheritance” [19] as later

supported by Bloch [17], suggesting that some forms of inheritance can and should be

replaced by composition. Given that prominent authors have strong opinions against

unnecessary uses of inheritance, Tempero et al hypothesise that little room for

replacing inheritance with composition exists. This motivates the third research

question:

RQ3: To what extent can inheritance be replaced by composition?

While late-bound self-reference, subtyping and replacement of inheritance by

composition are investigated, other inheritance uses remain open. To look at other

significant uses of inheritance, they add a final open-ended research question:

RQ4: What other inheritance idioms are in common use in Java systems?

3.2 Definitions
While this section presents only a summary, some terms need to be defined for the

purpose of brevity. The authors view a software system as a directed graph in their

study results. The nodes in this graph represent types (classes or interfaces). The edges

represent inheritance relationships between types For example, when a class-class

relationship is mentioned, this is defined as a class extending another class. When a

class-interface relationship making use of subtyping is mentioned, this is defined as a

class (child) implementing an interface (parent), for which some occurrence of code has

been seen where the child class was provided, but the parent class was expected. This

is an indication of substitution.

3.3 Study details
The original study covered 93 open-source Java systems from the Qualitas Corpus [20].

The corpus provides a diverse set of systems for the purpose of analysis, varying greatly

in size and application. In addition, they included a longitudinal analysis of the version

history of two systems, freecol and ant.

Their tools statically analyses systems’ bytecode to find results. They describe some

minor limitations caused by using bytecode instead of source code for analysis, these

and other considerations are discussed in section 5.2.2.

In order to answer the first research question, late-bound self-reference must be

investigated. To quantify the use of late-bound self-reference, all invocations are

6

investigated. Given the definition of call site as

the place where the invocation takes place and

invocation target as the type on which the

invocation is done, if the call site is the same type

as the invocation target type, a downcall attribute

is assigned to all types overriding the method

being called. This assumes that the downcall can

actually take place, which may not be true for all

cases as explained further in section 9.5.

For the second research question, subtype usage

has to be found. To determine subtyping, they

look at specific places where substitution can

occur. They name passing a parameter, returning

a value, assignment and cast. An example of the

assignment case is shown in Code Sample 1. Each time one of these expressions or

statements occur, the static type of the target is compared to the static type of the

provided argument. When these types are different, some form of subtyping must be

present. Specific details of these cases are listed in section 6.1.

To determine the amount of code reuse, they define two metrics: internal reuse and

external reuse. Internal reuse occurs when a method in a child class makes use of code

defined in a parent type. Similarly, external reuse occurs when code outside of the

inheritance hierarchy makes use of code defined in a parent type, through a reference

to a child type. To measure internal and external reuse, all occurrences of member

access are analysed. Member access consists of accessing/assigning a field or invoking

a method. If the type that declares the member is in is an ancestor of the type where

the access takes place, internal reuse is counted. Otherwise external reuse is counted.

The study ignores exception and annotation types, this decision is detailed in section

5.2.4.

3.4 Results and conclusions
This section briefly covers the results reported by Tempero et al. Section 7 will cover

these in more detail through a comparative presentation of results.

For their first research question related to late-bound self-reference, they measured

downcall potential among class-class (CC) relationships. This indicates an inheritance

relationship between two classes within the system under investigation exists, where

the parent class calls a method on itself, and another class overrides that method. They

found significant use, around a third of CC relationships make use of downcall. They

report high variance among systems with no apparent relation to system size. Two

systems did not have any downcall relationships while the maximum was 86%. The

class P {
 void M() { D(); }
 void D() { };
}
class C extends P {
 void D() { }
}

Code Sample 2: Example of a late-bound

self-call. When method P.M calls P.D, the

method C.D will be invoked instead.

class T
class S extends T

//example of substitution:

T t = new S();

Code Sample 1: Example of substitution

7

median value is 34%.

Their second research question relates to necessary inheritance. This is defined as

edges that rely on subtype use in order for the code to compile: the proportion of

inheritance relationships making use of subtyping. They report highly common use of

subtyping – it seems to dominate the overall use of inheritance. For relationships

between classes (class-class edges) there is high variation, comparable to downcall

edges, but a significantly higher median of proportion 76%. The lowest proportion of

subtype edges reported was 11%. They reported two systems with 100% subtype use.

For class-interface relationships they report a median of 69% with one system having

zero subtype use and four systems at 100%. Interface-interface edges are less common;

23 out of 93 systems do not have any and a further 51 systems have less than 10

interface-interface pairs. A median use of 63% is reported. They summarize that at least

two thirds of relationships are used as subtypes in the systems they investigated,

conflicting with Talvasaari’s implication that using inheritance for subtyping is a rare
occurrence [15].

Their third research question relates to the possibility of replacing inheritance with

composition. A mechanical procedure of doing this was introduced by Bloch in his book

Effective Java [17]. They report that around 22% of class-class relationships are

potential candidates for refactoring inheritance into a compositional design.

For the fourth and last research question Tempero et al investigated other uses of

inheritance. While around 87% of relationships between types have already been

explained by previously discussed matter, there is still some other use of inheritance

visible. These will be further detailed in section 7.4.

8

4 Language differences
This study investigates both Java and C# systems. In order to extend the research with

the C# language, the differences between Java and C# need to be discussed. This

section discusses differences in syntax and behaviour of language features that may

influence the practical use of inheritance when compared to Java. It forms the source

of hypotheses made for the usage of inheritance in C#, which are discussed in section

5.1. Börger and Stärk [21] provide a formal approach to comparing Java and C#, aiding

in the completeness of this section, however their research originates from 2004 and

much of both Java and C# has changed since then.

The list of differences is assumed to be exhaustive within the scope of this research,

language differences not mentioned should not have impact on the metrics used. This

section considers Java 7 and C# 5.0.

 Overriding methods
The first research question of the original research investigates the use of late-bound

self-reference. An important difference between Java and C# exists in the behaviour of

method overriding. Java implements all methods as overridable by default. A

programmer in C# has to specify the virtual keyword to make a method overridable.

Both Java and C# make it possible to prevent overriding a method explicitly by using

the final and sealed keywords respectively. Section 5.1 discusses how this key

difference in explicitness is expected to influence the results for late-bound self-

reference.

 Implicitly typed local variables
C# supports declaring local variables that have the implicit type var [22]. The compiler

then infers the type based on the expression that initializes the variable. Based on

results, it appears there is a significant impact on subtyping and potentially on external

reuse. By inferring the type of a variable, substitution cannot occur from the

initialization of a variable, while this form of substitution is quite common among both

Java and C# systems investigated in this study, as shown in section 8.3. This was not

originally hypothesized and the impact of usage of var is further detailed in section 9.6.

 ‘as’ operator
C# introduces a second type of cast expression: the as operator. It evaluates to null

when a cast fails. The as operator is treated in the same manner as a normal (direct)

cast when considering subtyping relationships.

 Value types
C# and the Common Language Runtime (CLR) support value types through the struct

keyword. They are not allocated on the heap unless wrapped by its corresponding

9

object type (boxed [23]) and provide bitwise HashCode and Equals implementations.

Value types can only implement interfaces as far as inheritance goes. A value type is

considered to be a class for the purposes of analysing inheritance patterns.

 Properties
C# has a syntax for the commonly occurring

pattern of getters and setters called Properties.

These properties contain a getter and/or a setter

method called accessors. Accessors can be

overridden like normal methods. A special form of

property called an indexer is also present,

containing an arbitrary number of parameters

accessed through a square bracket syntax, as

shown in Code Sample 3. Given their method-like

nature, property accessors are treated as methods

for the purposes of determining facts related to

inheritance usage, in this case subtyping, code

reuse and late-bound self-reference.

 Constants interface
A Java interface can contain fields with a constant value that is implicitly static final

[24]. One of the patterns investigated is an interface and its parents containing solely

constants, with no methods declared. An example of usage for this is a tokens interface

used by parsers and tokenizers.

In C#, declaring fields within an interface is not possible, although the Common

Language Infrastructure (CLI) and the Visual C++ language support it through marking

it as literal [25], exposed as static read-only properties in C#. Since relationships

analysed in this study are only between types defined in the system under investigation,

reuse of constants cannot occur for a relationship defined in C#, unless the parent of

that relationship is a class.

 Dynamically typed variables
C# supports the dynamic keyword and the Dynamic Language Runtime (DLR) since

version 4. Any method calls or field access is done using dynamic binding, the

appropriate method/overload is resolved at runtime. This means the type of a variable

of type dynamic should be considered as the type of object it currently holds as far as

polymorphism and subtype relationships go. This requires looking at the latest

assignment. No runtime analysis is done in this research so this cannot be determined,

however the impact of not including dynamically typed variables is estimated in section

9.6.

class MyList {
 public int Length {
 get { ... }
 set { ... }
 }

 object this[int i] {
 get { ... }
 set { ... }
 }
}

MyList a;

int i = a.Length;

object item = a[3];

Code Sample 3: Example of property and

indexer declaration and usage in C#

10

 Foreach
In Java, the foreach statement allows iteration over any collection through the syntax

T item : collection. The type of elements in the collection must be T or a type

less specific than T. A compiler error is generated when this is not the case. C# has a

similar syntax of S item in collection, but does not have the constraint that type S

must be the same type as the elements in the collection. It instead inserts a cast from

the element type to S [26](p264). This means that both a downcast and upcast may

occur when using the foreach statement in C#, while its Java counterpart only allows

for upcasts. This possibly indicates a higher number of subtyping occurring from foreach

statements in C#.

 Extension methods
The notion of extension methods

allows a static method to be called

as if it were a member of a type

directly if the first parameter of

the static method matches is

assignable to its type and the

parameter uses the this keyword.

This is illustrated in Code Sample

4. This feature is solely syntactic

sugar for static methods, extension methods are considered to be conventional static

methods.

 Enumerations
In Java, an enumeration is a class that can implement an interface, override or declare

methods and declare fields. Each enumeration value is an instance of the class. In

contrast, a C# enum is a wrapper around one of the primitive integer types (8-64 bit

signed or unsigned integers). It assigns names to one or more of the values that can be

represented by the primitive type. Methods cannot be added to enumerations unless

extension methods are used. Enumerations cannot be extended in Java or C#, and do

not participate in any inheritance relation covered in this research. They are excluded

completely.

 Events
C# allows for so called multicast delegates. These are comparable to a normal reference

to a method/function, but allow for multiple functions be registered in its invocation

class A { }

static class Extension {
 public static void M(this A a) { }
}

A a = new A();
a.M(); //is the equivalent of:

Extension.M(a);

Code Sample 4: Extension method usage in C#

11

list. When invoking a multicast

delegate, all items in the

invocation list are called.

Events are a special kind of

multicast delegates. Events

only publicly expose the add

and remove operations (called

with the += and -= operators).

These operations can be

overridden in derived classes

but rarely are, it would be a

surprise to encounter such a

pattern. Invoking the delegate

(raising the event) is only

possible in the declaring class,

often a method is exposed to

invoke the delegate. For the

purpose of this study, the add

and remove operations are

considered to be methods. Code Sample 5 shows a basic example of events and how

they are used in C#. Note that the delegate type defines a method signature, used by

the event invocation and event handler code. These methods usually return void, when

a return value is specified, the return value of the last handler is used.

 Anonymous methods, classes, closures
C# allows defining anonymous methods. Their type can be determined at compile time

and they should be considered as any other type. Function types are excluded from this

study. Anonymous methods may capture local variables from the outer scope using

closure containers. These are implemented using anonymous classes in C#. Anonymous

classes in C# cannot implement interfaces or inherit from other classes. Anonymous

classes in Java implement an interface or extend an abstract class. These classes can

participate in a class-interface or class-class relation in the context of this research.

 Explicit interface implementations
C# allows declaring methods as being specific implementations of interfaces. This adds

complexity to the method binding used by the CLR as illustrated in Code Sample 6.

When invoking a method from an interface on an object, the method binding rules are

as follows:

//define a method signature for the event
//handler using a delegate type
delegate void ButtonClick
 (Button clickedButton);
class Button {
 //button defines the 'click event'
 public event ButtonClick Click;
 void SomeInternalLogic() {
 //trigger the event
 Click(this);
 }
}
class Other {
 void AddClickHandler(Button b) {
 //add a method to the invocation
 //list, subscribing to the event
 b.Click += OnClick;
 }
 void OnClick(Button clickedbutton) {
 //...
 }
}

Code Sample 5: Example of basic event usage in C#.

12

1. Call the first explicit interface implementation matching the signature searching

the inheritance graph upwards starting from the called object’s type.
2. If no explicit implementation was found, call the first method matching the

signature searching the inheritance graph upwards starting from the called object’s
type.

Explicit interface implementations affect the way code reuse is measured. When a call

to an explicitly implemented interface method implementation is encountered,

external reuse will occur between the type declaring that method and the implemented

interface.

 Operator overloading and sideways type conversions
C# supports overloading some operators and implicit type conversions, these are static

and therefore cannot be overridden. These conversions might expose usage of

subtyping as seen in Code Sample 7. In the context of this study, overloaded operators

are viewed as static methods. Implicit and explicit conversions are also viewed as static

methods.

interface I { void O(); }

class B : I {
 public virtual void O() { Console.Write("B.O"); }
 void I.O() { Console.Write("(I)B.O"); }
}

class D : B, I {
 public override void O() { Console.Write("D.O"); }
 void I.O() { Console.Write("(I)D.O"); }
}

B ctest = new B();
I itest = ctest;
ctest.O(); //B.O
itest.O(); //(I)B.O
ctest = new D();
ctest.O(); //D.O;
itest = ctest;
itest.O(); //(I)D.O;

Code Sample 6: explicit interface implementations in C#

13

Code Sample 7: Sample of operator overloading and type conversions in C#

 Generics
The way generic types are implemented is profoundly different when comparing Java

and C#. Java implements generics using Type Erasure [27]. C# and the Common

Language Specification implements generics in the MSIL bytecode [25] (p. 128).

Identifying a type in C# means using its fully qualified name in conjunction with the

number of type parameters, since inheritance relations can and do exist between types

with the same name but with a varying number of type parameters. Using the number

of type parameters identifies types as defined by the programmer; a programmer may

use different closed generic types e.g. List<string> and List<int> but only writes a

single List<T>.

 Covariance and contravariance
Analysing C# means introducing the complication of generic covariance and

contravariance. This feature extends polymorphism, allowing type arguments to

participate as well. Using the out and in specification on type parameters declares

them to be covariant and contravariant respectively. Code Sample 8 illustrates this; if a

value of type parameter T is only used as output (through return values) the value may

be replaced by a type less specific than T without breaking type safety. Conversely, if a

value of type parameter T is only used as input, through parameter values, the value

may be replaced by a type more specific than T.

For example, the IEnumerable<T> interface (the equivalent of Iterable<T> in Java) is

declared covariantly: an IEnumerable<Giraffe> may be implicitly cast to an

IEnumerable<Mammal> without breaking type safety given an inheritance relation

class A {
 public static A operator +(A left, A right) { return new A(); }
 public static implicit operator B(A item) { return new B(); }
 public static explicit operator C(A item) { return new C(); }
}
class D : A { }
class B { }
class C { }

A a = new D() + new A(); //+ operator, subtype between D and A
B b1 = a; //ok
B b2 = (B) a; //ok
B b3 = new D(); //ok
C c1 = a; //invalid: cannot implicitly convert
C c2 = (C)a; //ok

14

between Giraffe and Mammal.

Implicitly or explicitly casting a

covariant or contravariant type

along an inheritance relation

indicates a subtype relationship

between those types; the relation

between Giraffe and Mammal is

required for the code to compile.

 Bounded

quantification
The example below illustrates a

subtype relationship occurring

from usage of generic type

constraints in C#: a subtype

relationship exists because any

implementation of IH<T> means

that in IG<T> an instance of type A or derived is expected but an instance of B or a

derivative thereof is supplied. If code exists that does not close type parameters in

covariant or contravariant definitions, subtype relationships might be missed that could

be inferred from type parameters. The original study makes no reference to this

pattern. To maintain consistency with the original research, subtype relations inferred

from these constructs are not considered. However, generic variance discussed in the

previous section is included.

Code Sample 9: Contravariant type parameter indicating a subtype relationship without closing an

open generic type

interface IG<in T> where T : A {
 void DoSomethingWithT(T obj);
}

interface IH<in T> : IG<T> where T : B {
 // Calling DoSomething from a reference of this type automatically

 // constitutes a subtype relationship.

}

interface ICovariant<out T> {
 T GetT();
}
void Covariance() {
 ICovariant<Giraffe> giraffes;
 ICovariant<Mammal> mammals;
 mammals = giraffes; //ok
 giraffes = mammals; //error
}
interface IContravariant<in T> {
 void AcceptT(T value);
}
void Contravariance() {
 IContravariant<Giraffe> giraffes;
 IContravariant<Mammal> mammals;
 mammals = giraffes; //error
 giraffes = mammals; //ok
}

Code Sample 8: Example of covariant and contravariant

interface declarations

15

 Null coalescing operator
In C#, the expression A ?? B is the equivalent of writing the ternary expression syntax

A == null ? B : A. This potentially leads to an occurrence of subtype usage, as the

types of A and B may not match.

 Asynchronous methods
C# supports language integrated continuations through the async and await keywords.

This introduces a form of asynchronous programming that appears to be a synchronous

invocation as seen in Code Sample 10. For the purposes of determining subtype

relations, any occurrences of the structure x = await t where t is of type Task<U> is

substituted by x = s where s is of type U. This effectively erases the Task, exposing

the actual parameter type for the asynchronous method’s continuation callback.

Code Sample 10: asynchronous method invocation in C# 5.0

class P { }
class C : P { }
class Other {
 public Task<C> GetChildAsync() { ... }
 public async void DoSomethingAsync()
 {
 P p = await GetChildAsync();
 //subtype between C and P
 }
}

16

5 Replication Study
This section describes the research questions for the replication study, the rationale

and hypotheses. The specific changes made to the original study are listed in section

5.2.

5.1 Research questions
The main purpose of this replication study is the validation of the results presented by

Tempero et al. It verifies the original research by repeating it using a different set of

tools and systems. Additionally, this study broadens the scope of the original study by

introducing C# as a second programming language.

The original research uses static bytecode analysis on 93 open source systems from the

Qualitas Corpus [20]. The replication study analyses 86 open source systems from the

Qualitas.class corpus [28] through source code analysis. Section 5.2 discusses these

differences in more details. This study hypothesizes these differences in technical

research method and systems will not cause different results when compared to the

original study. This motivates the first research question.

RQ1. Are the conclusions from the study ‘What programmers do with Inheritance in
Java’ by Tempero et. al. [1] valid when source code analysis is used for a similar but

different set of systems?

As discussed in section 4.1.1, C# methods must be made overridable explicitly through

usage of the virtual keyword. This invites one to think that late-bound self-referencing

in C# occurs less frequenly than in Java systems, because the programmer has to be

explicit about making a method polymorphic. While this study does not qualitatively

investigate the programmers’ decision making in this regard, the expectation exists that
implicitly making a method polymorphic could cause some calls be made

unintentionally by the programmer creating the class in which the calls occur (the

superclass). No empirical investigation has been done to determine unintended

overriding, but there must be cases where this happens. Searching the issues database

in GitHub [29] for ‘unintentional override’ yields many relevant results, educational

material such as the books by Deitel [30] [p386], Bloch et al [31][Puzzle 58] and the

language specification [32][section 13.5.6] mention unintentional overriding as a

potential pitfall.

If there is no difference, we may consider it plausible that when a method is overridden,

the author of the superclass intended for the possibility of overriding that method. This

motivates the second research question:

17

RQ2. Does late-bound self-reference occur less often in C# systems when compared to

Java systems?

Considering the differences explained in section 4, for the remaining aspects of the

original study: subtyping, reuse and other uses of inheritance this study expects similar

results for C# and Java. There are some minor considerations such as implicit casts in

foreach statements, generic covariance and contravariance and other types of

accessors such as events and properties. No empirical evidence is known of how these

features relate to the inheritance usage of C# systems; the impact is unknown. The

hypothesis is that these language features do not impact actual inheritance use for the

important metrics this study uses to measures it: subtyping and reuse between classes.

This motivates the third research question.

RQ3. Are the conclusions from the study ‘What programmers do with Inheritance in
Java’ by Tempero et. al. [1] related to code reuse, subtyping and other common idioms

valid for open source C# systems?

Note that ‘code reuse, subtyping and other common idioms’ refers to the second, third

and fourth research question of the original study, as described in section 3.1.

5.2 Changes to the original study
This section details the changes made to the original study. This study adds the C#

language as a source of information, section 5.2.1 describes how this requires some

adaptation to the model and a comparable set of systems. The replication study

employs static source code analysis instead of bytecode analysis. The motivation

behind this and the potential implications are described in section 5.2.2. For the Java

analysis, a different set of systems, although with large overlap, has been chosen. This

is described in section 5.2.3. A final and minor change to the original study was done,

including annotation and exception types for analysis, detailed in section 5.2.4.

 Addition of the C# language
For the purpose of broadening the result set a secondary equivalent analysis on systems

developed in the C# language was done. The model of inheritance used in the original

research as explained in section is also applicable to the C# language.

A set of 83 open-source systems containing around 11,5 million code lines was

compiled with the aid of Ohloh [33], a database of open source projects. This set

contains diverse projects, including but not limited to the ‘Roslyn’ C# compiler, content-

management systems, object-relational mapping frameworks, dependency injection

frameworks and build tools. The systems used in the original study and the Java and C#

replication are compared with respect to size, domain and number of inheritance

relationships in section 6.2. The specific set of analysed C# systems are listed in

Appendix B.

18

 Source code instead of bytecode
A study by Logozzo et al [34] discusses the challenges faced by bytecode analysers for

the purposes of program verification, when compared to source code analysis. They

show through a formalized approach that bytecode analysis tools can only obtain

completeness for trivial cases such as the nop operation. This illustrates problems

related to bytecode analysis, however the question remains how much this affects the

study of inheritance use. This section discusses the advantages and pitfalls of using

bytecode analysis versus source code analysis. Specific details of bytecode

implementations are discussed where relevant, but this section focuses on the general

notion of analysing bytecode versus source code in the context of this study.

One advantage of using bytecode is the possibility of analysing closed source systems.

Java and C# both use a JIT compiler in most cases (tools such as NGEN [35] and Excelsior

JET [36] allow for native compilation), indicating the binary format for systems written

in these languages are generally available for analysis. However legal constraints will

often prevent analysis of closed-source systems.

Another advantage of using bytecode is that any system written in a language compiling

to JVM or MSIL bytecode could be analysed, allowing for example VB.NET, F#, Scala and

Clojure to be analysed as well. However, this study only focuses on Java and C#.

A disadvantage of using bytecode is that some compilers do small optimizations when

compiling from source code to bytecode. This can include and might not be limited to

replacing virtual dispatch with instance dispatch and not emitting code for unreachable

paths [37] [38]. In addition to being optimized, bytecode might be obfuscated, adding

bogus methods and classes possibly interfering with results. At least one system in C#

(OrmBattle.NET) uses a post-build bytecode injector (PostSharp [39]) that could

severely change emitted code. Additionally, at least 10 C# open-source systems use

ILMerge [40], a tool that merges output of different binaries into a single binary,

possibly removing the ability to make a distinction between system code and external

code when dependencies are merged into the system binaries.

Arguments for using original source code is maintaining full integrity of semantics and

intent, for example an explicit call to the default constructor of a parent class can be

distinguished from a compiler-injected call. Code that is not deployed to the resulting

application, like unit test code, is maintained. This may yield a better picture of the

programmers’ way of working. Appropriate tools are available (Rascal MPL language

and NRefactory), which support extraction of all information required for the data in

this research through source-code based analysis using abstract syntax trees (ASTs).

Because of the availability of tools that support the analysis of source code directly and

the possible loss of information when investigating systems using bytecode, this study

uses source code for fact extraction.

19

 Qualitas.class corpus
The original research analysed systems in the Qualitas Corpus [20], a collection of

software systems selected for the purpose of empirical research. It aids in the

reproducibility of studies by providing a consistent and diverse set of Java systems for

investigation. While this dataset is certainly valuable, analyses such as this one require

resolution of external dependencies. Large systems may have numerous external

dependencies that can be tedious to resolve. The Qualitas.class [28] corpus addresses

this problem by providing compiled Eclipse projects for the systems in the Qualitas

Corpus. This results in a large overlap between systems analysed in this study and the

original study, but also introduces other versions of systems and different systems.

Section 6.2 shows how the set of systems is comparable in size, distribution and

architecture to the set of C# systems and the set used in the original study. The specific

set of systems analysed is listed in Appendix C.

 Inclusion of annotation and exception types
The original study excludes annotation and exception types. The authors motivate this

decision by reasoning that exception types are always defined through use of

inheritance, and that this use is mandatory. Hence, the programmer cannot decide not

to use inheritance for exception types. Their reasoning with respects to excluding

annotation and exception types is valid, using inheritance for these types is certainly

not a decision that can be made by the developer. However, the results and conclusions

are based solely on relations between types inside the system of investigation. This

means that any edge between two types that ultimately derive from (for example)

java.lang.Throwable is an explicit decision by the programmer to use inheritance,

because the edge between the user-defined exception or annotation type and the

external type is not included in any measurement. This study assumes the notion that

if the developer does not use inheritance for exceptions types, all exception types

would derive only from external types, and no relationships would be visible in the

results of this study.

20

6 Research method
This section discusses the method of quantitative analysis employed by this study. Since

this is a replication study, much has been borrowed from the original study. Section 6.1

describes in detail the method used by the original study to model the inheritance

usage characteristics. It mentions variations and additional patterns that appear

through the addition of C#. Section 6.2 compares the systems investigated for the

original study, the Java replication and the C# replication. The specific tools used to

analyse source code (Rascal MPL and NRefactory) are described in section 6.3, followed

by a brief overview of the technical implementation of the analysis in section 6.4.

6.1 Modeling inheritance
Tempero et al define a conceptual model used to analyse the inheritance usage

patterns of Java systems. This section describes their model in detail, complemented

by code examples explaining the specific patterns in source code that are measured in

order to quantify the usage of inheritance. Their model consists of a directed graph

where vertices portray the classes and interfaces within a Java system and the edges

represent inheritance relations between these types. This section uses specific

terminology for brevity; ‘an edge between type A and B’ means there is a class or
interface A that directly or indirectly inherits from type B in some form, ‘edge A->B has

the downcall attribute’ means that type A inherits from type B, and some code pattern
was found that constitutes a downcall relationship between type A and B. This section

conceptually describes attributes on these edges supplemented with source code

patterns that constitute assignment of a specific attribute to an edge. These attributes

are the source of metrics used in both the original and the replication study.

CC, CI, II: An edge will have one of these attributes if it represents an edge between a

Class-Class, Class-Interface or Interface-Interface respectively.

External Reuse: An edge from type S

(child) to T (parent) has the external

reuse attribute if another external

class accesses a field or invokes a

method using a reference of type S

when the field or method is declared

by type T. The definition does not

assume a class-class relation, however

mainly class-class relations are

discussed with respect to external

reuse. Code Sample 11 illustrates the

class T {
 void m() { }
 int f;
}
class S extends T { }
class Other {
 void method() {
 S s = new S();
 //external reuse S->T x3:
 s.m();
 s.f = 3;
 int a = s.f;
 }
}

Code Sample 11: External reuse between two classes.

21

patterns of code leading to an edge receiving this attribute. Note that accessing a

property or event in C# also counts towards external reuse.

Internal Reuse: An edge from class S (child) to T (parent) has the internal reuse attribute

if a method declared in S invokes a method or accesses a field declared in T. Note that

usage of this or super as a qualifier is not distinguished from other qualifiers as

illustrated in Code Sample 13.

Subtype: An edge from type S (child) to T (parent) has the subtype attribute when some

occurrence of an expression exists where T is expected and S is provided. This includes

assigning a value, passing a parameter, upcasting or downcasting, using the ternary

class T {
 void m() { }
 int f;
}

class S extends T {
 void method()
 {
 this.m(); //internal reuse through this
 super.m(); //or super (base in C#)
 S anotherS = new S();
 anotherS.m(); //internal reuse through
 //another instance
 }
}

Code Sample 13: Different forms of internal reuse between two classes.

class T
class S extends T

class E {
 void m(T t);
 T subtypes() {
 T t = new S(); //assignment
 m(new S()); //passing a parameter
 t = (T) new S(); //casting
 t = 3 > 4 ? new S() : new T(); //ternary operator
 List<S> listOfS;
 for (T item : listOfS) { } //foreach statement
 return new S(); //return value
 }
}
// in class T
void subtype()
{
 new E().m(this); //subtype through 'this changing type'
}

Code Sample 12: Examples of expressions resulting in a subtype attribute assigned to an edge.

22

operator or declaring a different variable type in a for statement. Examples of the types

of expressions resulting in a subtype attribute are shown in Code Sample 12. Note the

occurrence of this changing type. When the pseudo-variable this is used and an edge

to a child type exists, it is possible that this changes type when it is used, implying a

subtype relation between that child type and the parent.

Another case resulting in the assignment of

the subtype attribute is a sideways cast as

illustrated in Code Sample 14 . For this cast

to succeed, the two interfaces must share a

common child type. Note that this is not

limited to class-interface relationships,

either I1 or I2 could be a class, but not both.

Downcall: An edge from class C (child) to class P

(parent) is assigned the downcall attribute when

a method defined in P calls a method m() defined

in P and m() is overridden in C. The object on

which this invocation takes place must be

constructed from the child type or one of its

descendants. Code Sample 15 illustrates the

occurrence of a downcall through a method call.

The downcall attribute represents late-bound

self-reference.

The definitions that follow occur less frequently, and will be reported under ‘other

common idioms of inheritance’.

Framework: An edge from types P to Q that does not have external or internal reuse,

subtype or downcall receives the framework attribute if Q descends from a third party

type.

Constants: An edge from types P to Q receives the constants attribute if type Q and all

of its parents do not define any members with the exception of constant fields (static

final in Java, const or static readonly in C#). Code Sample 16 illustrates an

occurrence of an edge with the constants attribute.

class P {
 void q() {
 m(); //downcall
 }
 void m();
}
class C extends P {
 void m();
}

Code Sample 15: Occurrence of a

downcall edge between C and P.

interface I1
interface I2
class Child implements I1, I2
void M(I1 item) {
 I2 i2 = (I2)item;
}

Code Sample 14: Example of a sideways cast

23

Marker: An edge from type G to interface H has

the marker attribute if H does not declare any

members and all of its parents also have the

marker attribute.

Super: If a constructor in class C (child) invokes a

constructor defined in class P (parent) explicitly,

the edge from C to P receives the super attribute.

Category: An edge from type C (child) to type P (parent) will get the category attribute

if there has been no subtype use seen for it, but a sibling type with respect to P has

shown subtype usage.

Generic: An edge from type R to type S has the generic attribute if there has been a

cast from Object to S and there is an edge from R to some (non-Object) type T. In

practice, this usually indicates that some object has been put into a non-generic

container and has been cast to a different type upon its removal. This indicates some

relation exists between those two types.

6.2 Systems investigated
This study investigates both Java and C# code and replicates a previous study. To be

able to compare results among data sets, an indication with respect to the investigated

systems’ size should be presented. Figure 2 lists a few high-level metrics for the two

data sets studied. For the metrics related to inheritance relationships between types,

only those between system types are counted. As can be seen, the two data sets for

the replication study are comparable in size, with the Java systems making slightly more

use of inheritance per line of code on average.

The variance between systems for all metrics is higher among the Java systems used in

the replication study, indicating that the set is more diverse in terms of system size. The

original study reported no relation to system size for any metric used. The same results

are found in this study, both the C# and Java results indicate no apparent relation to

system size. This study therefore assumes that the reduced diversity in system size for

C# systems does not have a meaningful impact on the results.

The specific set of systems used for C# and Java are listed in Appendix B and Appendix

C respectively. A rough categorization of system domains is listed in Figure 1. Note that

the similarity between the replication study for Java and the original study is caused by

the large overlap of systems investigated. 52 systems from the original study were also

used in the replication study, and a further 20 were included with a different version.

interface Tokens {
 int EOF = 0;
 int BOOL = 1;
 ...
}

Code Sample 16: The tokens interface is

a common pattern used in parsers and

tokenizers.

24

6.3 Tools used
For the analysis of Java code, the Rascal Metaprogramming Language (Rascal MPL) [41]

was used. This language has first-class support for the representation of ASTs and its

standard libraries implement AST structures for the Java language, creating them from

Java code, and integration with the Eclipse IDE. Visiting tree structures is also a language

feature, allowing a clear and concise representation of the analysis, as illustrated in

Code Sample 17, where all local variables declared in an Eclipse project’s Java code are

printed. In addition to providing ASTs, the Rascal MPL libraries support the creation of

an M3 model. The M3 model contains information about inheritance relationships,

method calls, types, etc. When the ASTs and M3 model are used in conjunction, a

powerful method of Java code analysis is available. The Rascal MPL has some limitations

as described in section 9.3.

1 This is the number of physical code lines that were actually analysed, in thousands. For

the original study, lines of code were taken from the metadata on the Qualitas Corpus [8].

For more details about the systems used in the original study see

http://qualitascorpus.com/docs/metadata/attributes.html

 Figure 1: Rough categorization of system

domains for the systems used in this study and

the original study.

Figure 2: Comparison of system size for C# and

Java systems used in this study and the original

study.

 Replication Original

Metric C# Java Java

#Systems 83 86 93

KLOC1

Sum 11.673 11.176 13.869

Avg 141 128 149

Std Dev 171 232 239

CC

Edges

Sum 41.234 49.358 39.973

Avg 496 573 429

Std Dev 650 976 741

CI

Edges

Sum 20.750 25.996 24.889

Avg 250 302 267

Std Dev 316 549 562

II

Edges

Sum 2.731 3.707 2657

Avg 32 43 28

Std Dev 56 147 91

System Domain

Replication Original

C# Java Java

middleware 15 14 13

testing 11 10 12

SDK 14 6 6

parsers/generators/make 4 9 9

diagram/data visualization 1 8 8

3D/graphics/media 5 5 6

database 3 6 6

IDE 3 3 3

games 1 3 3

persistence object mapper 4 1 1

programming language 3 1 2

tool/other 19 20 24

asts = createAstsFromEclipseProject(|project://fitjava-1.1/|, true);
for (ast <- asts) {
 visit (ast) {
 case Expression variable: \variable(str name, int extraDimensions): {
 println("Encountered variable <name>");
 }
 }
}

Code Sample 17: Example of printing all local variables declared in the code of an Eclipse project using

the Rascal MPL language.

25

For analysing C# code, the NRefactory [42] .NET library was used. This is a C# compiler

front-end used by the SharpDevelop and MonoDevelop IDEs. It contains a type resolver,

AST data structures and when used in conjunction with .NET build tools, makes it

possible to generate ASTs for C# systems. Visiting ASTs is supported by abstract Visitor

classes as illustrated in Code Sample 18. The type resolver uncovers relations between

types outside of the system boundary, leading to a complete picture of types within the

system under investigation and any dependencies it has. As described in section 9.2

however, relationships existing within external systems may still not be uncovered

because ASTs cannot be generated from MSIL bytecode using NRefactory.

6.4 Overview of technical implementation
This brief overview explains the methods and

tools used to investigate the source code in

C# and Java for the purpose of extracting

information related to inheritance use.

The Java and C# source code are analysed

using different tools written in different

programming languages (Rascal and C#

respectively). Facts extracted from code are

written to CSV files in a uniform format

containing definitions of types and edges and

their attributes. Each system investigated

produces eight CSV files, listing types, edges,

subtype relations, internal reuse, external

reuse, downcalls, generic attributes and

super constructor calls. For C#, two more CSV

files are produced, one reporting the use of

‘dynamic’ and ‘var’ and the other measuring

lines of code. The dynamic type and type

inference do not occur in Java systems, and

information relating to the lines of code is

available through the Qualitas.class corpus

Java Source

Code

C# Source

Code

Create M3 and AST

files

Analyse files
Create ASTs and

analyze

CSV Files

Insert into relational

database

(SQL Server)

Qualitas.class

metrics files (Lines

of code for Java)

Output projected

using database

views

Figure 3: Visualisation of data flow through the

various tools used in the analysis.

public class VariableNamePrinter : DepthFirstAstVisitor {
 public override int VisitVariableInitializer(
 VariableInitializer variableInitializer) {
 Console.WriteLine("Encountered Variable: {0}",
 variableInitializer.Name);
 }
}

Code Sample 18: Example of printing local variables using an AST visitor in NRefactory.

26

metrics data.

CSV files are loaded into a relational database, where data is summarized for the

different measurements. The full integrity of details is maintained up to and including

the relational database, enabling drilling down to specific pieces of source code that

result in the assignment of one of the attributes. It also opens the possibility of

excluding certain occurrences for the purpose of investigating the impact of decisions

made in relation to the inheritance model. For example, the patterns resulting in a

subtype assignment are categorized, allowing for the investigation of the effect of

including this changing type for subtype relations as detailed in section 9.4.

27

7 Results
This section describes results found from the quantitative analysis of C# and Java open

source systems. The original research has four research questions related to the

investigation of late-bound self-reference, subtyping, code reuse and other cases

respectively. This replication study defines three research questions, the comparison of

the original study with the Java replication, the comparison of Java and C# related to

downcalls (late-bound self-reference) and the comparison of Java and C# in general.

Answering the research questions in this study requires a comparative report of the

results done in the original research with results from this study, and requires a

question-by-question analysis and interpretation. This leads to the structure of this

section following the reporting model used in the original research, discussing each

subject (downcall, subtyping, reuse and others) individually in a comparative report.

The analysis of results found in this section is presented separately, in section 8. That

section contains a more in-depth investigation for interesting findings found in the

results.

The original study reported results on a per-system basis using bar charts with system

size on the x-axis. Due to the volume of data involved (comparing 262 systems in three

categories: original study, Java replication, C# replication), the reporting visualizations

used by the original study cannot be repeated, however the data for each metric is

provided in the same level of detail in Appendix E. Note that no apparent relation was

found between system size and any of the metrics reported, therefore it is considered

appropriate to omit the information related to system size. This study instead opts to

report using charts that show aggregated/averaged data per category. When the

distribution among systems is shown, a boxplot is used. The boxplot utilizes the so

called ‘five number summary’. This method visualizes the distribution of a value set and

makes no assumptions regarding the (normal) distribution of values. As illustrated by

Figure 4, the raw values are summarized by retrieving the minimum, median, maximum

and 25th and 75th percentile of values. When no exact value is available due to the

number of values, the value is interpolated between the upper and lower bound. I.e. in

Figure 4, the 75th percentile consists of the point between the values 8 and 9, this

results in a value of 8.5. In the results, both values will be reported when applicable.

Figure 4: Illustration of how raw data is visualized in a box plot chart.

28

7.1 Downcalls (late-bound self-reference)
The original research reports on downcall edges by means of the proportion of system-

defined class-class (CC) edges that have the potential for late-bound self-reference. This

means a method in a parent class calls a method on itself, and that method is

overridden in a child class. As summarized in section 3.2, Tempero et al report around

a third of edges having the downcall attribute, with large variance among systems. A

median of 34% of CC edges make use of downcalls. Appendix E contains more detailed

data regarding downcalls, reporting on a system by system basis for the replication

study and the original study.

 Java replication
When comparing results of the replicated

study on Java open source systems with the

original study, less downcalls are found while

the variance remains similar to the original

study. As illustrated by Figure 5, this study

reports a median proportion of 28%

compared to the original 34%. All quartiles

reported have lower proportions. Even for

systems included in both studies with the

same versions, consistently lower downcall

proportions are found. Examples of such

systems are hsqldb with 45% and 58% and

struts with 26% and 37% for the replication

study and original study respectively. The

system for which the highest proportion of downcall CC edges is found is displaytag,

having 85% out of its 178 CC edges making potential use of downcall. Both the original

study and the replication study report three systems with zero potential for downcalls.

 C# systems
For the C# systems investigated, even lower downcall proportions are found when

comparing to both the original study and the Java replication. A median proportion of

22% of CC edges are reported to have downcall occurrences, while all quartiles

reported in Figure 5 have lower values than both the replication study for Java systems

and the original study. The system with the highest proportion of downcalls is

AForge.NET, having 73% of its 150 CC edges making potential use of downcall. Two

systems were found having zero potential use of downcalls.

0

0,2

0,4

0,6

0,8

1

C# Java Java

Replication Original

P
ro

p
o

rt
io

n

Downcall distribution among

systems

Figure 5: Box plot of downcall proportions

among all systems, grouped by language and

study.

29

7.2 Subtyping
Class-Class (CC), Class-Interface (CI) and Interface-Interface (II) edges can all show usage

of subtyping. Each type of edge is investigated separately and the results reported by

Tempero et al are compared with results from this study, reporting data from C# and

Java systems separately.

This study follows the subtype reporting model of the original study, CC subtype edges

are shown as the proportion among edges that have occurrences of external reuse,

internal reuse and/or subtype. This is related to and further described in section 7.3,

where the potential for replacing inheritance by composition is investigated. In the

results of the original study, as described in section 3.4, it seems that subtype use

dominates the overall use of inheritance: at least two thirds of edges have some form

of subtype usage reported. Appendix E contains more detailed information, on a

system-by-system basis for subtype proportions among CC, CI and II edges.

 Java replication
For CC edges in the Java systems, this study

reports similar findings, as visualized in

Figure 6 and Figure 8, with a median

proportion of 75.5% compared to 75.8% for

the original study. The variance however is

slightly higher among Java systems in the

replicated study. The original study reported

two systems with 100% subtype use. The

replication reports four systems with 100%

subtype use, although three of those are

small (61 or less CC edges). No systems were

reported without subtype usage, the

replicated study reports a minimum

proportion of 7% compared to 11% for the

original.

For the class-interface (CI) edges, results are relatively similar to CC with respect to the

distribution among systems, illustrated in Figure 7. The original study and replicated

Java study both contain a single system without CI edges. The Java systems investigated

in the replication study contain two systems with no subtype occurrences, while the

original study reports a single system. Three systems from the original study have 100%

subtype use for CI edges, the replication study reports a single system. The median

value is 69% in both studies.

II edges are less common, they make up around 4% of the 211.000 total edges,

consistent among C#, Java and the original study. Out of the 86 investigated Java

0

0,2

0,4

0,6

0,8

1

C# Java Java

Replication Original

p
ro

p
o

rt
io

n

CC subtype distribution

among systems per study

Figure 6: Box plot showing the proportion of CC

subtype edges per study.

30

systems, 16 systems have no II edges. For the original study, 23 out of 93 systems have

no II edges. The original study reports a median of 63%, however systems without II

edges are counted as having a 0% subtype proportion. This study finds median values

of 72% for the original study and 67% for the replication study. Two systems show zero

subtype usage among II edges compared to four systems in the original study. 16

systems in the replication study have 100% subtype usage, compared to 13 systems in

the original study.

 C# systems
For C#, lower use of subtyping among CC edges is found when compared to the original

study and the Java replication. The median system has a proportion of 65,3%. The

relatively lower proportions are consistent, with all quartiles having lower values when

compared to both the Java replication study and the original study. The lowest

subtyping proportion found among the C# systems investigated is 4% for CC edges. One

system has 100% subtype use.

Results for CI edges show similar findings, again all quartiles have lower values, with a

median proportion of 50%. All C# systems investigated contain CI edges, three systems

have 100% subtype use. Two systems report zero subtype use.

10 out of 83 systems do not have II edges, and a further 10 show zero subtype usage.

A median value of 41% is reported among II edges, with five systems having 100%

subtype use.

0

0,2

0,4

0,6

0,8

1

C# Java Java

Replication Original

Subtype distribution for CI

edges

0

0,2

0,4

0,6

0,8

1

C# Java Java

Replication Original

Subtype distribution for II

edges

Figure 7: Subtype distribution among systems for CI and II edges. The y-axis represents the proportion

of edges having the subtype attribute. Systems without the respective edges are omitted.

31

7.3 Replacing inheritance by composition
For the third research question

presented by Tempero et al, the

potential of replacing inheritance by

composition is investigated. This

potential is defined according to the

mechanical procedure proposed by

Joshua Bloch in his book Effective Java

[17]. In order to apply this procedure,

there must be a class-class edge that

shows internal or external reuse, but

makes no use of subtyping. As

discussed in section 3.2, Tempero et al

report on this by first identifying all CC

edges that have either reuse or

subtyping. They then count all subtype

edges, external reuse edges without

subtyping, and mark the remaining edges as internal reuse only. Figure 8 illustrates the

averaged values for subtype (ST), external reuse but not subtype (EX-ST) and internal

reuse only (INO) edges. Figure 9 shows the distribution among systems for the EX-ST

and INO edges.

 Java replication
The original study reports an average of 26% (median 22%) of CC edges for the external

reuse but not subtype (EX-ST) category, while this study reports 4% (3% median). This

study reports a maximum of 22%, compared to 88% for the original study. 12 out of 86

systems in the replication study show zero external reuse edges that do not have

subtype, while the original study reports two systems.

An average of 25% (median 19%) of edges found in the replication study are reported

to have internal reuse only, compared to 4% (median 2%) for the original study. The

highest proportion found in the replication study is 90%, compared to 30% for the

original study. 7 out of 86 systems in the replication study have zero internal reuse only

edges, compared to 24 systems in the original study.

When comparing the possibility of replacing inheritance with composition as a whole,

disregarding the kind (internal/external) of reuse, this study finds nearly equal

potential. A median of around 22% of system-defined CC edges could be redesigned to

use composition instead of inheritance, compared to a similar proportion of 24%

reported by the original study.

0,0

0,2

0,4

0,6

0,8

1,0

C# Java Java

Replication Original
A

v
e

ra
g

e
 p

ro
p

o
rt

io
n

Purpose of inheritance among CC

edges per study

INO

EX-ST

ST

Figure 8: Mean values for the purpose of CC edges

across all systems, showing subtype edges (ST),

external reuse but not subtype (EX-ST) and internal

reuse only (INO). The distribution is shown in Figure

9.

32

Note the method of counting external reuse and internal reuse: all class-class edges

having subtype use, external reuse and/or internal reuse are counted. Subtype

proportions are shown as the proportion of edges among those with internal reuse,

external reuse or subtype. Those without subtype, but showing external reuse are

shown as external reuse (EX-ST). Edges without external reuse or subtyping, but

showing internal reuse are shown as internal reuse (INO) edges. This means that the

edges reported to have external reuse in the original study may also have internal

reuse. This possibly explains the interesting contradiction shown in Figure 9, and is

further discussed in sections 8.1 and 9.4.

 C# systems
For C# systems, an average proportion of 6% (median 4%) of edges show external reuse

but not subtype. A maximum of 39% is reported, while 8 out of 83 investigated systems

show zero external reuse but no subtype usage.

An average proportion of 31% (median 28%) of edges do not show signs of subtype use

or external reuse, but only internal reuse. The highest proportion reported is 93%. Two

systems show zero signs of internal reuse only.

Section 7.2.2 has shown how C# systems investigated in this study contained lower

proportions of subtypes. This directly results in higher reuse proportions due to the

reporting model used. On average, 37% of CC edges show potential of replacing

inheritance with composition.

7.4 Other uses of inheritance
The fourth research question for the original study investigates other common uses of

inheritance. These are edges for which no external reuse, internal reuse or subtype use

has been found. The remainder of this section only considers those edges.

Figure 9: Distribution of internal reuse and external reuse among systems investigated. Note that the

external reuse (EX-ST) are edges that have shown signs of external reuse but not subtyping, and the

internal reuse (INO) do not have subtype or external reuse occurrences. Complements Figure 8.

0

0,2

0,4

0,6

0,8

1

C# Java Java

Replication Original

p
ro

p
o

rt
io

n

Distribution of INO (internal

reuse) proportions

0

0,2

0,4

0,6

0,8

1

C# Java Java

Replication Original

p
ro

p
o

rt
io

n
Distribution of EX-ST (external

reuse) proportions

33

Section 6.1 defines the notion of an interface or class solely defining constants. For C#,

this study reports zero use of constants-only types among all systems for all types of

edges. For CC edges, the original study reports 13 out of 93 systems containing

constants classes. Of these, 5 systems had a proportion greater than 1%, the largest

being fitlibraryforfitnesse with 13% out of 259 edges. The replication study for Java

reports three systems with constants CC edges, the highest being 5% for colt out of 196

edges. 48 systems in the original study have CI edges with constants occurrences, and

18 had more than 10%. For the Java replication study, 26 systems report constants CI

edges, with a maximum of 8%.

Another secondary use of inheritance is the marker interfaces, those which have no

members defined and all parents are also marker interfaces. The original study finds 32

systems with interfaces solely used as markers. The largest proportion among CI edges

found was 47% (jext with 43 edges). For the Java replication study, 37 out of 86 systems

are found containing marker CI edges. The largest proportion was found for cobertura,

where 44% of 34 CI edges were marker edges. The C# replication reports similar values,

44 out of 83 systems contain marker edges, with large proportions of 61% for

sandcastle – 33 edges and StructureMap – 55% of 422 CI edges.

Due to analysis limitations discussed in section 9.2, some edges were subjectively

suspected of having subtype use from inside external frameworks. These edges receive

the framework attribute. Another limitation is the use of generics through casting,

these may constitute a subtype relationship when cast to a different type after removal

from a generic container. These two types of edges are reported as suspected subtype

(SUS) in Figure 10.

For these edges, the original study reports 35 out of 93 systems having generic or

framework CC edges. 16 out of these 35 systems were reported as having less than 1%,

with a maximum of 17%. For C#, 45 out of 83 systems investigated had use of

framework or generic for CC edges, 17 of which had less than 1%. The highest value

reported was ServiceStack with 23% out of 723 edges. For the Java replication, 47

0

0,2

0,4

0,6

0,8

1

C# Java Java

Replication Original

a
ve

ra
g

e
 p

ro
p

o
rt

io
n

Observed use of CI Edges

UNK

ORG

SUS

ST

0

0,2

0,4

0,6

0,8

1

C# Java Java

Replication Original

a
v
e

ra
g

e
 p

ro
p

o
rt

io
n

Observed use of II edges

UNK

ORG

SUS

RE-ST

ST

Figure 10: Averaged use of subtype (ST), reuse but no subtype (RE-ST), suspected subtype (SUS),

organisational (ORG) and unknown purpose (UNK) for CI and II edges among studies.

34

systems contain CC edges with generic

or framework, 17 have less than 1%

and the maximum reported was 16%

for rssowl with 370 edges.

For CI edges, the original study reports

55 systems having framework or

generic edges, 8 with more than 10%

and a maximum of 58%. The C#

replication shows 51 systems having

CI framework or generic edges, 4 with

more than 10% and a maximum of

67%, although this system had only 3

CI edges (openbastard). The Java

replication reports 62 systems with CI framework or generic edges, 7 having more than

10% and a maximum of 30%.

The original study reports only a single system with occurrences of framework/generic

II edges, jmeter with 5% of 20 edges. The C# replication shows 19 systems, 6 with more

than 10% and a maximum of 40% for opentk with 5 edges. The Java replication reports

14 systems, 5 having more than 10% and a maximum of 41% for xerces with 85 edges.

For the remaining edges, the original study reports CC edges where the only use of the

relationship is the invocation of a super constructor. Another pattern they found was

an (CC, CI, II) edge appearing to have no purpose, but a sibling was used for subtype,

internal or external reuse. Those edges receive the category attribute. They reason that

the parent of such a relationship was playing an organisational role within the

implementation. The super constructor is reported as super (SUP) in Figure 11. The

category edges are reported as organisational (ORG) in Figure 10 and Figure 11.

In summary, many uses of inheritance may exist that are not documented in this study,

although they are negligible in Java, and are relatively uncommon in C#, with an average

of 8%.

8%

2%

1%

0%

5%

10%

15%

C# Java Java

Replication Original

a
v
e

ra
g

e
d

 p
ro

p
o

rt
io

n

Other uses of CC edges

UNK

ORG

SUP

Figure 11: Uses of CC edges that are not subtype,

external reuse or internal reuse edges. Super

constructor (SUP), organisational (ORG) or unknown

purpose (UNK).

35

8 Analysis
The previous section presented results for the replication study, structured by following

the research questions asked in the original study (from section 3.1). This section

presents an analysis of these results based on the research questions defined in this

study (section 5.1).

Section 8.1 covers the similarities and differences reported for the Java replication

study, in order to answer the first research question. For the second research question,

section 8.2 discusses results for late-bound self-reference usage in the context of the

C# analysis. Section 8.3 investigates the other types of inheritance usage for C# systems,

and how they relate to Java inheritance use.

8.1 RQ1: Java replication study
The original study concluded that late-bound self-reference (downcalls) is a feature

showing significant practical use, around one third of inheritance relationships employ

it. Java developers use inheritance mostly for the purpose of subtyping, with more than

two thirds of relationships using some form of subtyping. They found significant

opportunity to replace inheritance with composition, at around 22% of relationships.

Other uses of inheritance were deemed insignificant, since 99% of inheritance

relationships were explained by the previously mentioned usage.

For late-bound self-reference, this replication study has revealed a small discrepancy

between results. Section 7.1 shows consistently lower proportions of downcall edges

reported for the replication study, when compared to the original study. Two possible

causes were found after further investigation.

Appendix D lists an example of a case where downcalls reported by the original study

were not found in the source code. This could be caused by having different versions

or configurations of source code (even though the system and version information

matches). Another possible explanation is that the original study uses bytecode

whereas this study employs source code analysis. Employing bytecode analysis may

skew results, as discussed in section 5.2.2, however its effect on downcalls has not been

determined. Valuable interactions by Cigdem Aytekin, who performed a similar

replication study, with Tempero et al confirmed that some of their downcall edges

could not be explained.

Unfortunately, method-level data is unavailable from the original study, therefore a

definitive explanation of actual causes remains absent. Section 9.5 further discusses the

notion of late-bound self-referencing in the context of this study.

With regards to usage subtyping by programmers of Java systems, the results presented

in section 7.2 are highly similar to those presented in the original study. 52 out of 86

36

systems investigated in the replication study are also used in the original study with the

same system version, and a further 20 systems are included with a different version.

This indicates similar results are to be expected. This study corroborates the finding

that subtyping is the dominant type of usage among Java open source systems. At least

two thirds of inheritance relationships in Java show some sign of subtyping.

As for the potential of replacing inheritance with composition through the mechanical

procedure proposed by Bloch [17], for which an inheritance relationship is required that

reuses code from a parent class, but shows no use of subtyping. This study again

corroborates the findings by Tempero et al. This is to be expected as the reporting

model used in the original study and section 7.2 and 7.3 directly binds subtyping and

code reuse together.

An interesting discrepancy was found among internal and external reuse. Further

investigation revealed unexplained external reuse edges in the original study, a few

examples are available in Appendix D. The number of occurrences of code patterns

leading to internal reuse from this study in both Java and C# is around three times the

number of external reuse occurrences, as shown in Appendix A. The reported

difference cannot be considered critical for the overall conclusion as the aim is to find

edges with either internal or external reuse, but no subtyping.

Other uses of inheritance are generally found to be insignificant in this replication

study, only 2% of class-class edges are unexplained by previously mentioned kinds of

inheritance use. The original study reported 1% of class-class edges to be unexplained.

To summarize in answering this study’s first research question, using source code
analysis instead of bytecode analysis is suspected to have a small impact when looking

at the inheritance usage metrics defined by Tempero et al. Results from this study are

however very similar to those reported in the original study, even though a different

set of source systems (although with large overlap) was used. Late-bound self-

reference is the only exception of significance, where a median proportional usage of

28% was found compared to 34% for the original study.

8.2 RQ2: Late-bound self-reference in C#
For this study the hypothesis for the second research question indicates fewer

downcalls are to be expected for C# systems, methods have to be explicitly marked

virtual, while this behaviour is implicit in Java, as described in section 4.1.1. The results

reported in this study support that hypothesis: a median of 22% is found for the

downcall proportion among CC edges for C# systems investigated compared to 28% for

the Java replication study and 34% for the original study. These results are consistent

among the open source systems investigated, all quartiles show lower downcall

37

proportions for C# systems. Unfortunately, determining if these calls actually happened

without being intended by the person that wrote the parent class is not possible

without more information about the decision making process underlying the creation

of these methods. Qualitatively investigating the effect of language features on the

notion of unintended overriding is left for future work, discussed in section 11.

8.3 RQ3: Comparing Java and C#
For the third research question defined in section 5.1, this study investigated the other

kinds of inheritance usage defined by Tempero et al. For usage of subtyping,

consistently lower values were found amongst the C# open source system investigated,

when compared to both the Java replication study and the original study. The median

value reported for CC edges is 65%, compared to 76% in both the original study and the

replication study.

The lower values for C# systems warrant further investigation. To do this, the causes

for subtype edges are investigated. For each CC, CI and II edge, the specific kinds of

occurrences (described in section 6.1) that lead to the subtype attribute are measured.

These are then aggregated across all systems and grouped by programming language.

Note that this information is available only for the replication studies. Figure 12

illustrates these proportions, showing mostly similar values across all kinds of subtype

occurrences for Java and C#, with the exception of the variable initializer statement.

For this type, the proportion of subtype occurrences caused by variable initializer

statements is almost twice as high in Java when compared to C#. A strong suspicion

exists that this discrepancy is partially caused by implicitly typed local variables, this is

further investigated and its implications discussed in section 9.6.

For the possibility of replacing inheritance with composition in the C# systems

investigated, higher values are consistently found when compared to Java. Both the

Figure 12: Proportion of subtype edges that have occurrences per kind of expression causing it.

Aggregated from 82.000 CC, CI and II edges. Information from the original study is not available in this

context.

8,0%

15,4%

0 0,2 0,4

generic variance

sideways cast

foreach statement

ternary operator

operator (overloading)

variable initializer

assignment

casting

return statement

this changing type

parameter passing

proportion

Causes of subtype by programming language

Java

C#

38

internal reuse and external reuse measures seem to yield higher proportions when

compared to the Java replication study. An average of 37% was found for CC edges,

compared to around 30% for the Java systems. The difference between Java and C# in

the replication study can be (partially) explained by the reduced amount of subtype

usage seen for C# systems, as reduced subtype usage directly implies a larger potential

for replacing inheritance with composition.

The relative proportions among internal and external reuse are very similar for the Java

and C# systems investigated in the replication study, and the absolute number of

occurrences that lead to reuse are similar proportional to the number of CC edges (see

Appendix A). This indicates that the amount of reuse seems similar for C# and Java, but

the increased amount of subtype usage in Java results in a relatively smaller potential

for replacing inheritance by composition in C# systems.

As section 7.4 has illustrated, a general issue related to the C# analysis is found. While

the Java original and replication studies report an average of 1% and 2% unknown CC

edges, the C# study reports 8% of CC edges that cannot be explained by the kinds of

usage defined by Tempero et al. A similar difference is found for CI and II edges. This

raises the impression that due to language, programmer culture or other reasons, some

other forms of inheritance usage exist that are not contained in the model.

Limited manual inspection was done, investigating the purpose of some of these

unexplained inheritance relationships

In ASP.Net, entire class hierarchies are found that do not use any form of inheritance,

but are only used to test reflective properties of the type hierarchy. For example, five

classes named SubClass…Controller with different names on the ellipsis inherit from

a superclass BaseClassController. These are used to test automatically generated

API documentation based on the methods defined in these classes.

Another example in C# is the AutoMapper project. This is an API allowing developers to

map objects’ property values across different types. The implementation of this system
uses reflection and code generation to map values, showing no apparent use of

inheritance from a static perspective in their unit test code, and types are named

according to their position in the inheritance tree (BaseClass, DerivedClass, etc). For

this system, 17% of 438 CC edges are unexplained.

In Math.NET Numerics, an interesting pattern appears for II edges. The interface

ILinearAlgebraProvider derives from a generic counterpart

ILinearAlgebraProvider<T> four times, each with a different type argument. The

generic version of this interface defines a large number of operations on different

combinations of arrays of T. It seems like this is a form of method declaration reuse; a

way of creating overloads for all of the operations declared in the generic version of the

interface for each of the four type arguments.

39

In summary, lower subtype usage is found for the C# systems investigated in this study.

These could be explained by language features, programmer culture, framework usage

or other causes. The ‘var’ feature is likely to have an impact on this, but how much

impact and what else it affects remains an open question. The lower subtyping usage

directly increases the potential for replacing inheritance with composition. The other

potential uses of inheritance appear relatively more significant, and more room is left

for the investigation of different kinds of inheritance usage that are not contained in

the model defined by Tempero et al.

40

9 Threats to validity
This section covers the threats to validity for this study. While the impact of some issues

has been investigated, others remain open. The threats to validity reported by the

original study and later found in the original study are discussed in section 9.1. The

framework problem is an important threat to validity that is present in both the original

study and the replication study as discussed in section 9.2. Important comments can be

made on the research method, how the method of reporting may not yield a correct

picture of the programmer’s way of working. These are discussed in section 9.4 and 9.5.

The results show a reduced number of subtype edges for C# systems, which could be

partly caused by the language feature ‘var’. This is discussed in section 9.6. Section 9.7

discusses the dynamic language runtime of .NET and its potential impact on the results

of this study. The generalizability of results is discussed in section 9.8. Other minor

points of discussion are presented in section 9.9.

9.1 Original study
In section 4.3 of the original study, the authors show an example of potential issues

resulting from the analysis of bytecode. As previously discussed in the results section,

Appendix D contains a few examples where edges reported by the original study could

not be explained. These are the result of manual inspection of source code and emitted

bytecode. The impact of these oddities cannot be quantified for the purposes of

determining an error margin, therefore this remains a problem with unknown impact.

9.2 Framework problem
The framework problem as Tempero et al describe in section 4.3 of their study exists

for both the C# and Java components of the analysis done in this study. Without

detailed knowledge of the implementation of external systems, not all relationship

attributes can be uncovered. At the time of the study done, neither tool used in this

study was capable of creating the required abstract syntax trees from bytecode in

external systems. Therefore subtype and reuse edges are still underreported for those

that only have occurrences outside of the system boundaries. The impact of this is

unknown, however 98% of edges have been explained for the Java analysis, indicating

very low impact. For the C# analysis, the gap is larger, since only 92% of edges has been

explained. There could be higher framework usage for C#, or other types of inheritance

usage that are unknown to this study’s research method.

9.3 M3 model and Java ASTs
The Rascal MPL defines a code metadata (M3) model and is able to construct Java

syntax trees. At the time of doing this study however, the M3 model does not look

outside the boundaries of the system under investigation. For example, if a system class

41

S extends an external class E, and the external class E extends another external class F,

the relationship between S and E is visible, but the relationship between E and F is not.

This may introduce false negatives for the subtype metric, because the whole graph

may not be uncovered.

For generic types declared in external code, the information related to type arguments

is not completely available due to a tool limitation. The type arguments are provided in

the form of a list of types, without their corresponding names. Consider the List<E>

interface in the Java standard library. The type of parameter for the method

List.add(E) is not available in the AST. Manual inspection leads to an indication that

this limitation introduces false negatives for the subtype metric, most profoundly on

the commonly used Java interface Map<K,V>. Elements added to the Map using the put

method are not reported as a subtype. In an attempt to reduce the amount of false

negatives, a heuristic was applied: if a type contains only a single type parameter, the

single corresponding type argument is assumed to be the value of that type parameter

(E in the above case). When no arguments were specified, the List was declared as-is,

the value of all type parameters is assumed to be Object.

9.4 Inheritance Model
The way the model is implemented in both the original and the replication study may

not accurately reflect the intentions of the programmer. The subtype and external

reuse attributes are assigned to all intermediate edges when an occurrence is found for

types that are not directly related. Consider a system containing three classes A, B and

C and inheritance edges A->B and B->C. If subtype or reuse is found for A->C, both A-

>B and B->C will be attributed, even though the programmer did not define either of

the two. When looking solely at the indirect relation between A and C, type B could be

removed completely if a direct edge between A and C is created, allowing the code to

compile. This implies that

there may have been no

intent by the programmer

to express a subtype

relationship for A->B or B-

>C. The indirect edge A->C is

not used in the analysis;

only direct relations

between types are

reported. This enables

simplified reporting of the

results, since there is no

overlap between edges, but

0

0,2

0,4

0,6

0,8

1

C# Java C# Java

Indirect subtypes This changing type

Proportion of CC edges relying solely on

indirect occurences and this changing type

Figure 13: Proportion of CC edges relying solely on indirect

subtype occurrences (left) and edges relying solely on

occurrences of this changing type (right).

42

may reduce accuracy. This limitation is further strengthened by the way results are

presented: when a subtype relationship is found, whether direct or indirect, the edge

is considered explained and will not be considered for further attributes. The effect of

attributing indirect subtype edges is illustrated in Figure 13. While one C# system does

not rely on indirect subtype edges at all, some systems rely heavily on indirect edges.

Notable are DashCommerce with 93% at 243 CC edges and OpenSimulator with 80% at

736 edges. The median system is NMock at 32%. For Java, less impact of indirect

subtype edges is found, with 14 systems not relying on indirect subtype edges at all,

notable systems with high values are compiere at 68% (1096 edges) and jgraphpad at

64% (246 edges). Future work should address this limitation by refining the conceptual

model of the inheritance graph in order to more accurately reflect actual programmers’
intention of creating a subtype relationship.

A second point of discussion in relation to subtype edges is

the notion of this changing type. This is the only measure

for which the static type of a variable is not used to

determine a subtype relation. While it is true that the

variable this possibly has a different runtime type, other

variables may also show the same behaviour. Consider

Code Sample 19, the variable p may hold any type

assignable to type P at runtime. In this case however, the

variable assignment does not result in a subtype attribute.

As shown in Figure 13, the number of edges that solely rely on this changing type varies

greatly per system, but is significant. For C#, 10 systems do not rely on this changing

type for occurrences of subtype, while 5 systems report proportions of 50% or above

with a maximum of 67% for FubuMVC (out of 342 CC edges). The Java replication

reports slightly lower proportions, 16 systems do not rely on this changing type, with

three systems above 50% up to a maximum of 63% for jOggPlayer (out of 49 CC edges).

A third potential issue related to the reporting model used lies in the method of

counting metrics. All relationship attributes are counted in boolean form, hence it does

not matter if a certain relationship has 1 or 100 occurrences of some (downcall, reuse,

subtype, etc.) metric. This might skew results if certain kinds of inheritance use are

significantly more frequent per relationship than others. This has also been discussed

in the original study, but requires significant changes to the reporting model, which are

considered of out of scope of this replication study.

Another issue related to the way results are reported is the subjectivity of some of the

metrics used. The measures related to the framework and category attributes are

somewhat subjective. The framework attribute is assigned to relationships between

class P { }
class C : P { }
P getP();
void M() {
 P p = getP();
}

Code Sample 19: The notion

of this changing type may

apply to other variables.

43

types for which the parent type is a descendant of a third party type. The framework

attribute helps explain some of the relationships that would otherwise have an

unknown purpose. This assumes some use of inheritance inside an external framework,

but this is not a guarantee. The same notion applies to the category attribute. If a

relationship between two types does not show signs of subtyping or code reuse, but

another relationship with the same parent type makes use of subtyping, the

relationship is assumed to play some kind of organisational role within the inheritance

graph.

For the class-class relationships investigated in the replication study, the proportion of

edges that cannot be explained by occurrences of code reuse or subtyping is

significantly lower in the replication study than in the original study. Figure 14 illustrates

the proportions of explained edges. In the study by Tempero et al, almost all edges

could be explained by either external reuse,

internal reuse or subtyping, with a median of

99% proportion. For the replication study on

the Java open source systems, a lower median

of 90% is reported. Results and analysis have

indicated that C# programmers may make

other use of inheritance relatively more

prominently. This is also visible in the

proportion of edges explained by subtyping or

reuse, a median of 82% is reported.

The lower proportion of explained inheritance

relationships lowers the confidence in the

results reported for subtyping use. The first

research question presented by Tempero et al.

investigated the proportion of subtyping

among inheritance relationships. They

reported subtyping usage for class-class

relationships as a proportion of relationships

that could be explained by either code reuse or

subtyping. For the original study this is a valid

proposition, as virtually all of these edges have

been explained. For the replication study these

results are less reliable however, as not all

edges have been explained by code reuse or

subtyping. If subtyping usage for class-class

relationships would instead be reported as a

proportion of all edges, different results are

0

0,2

0,4

0,6

0,8

1

C# Java Java

Replication Original

proportion of CC edges

explained by reuse and

subtyping

Figure 14: Proportion of CC edges that could

be explained by either external reuse,

internal reuse or subtyping

0

0,2

0,4

0,6

0,8

1

C# Java Java

Replication Original

Proportion of subtype usage

among all class-class edges

Figure 15: Proportion of subtype usage

among all class-class relationships,

including those not attributed with external

or internal reuse.

44

found. Figure 15 illustrates this issue, distinctly lower proportions of subtyping are

reported for the replication study when counting towards all subtype edges instead of

only those reported having subtype or reuse occurrences.

9.5 Downcall edges
The original study makes the assumption

that any overridden method creates a

downcall edge when a late-bound self-

reference occurs. Code Sample 20 shows

a situation where this is not the case.

According to the definition of downcall,

when the method target is invoked by

source, the edges ChildA -> Parent,

ChildB -> Parent and ChildC ->

ChildB receive the downcall attribute. In

the class ChildB however, the source

method is also overridden and it does not

invoke the parent method using super,

removing the possibility of a downcall to

ChildB.target from Parent.source.

This extends to down to the class ChildC

as well, because the method

ChildB.source is inherited there. This

may lead to overreporting actual

downcall edges. In addition to the

previous constraint, there should be

internal or external reuse for the method

source, since its call to target will never

be a downcall unless invoked by an object

of a type that derives from P.

Manual inspection of the results of the

original study in relation to downcall

edges indicates that intermediate edges are not reported for downcalls like the subtype

and reuse metrics explained in the previous section. Effectively, only direct edges are

reported as downcall edges. When considering Code Sample 20, this would result in

only the edges ChildA -> Parent and ChildB -> Parent being reported. The edge

ChildC -> Parent is attributed with downcall but omitted from the result set because

it is not a direct edge. Figure 16 shows how including intermediate edges in a fashion

similar to the reuse and subtype measures, as described in section 9.4, has a significant

class Parent {
 void source() { target(); }
 void target() { }
}
class ChildA extends Parent {
 void source() {
 super.source();
 }
 void target() { }
}
class ChildB extends Parent {
 void source() {}
 void target() {}
}
class ChildC extends ChildB {
 void target() { }
}

Code Sample 20: Example of a situation where

false-positive downcall reporting may take place.

0

0,2

0,4

0,6

0,8

1

Direct All Direct All

C# Java

P
ro

p
o

rt
io

n

Comparative distribution of direct

and indirect downcall edges

Figure 16: Comparison of downcall attribute when

counting intermediate (indirect) downcall edges.

45

impact on reporting downcalls, raising the median value for the C# replication from

22% to 30% and the Java replication from 28% to 37%. When reasoning from a

programmer’s point of view about downcalls, it may be considered that indirect
downcalls can be equally intentional as direct downcalls.

9.6 Potential consequences of implicitly typed local variables
Implicitly typed local variables were introduced

with C# 3.0 in 2007. They are highly common

among C# systems investigated in this study,

although with high variance as illustrated in Figure

18. While 8 systems do not employ the syntax

feature at all, a quarter of systems have 75% or

above of variable declarations using ‘var’. The
common usage is to be expected as they provide

syntactic convenience, IDEs can be configured to

enforce their usage and are even required for anonymous types as illustrated in Figure

17. The high variance is also to be expected, the introduction of the var keyword in C#

spawned extensive discussions relating to whether it improves or reduces code quality

[43] [44].

Section 8.3 has shown that a significantly reduced amount of subtype relationships

occur from the definition of a local variable in C# when compared to Java. Confirming

this is (partly) caused by usage of var is outside the scope of this study, but one could

reason that if a system completely relies

on implicitly typed variables, subtyping

from variable initializers is zero. As

illustrated by Code Sample 21 the effect

of implicitly typing a local variable may

stretch further than just the initializer

statement. It could reduce subtype

values for parameter passing,

assignment statements and generic

var animal = new {
 Name = "Giraffe",
 Height = 6.0
};

Figure 17: IDE-assisted implicit local

variable declaration and anonymous

object creation expression.

0

0,5

1

P
ro

p
o

rt
io

n

'var' usage among C# systems

Figure 18: ‘var’ usage among C# systems
investigated. The Y axis represents the

proportion of all declarations that use 'var'.

class P {
 void ParentMethod() { }
}
class C : P { }

class O {
 static void Method(P p) { }
}

P MethodWithoutVarUsage() {
 P p = new C(); //subtype
 p.ParentMethod(); //no reuse
 O.Method(p); //no subtype
 return p; //no subtype
}
P MethodWithoutVarUsage() {
 var p = new C(); //no subtype
 p.ParentMethod(); //reuse
 O.Method(p); //subtype

 return p; //subtype

}

Code Sample 21: Potential implications of the var

keyword related to subtype and external reuse.

46

variance. It may also increase or decrease subtype occurrences from return statements

as illustrated in Code Sample 21. Section 11 presents a recommendation for further

investigation. This requires tracking individual variables as statements occur,

determining if the identifier used was declared with the ‘var’ keyword.

9.7 Dynamic language runtime
The runtime behaviour of dynamically typed variables in C#, as explained in section

4.1.7, has not been measured for this research. However, the impact has been

measured: a count was done on the total number of references to static types versus

the dynamic type. These references potentially lead to a subtype, reuse, category or

other assignment to an edge. Out of 83 open-source C# systems, 60 systems do not

use dynamically typed variables. A further 15 systems have less than 0,01% usage of

dynamic variables. The highest usages were found on Nancy (1,09%), Orchard (0,57%),

Dapper ORM (0,59%) and RavenDB (0,39%). The average proportion referred on all

open source C# systems is 0,04%. Therefore the use of dynamic in C# does not seem to

have a significant impact on the outcome of this study for the systems analysed.

9.8 Generalizability of results
While a considerable number of systems have been investigated in this study, some

concerns arise when speaking about the generalizability of results. Firstly, all systems

investigated were open source, even though not all systems match the criteria for open

source software defined by the Open Source Initiative [45]. An attempt was made to

include proprietary software written in C#, however the number of systems (29)

acquired and the total size (350 KLOC) was not deemed sufficient for the purposes of

studying the usage of inheritance among these systems.

Secondly, systems selected for C# are among the most prominent systems found on

Ohloh [33], in terms of usage popularity as well as developer activity. One could

speculate that this must have a generally positive effect on the quality of these systems,

since more usage and developer support would increase the proportion of faults being

detected and solved. A similar notion applies to the Java open-source systems from the

Qualitas Corpus [20]; most systems are very large and could not have been built without

significant community and user support, or the help of a large corporation.

9.9 Other discussion
Due to time constraints, some occurrences of subtype relations with respect to the use

of bounded quantification (type parameter constraints) were not uncovered. Consider

the generic interface I<T> where type parameter T is constrained by T extends P. Any

declaration of a variable, parameter or super type definition with a type argument E

that is not P requires a subtype relationship to exist between E and P for the code to

47

compile. The original study does not utilize bounded quantification as a means of

determining subtype, however future work should include this type of subtyping.

Results have shown consistent lower values across all metrics related to the use of

inheritance in C# when compared to Java. One could speculate that this is related to

programmer culture, system architecture or other reasons. Whatever the reason,

results suggest that programmers in C# use inheritance for relatively more purposes

that could not be explained by the model defined by Tempero et al, indicating that the

model tailored towards analysing Java code may not be entirely suitable for C# code.

Another important observation can be made with regards to how much inheritance is

used. For this, the lines of code per system are considered. While lines of code as a

metric is subject to many threats to validity, and lines of C# code may not correspond

to lines of Java code for various reasons, this study reports an average of 269 lines of

code per inheritance edge in C#, versus 186 lines of Java code per inheritance edge.

This yields some high level indication that Java programmers use more inheritance than

C# programmers.

Creating two implementations of the same analysis tool opens the possibility to

compare them. For this purpose a small test library was built in both Java and C#,

containing the patterns of code used for the analysis in this research. The two systems

are equivalent in terms of types and inheritance relation attributes, although language

specific exceptions such as the constants interface are present. This aided in the

detection of errors and inconsistencies between the two analysis tools.

Numerous validation sessions with Cigdem Aytekin, who performed the same

replication study using Rascal MPL at the Centrum Wiskunde & Informatica (CWI),

greatly aided in the verification of results and finding corner cases of relationship

attributes. Her interactions with Ewan Tempero provided valuable information with

regards to the intent and implementation details of various parts of the original

research.

48

10 Conclusions
The general aim of this study is the validation and extension of the results and

conclusions presented in the replicated study. This study presents an investigation of

169 open source Java and C# systems into how inheritance is used by its developers.

To corroborate the results presented in the original study, this study investigated a

similar, but different, set of open source Java systems. This study found that slightly

less than one third of subclasses (28%) rely on late-bound self-reference (downcalls) to

customize the behaviour of superclasses, while the study by Tempero et al reports 34%.

Section 9.5 discussed possible reasons for this, such as errors in (interpretation) related

to the metrics from the original study, leading to both false positives and false

negatives.

For RQ1, this study supports the conclusion from the original study in the sense that it

indicates late-bound self-reference plays a significant role in the use of inheritance.

For subtyping, this study reports values highly similar to those reported in the original

study. It is the dominant use of inheritance, around two thirds of inheritance

relationships utilize some form of inheritance. This study also coincides with the original

study with respect to replacing inheritance with composition, while the original study

reported a median of 24%, this study indicates 22% of edges are candidate for replacing

inheritance with composition. Tempero et al conclude that other uses of inheritance

are generally insignificant, this study seems to support that conclusion, with around

98% of inheritance usage explained.

For RQ2, this study hypothesised that C# programmers should show relatively less

usage of late-bound self-reference (downcalls). This was motivated by the fact that

unintended overrides appear to exist in Java systems, and C# requires the explicit

definition of an overridable method. While this study does report significantly lower

values for late-bound self-reference (22%), causality cannot be determined without

further qualitative investigation left for future work.

For RQ3, results indicate that the proportion of subtyping usage is around 10% lower

in the C# systems investigated in this study than those reported for the Java systems. A

higher proportion of edges are reported as a candidate for replacing inheritance with

composition, at around a third of edges. For other uses of inheritance, results are

generally similar to Java, with the exception of edges that could not be explained. 8%

of edges could not be explained using the model defined by Tempero et al, compared

to 1-2% for Java. This indicates potential other uses of inheritance that are not present

in Java systems.

49

11 Recommendations for future work
An important point of discussion for this study is what Tempero et al call the framework

problem as described in section 9.2, code declared in external systems is not

investigated in the same level of detail as code declared in the system of interest.

Future work should address this issue by including the analysis of code within external

dependencies. This may introduce higher values for the subtype and reuse related

metrics.

As seen in section 9.4, the inheritance model proposed by Tempero et al may not

accurately reflect the intentions of the programmer with respect to intermediate edges

being attributed. Future work could refine this model by shifting the focus from edge

attributes to individual explicit occurrences of inheritance use, possibly giving a more

accurate insight into the degree and nature of inheritance use. The notion of subtype

occurring from this changing type should also be carefully evaluated, it is inconsistent

in the sense that it is the only type of occurrence that does not rely on differences in

static types of variables. Measuring bounded quantification as a subtype occurrence,

as explained in section 9.6, should also be considered for future work.

A related issue is reporting actual downcall occurrences instead of potential downcall

as explained in section 9.5. Future work should address this issue by ensuring the

downcall could actually take place before assigning the attribute. In addition, indirect

downcall edges should also be reported to maintain consistency with the subtype and

reuse measurements.

One of the most prominent issues related to the collection of data for this study

remains the definition of the most appropriate method of empirically investigating

systems using quantitative methods. For languages utilizing portable binary code

subject to just-in-time compilation, it is evident that loss or obfuscation of information

occurs when compiling source code to intermediate bytecode. The analysis of source

code has its own issues, including conditional compilation and the difficulty of analysing

code from external dependencies: the source code of these dependencies must be

obtained in order to generate a unified model of the system under investigation and all

code affecting it.

The Qualitas Corpus [20] and the derived Qualitas.class Corpus [28] go a long way in

aiding the reproducibility of empirical investigation of software systems, but future

work may be able to refine this further. Compiling a corpus of persisted Rascal MPL [41]

M3 models and abstract syntax trees would address many issues regarding uncertain

or erroneous reporting, while maintaining full traceability to original source code and

50

enabling relatively simple, high-volume and reliable quantitative analyses of empirical

data about software systems. Extending the Rascal M3 and AST models to include more

programming languages could also be a valuable contribution, allowing simplified

comparative studies among languages. Generating full AST and M3 model information

from JAR files would also be a valuable contribution to future work. This would address

the framework problem for this study while retaining a single non-ambiguous model

for future studies.

Results of this study indicate that possibly less use of late-bound self-reference occurs

in C# systems when compared to Java systems. Assuming this is true, future work using

qualitative methods could investigate if downcalls occur without being intended by the

software engineer that created the superclass. Unintended method overriding could be

a source of bugs in Java software, for example accidentally defining a method with the

same signature or forgetting to invoke the parent method when required.

This study shows significant use of type inference for local variables and illustrates its

relation to subtyping and code reuse related to inheritance. An interesting avenue of

future research could be the investigation of effects of type inference on inheritance

usage. This requires a more in-depth analysis of the behaviour of local variables;

tracking them as reuse and subtypes occur in order to determine the actual effect of

type inference on inheritance. For example, if a class-interface edge exists solely for the

purpose of external reuse, type inference would allow the removal of the inheritance

relation and the interface from the system completely and the code would still compile.

Incorporating other C# language features such as extension methods, delegation and

anonymous methods into a conceptual model for investigating use of inheritance could

be an interesting avenue for future research. This would yield valuable data about how

inheritance is used in relation to other patterns.

More generally, replicating “What Programmers Do With Inheritance in Java” on
closed-source systems and in other programming languages, considering previous

recommendations in this section, would also be a valuable contribution to this field of

research, increasing confidence in results and gaining valuable insights into

programmers’ decision-making with regards to inheritance usage.

51

12 References

[1] E. Tempero, H. Yul Yang and J. Noble, “What Programmers do with Inheritance in
Java,” ECOOP, vol. 7920, pp. 577-601, 2013.

[2] J. C. Carver, “Towards Reporting Guidelines for Experimental Replications: A
Proposal,” in 1st International Workshop on Replication in Empirical Software

Engineering Research (RESER), Cape Town, 2010.

[3] A. S. Jennifer Greene, Head First C#, 3rd Edition, O'Reilly Media, 2013.

[4] B. B. Kathy Sierra, Head First Java, 2nd Edition, O'Reilly Media, 2005.

[5] B. M. Harwani, Learning Object-Oriented Programming in C# 5.0, Cengage

Learning, 2014.

[6] E. Tempero, J. Noble and H. Melton, “How Do Java Programs Use Inheritance? An
Empirical Study of Inheritance in Java Software,” Lecture Notes in Computer

Science, vol. 5142, pp. 667-691, 2008.

[7] R. Harrison, S. Counsell and R. Nithi, “Experimental Assessment of the Effect of
Inheritance on the Maintainability of Object-Oriented Systems,” Journal of

Systems and Software, vol. 52, no. 2-3, pp. 173-179, 2000.

[8] J. Daly, A. Brooks, J. Miller, M. Roper and M. Wood, “The effect of Inheritance on
the Maintainability of Object-Oriented Software: An Empirical Study,” in
International Conference on Software Maintenance, Opio, 1995.

[9] M. Cartwright and M. Shepperd, “An Empirical View of Inheritance,” 1998.

[10] L. Prechelt, B. Unger, M. Philippsen and W. Tichy, “A controlled experiment on
inheritance depth as a cost factor for code maintenance,” The Journal of Systems

& Software, vol. 65, no. 2, pp. 115-126, 2003.

[11] M. Cartwright and M. Shepperd, “An Empirical Investigation of an Object-

Oriented Software System,” IEEE Transactions on Software Engineering, vol. 26,

no. 8, pp. 876-796, 2000.

[12] S. R. Chidamber and C. F. Kemerer, “A metrics suite for object oriented design,”
IEEE Transactions on Software , vol. 20, no. 6, pp. 467-493, 1994.

[13] B. Henderson-Sellers, Object-oriented metrics: measures of complexity, Prentice-

Hall, Inc, 1995.

[14] A. Taivalsaari, “On the Notion of Inheritance,” ACM Computing Surveys, vol. 28,

no. 3, 1996.

52

[15] B. Meyer, “The many faces of inheritance: A taxonomy of taxonomy,” IEEE

Computer, vol. 29, no. 5, pp. 105-108, 1996.

[16] R. Lämmel, R. Linke, E. Pek and A. Varanovich, “A Framework Profile of .NET,”
20th Working Conference on Reverse Engineering, pp. 141-150, 2011.

[17] J. Bloch, Effective Java, Addison-Wesley, 2008.

[18] E. Gamma, R. Helm, R. Johnson and J. Vlissides, Design Patterns, Reading: Addison

Wesley Publishing Company, 1994.

[19] E. Tempero, C. Anslow, J. Dietrich, T. Han, J. Li, M. Lumpe, H. Melton and J. Noble,

“Qualitas corpus: A curated collection of Java code for empirical studies,” Asia

Pacific Software Engineering Conference, pp. 336-345, 2010.

[20] E. Börger and R. F. Stärk, “Exploiting Abstraction for Specification Reuse. The
Java/C# Case Study,” Lecture Notes in Computer Science, vol. 3188, pp. 42-76,

2004.

[21] Microsoft, “var (C# Reference),” [Online]. Available:
http://msdn.microsoft.com/en-us/library/bb383973.aspx. [Accessed 2 October

2014].

[22] Microsoft, “Boxing and Unboxing (C# Programming Guide),” [Online]. Available:
http://msdn.microsoft.com/en-us/library/yz2be5wk.aspx.

[23] J. Gosling, B. Joy, G. Steele, G. Bracha and A. Buckley, “The Java® Language
Specification,” 28 February 2013. [Online]. Available:
http://docs.oracle.com/javase/specs/jls/se7/jls7.pdf. [Accessed 10 February

2014].

[24] ECMA International, “Common Language Infrastructure (CLI) Partitions I to VI,”
June 2012. [Online]. Available: http://www.ecma-

international.org/publications/files/ECMA-ST/ECMA-335.pdf. [Accessed

Feburary 2014].

[25] Microsoft, “C# Language Specification 5.0,” 7 June 2013. [Online]. Available:

http://www.microsoft.com/en-us/download/details.aspx?id=7029.

[26] Oracle, “Type Erasure,” [Online]. Available:
http://docs.oracle.com/javase/tutorial/java/generics/erasure.html.

[27] R. Terra, L. F. Miranda, M. T. Valente and R. S. Bigonha, “Qualitas.class Corpus: A
Compiled Version of the Qualitas Corpus,” Software Engineering Notes, vol. 38,

no. 5, pp. 1-4, 2013.

[28] GitHub Inc., “GitHub,” [Online]. Available: https://github.com/.

[29] H. Deitel and P. Deitel, Java: How to program, Fonenix inc., 2011.

53

[30] J. Bloch and N. Gafter, Java Puzzlers: Traps, Pitfalls and Corner Cases, Pearson

Education, 2005.

[31] J. Gosling, B. Joy, L. G. Steele, G. Bracha and A. Buckley, The Java Language

Specification, Java SE 8 Edition, Addison-Wesley Professional, 2014.

[32] Ohloh, “Ohloh, the open source network,” [Online]. Available:
http://www.ohloh.net/.

[33] F. Logozzo and M. Fähndrich, “On the Relative Completeness of Bytecode Analysis
Versus Source Code Analysis,” in Compiler Construction: 17th International

Conference, Budapest, 2008.

[34] Microsoft, “Ngen.exe (Native Image Generator),” [Online]. Available:
http://msdn.microsoft.com/en-us/library/6t9t5wcf(v=vs.110).aspx. [Accessed 6

October 2014].

[35] Excelsior Jet, [Online]. Available: http://www.excelsiorjet.com/. [Accessed 6

October 2014].

[36] Proguard, “ProGuard - Frequently Asked Questions,” [Online]. Available:
http://proguard.sourceforge.net/index.html#FAQ.html. [Accessed 24 February

2014].

[37] E. Lippert, “What does the optimize switch do?,” 11 06 2009. [Online]. Available:
http://blogs.msdn.com/b/ericlippert/archive/2009/06/11/what-does-the-

optimize-switch-do.aspx. [Accessed 24 February 2014].

[38] PostSharp, “PostSharp.net,” [Online]. Available: http://www.postsharp.net/.

[Accessed 22 September 2014].

[39] Microsoft Research, “ILMerge,” [Online]. Available:
http://research.microsoft.com/en-us/people/mbarnett/ilmerge.aspx. [Accessed

2014 September 22].

[40] CWI, SWAT group, “Rascal Metaprogramming language,” [Online]. Available:
http://www.rascal-mpl.org. [Accessed 2014].

[41] D. Grunwald, “Using NRefactory for analyzing C# code,” 11 August 2012. [Online].
Available: http://www.codeproject.com/Articles/408663/Using-NRefactory-for-

analyzing-Csharp-code.

[42] Community, “Use of 'var' keyword in C#,” [Online]. Available:
http://stackoverflow.com/questions/41479/use-of-var-keyword-in-c-sharp.

[Accessed 3 October 2014].

[43] J. Allen, “C# Debate: When should you use var?,” [Online]. Available:

http://www.infoq.com/news/2008/05/CSharp-var. [Accessed 3 October 2014].

54

[44] Open Source Initiative, “The Open Source Definition (annotated) version 1.9,”
[Online]. Available: http://opensource.org/osd-annotated.

[45] E. Tempero, “Inheritance Use Data,” [Online]. Available:
https://www.cs.auckland.ac.nz/~ewan/qualitas/studies/inheritance/. [Accessed

25 September 2014].

[46] G. Booch, Object-Oriented Analysis and Design, 2nd edition, Santa Clara,

California: Addison-Wesley, 1998.

55

Appendix A. Analysis statistics
This appendix gives an indication of the amount of data processed to obtain results

presented in this study. It also briefly summarizes the size of the tools used in the

analysis. All source code and data is available at the following url:

https://github.com/basbrekelmans/inheritance-msc

 Measure Java C#

In
p

u
t

Number of source/binary files 713.951 444.781

Size of source/binary files 12,0GB 26,8GB

Number of systems 86 83

Lines of source code (thousands) 11.673 11.176

Number of Eclipse/Visual Studio projects 904 1.898

Size of compressed M3 and AST files (binary format) 3,6GB

A
n

a
ly

si
s

Analysis tool language Rascal C#

Analysis tool lines of code 1.475 3.252

Time to compute AST and M3 files 70h

Number of visitation passes over ASTs2 1 3

Running time to analyse all projects3 ±9h ±45m

Number of CSV files in output4 6.192 830

Size of CSV files 528MB 288MB

D
a

ta
b

a
se

Database size 1,4GB

CSV -> database tool language C#

CSV -> database tool lines of code 1279

Time to process & insert data ±10m

Time to calculate all metrics ±4s

Number of tables 11

Number of views 29

SQL Lines of Code to create database schema 2224

Downcall occurrences 80.704 81.614

Number of edges (CC, CI, II) 79.061 64.715

Subtype occurrences 642.719 502.398

Internal reuse occurrences 624.870 551.150

External reuse occurrences 237.367 172.145

2 Due to the M3 model provided by Rascal MPL, the full context of types, dependencies and

declared methods is already present. This has to be built up in C# before being able to

determine edge attributes.
3 C# analysis runs single threaded on optimized code without a debugger attached, Java

analysis runs on 3 threads with precomputed AST and M3 files. Both analyses were run on

a PC with 8GB memory, an SSD and a Core i7-4500U CPU that is otherwise idle. Author has

no experience optimizing Rascal code. This is not valid as a benchmark.
4 Java CSV files are per Eclipse project, C# files per system

https://github.com/basbrekelmans/inheritance-msc

56

Appendix B. List of open source C#

systems analysed
All systems analysed were pulled from the main branch (usually master) and updated

on September 19, 2014. All edges are between types within the system under

investigation and are direct relations. This list was compiled with the help of Ohloh [33],

an online repository of open-source systems. Note that some systems were developed

by companies that published the source code, including but not limited to DB4O –

Versant; ASP.Net, EntityFramework and Roslyn – Microsoft, MindTouch Dream & Deki

– MindTouch. There may be a question of definition of open-source, since some of these

systems do not allow contributions from any member of the public. This may conflict

with the definition as presented by the Open Source Initiative [45].

Name KLOC5 CC Edges CI Edges II Edges

Accord.NET 144 175 309 24

AForge.NET 47 150 112 1

ASP.NET 309 1140 510 14

Autofac 36 149 222 11

AutoFixture 31 21 139 6

AutoMapper 26 438 151 18

Axiom 217 593 288 1

Banshee 106 359 255 28

BLToolkit 360 909 272 24

Boo 117 448 165 62

BugNET 74 217 72 0

Caliburn 25 149 131 33

Castle.Core 51 286 271 112

Castle.Windsor 68 426 489 51

CruiseControl.NET 141 375 450 15

CSLA 185 91 152 71

Dapper 21 12 18 1

dashCommerce 68 243 10 1

DB4O 194 1705 1870 123

DotNetKicks 24 164 1 0

DotNetNuke 186 470 242 25

DotNetOpenAuth 57 268 188 44

Elmah 8 28 10 0

EntityFramework 553 3105 325 23

FileHelpers 46 305 35 0

5 Small parts of some systems could not be loaded due to missing dependencies or build

errors. This is the number of physical code lines that were actually analysed, in thousands.

57

Name KLOC5 CC Edges CI Edges II Edges

FlashDevelop 179 167 124 7

F-Spot 73 153 73 3

FubuMVC 74 342 514 14

Gallio 219 894 487 35

gendarme 64 621 276 11

GitExtensions 97 224 66 6

GMap.NET 78 193 195 14

ikvm9 172 409 39 1

ILSpy 265 1357 565 57

Lucene.Net 229 1808 134 26

MassTransit 62 423 652 144

MathNet.Numerics 601 223 96 4

SignalR 70 197 95 3

Migrator.NET 5 43 18 2

MindTouchDeki 137 444 72 2

MindTouchDream 52 92 98 0

MonoCsharp 70 439 99 8

MonoDevelop 548 1779 793 113

Moq 28 15 42 53

MVCContrib 27 99 76 12

n2cms 155 1290 643 62

Nancy 67 237 203 9

NAnt 55 324 25 3

Newtonsoft.Json 84 288 50 4

NGenerics 52 330 32 4

NHibernate.Everything 353 2218 888 177

NLog.netfx45 39 301 31 0

NMock2 10 66 56 14

NSubstitute 15 216 96 3

NuGet 129 151 235 31

openbastard 1 11 3 0

OpenSim 330 736 642 21

OpenTK 588 124 80 5

Orchard 135 727 921 360

ORMBattle.NET 33 51 2 0

Proto 149 165 117 7

Quartz 37 97 137 9

RavenDB 366 2368 284 17

Reflexil 137 598 179 29

Rhino Mocks 21 60 51 6

Roslyn 1001 1889 385 141

Sandcastle 76 283 33 2

ScrewTurnWiki 61 86 56 9

SdlDotNet 34 87 13 0

58

Name KLOC5 CC Edges CI Edges II Edges

ServiceStack 127 723 677 113

SharpDevelop 540 2889 1235 170

SharpOS 71 160 38 2

SolrNet 23 103 152 10

Spring.Net 215 847 1034 96

StructureMap 33 184 422 15

SubSonic.Linq 36 132 77 4

tasque 17 29 46 19

Textile 5 36 4 0

TweetSharp 68 19 32 2

WatiN 29 246 42 3

WorldWind 203 344 78 3

xunit 58 304 194 93

59

Appendix C. List of open source Java

systems analysed
All systems studied were downloaded from the Qualitas.class [28] corpus. Out of 111

systems, only 86 were usable due to compiler errors, memory limitations on the tools

used or missing source code.

Name In original?6 KLOC7 CC Edges CI Edges II Edges

ant-1.8.2 DV 128 937 332 21

antlr-3.4 DV 47 181 52 3

aoi-2.8.1 Yes 110 221 142 2

axion-1.0-M2 Yes 24 132 108 13

c_jdbc-2.0.2 Yes 96 463 36 0

castor-1.3.3 DV 263 1213 272 24

cayenne-3.0.1 Yes 192 1926 561 12

checkstyle-5.6 DV 37 349 29 2

cobertura-1.9.4.1 Yes 55 17 34 0

collections-3.2.1 No 55 366 237 11

colt-1.2.0 Yes 36 196 285 3

columba-1.0 Yes 92 143 96 8

compiere-330 No 401 1650 387 2

derby-10.9.1.0 DV 651 1556 685 131

displaytag-1.2 Yes 20 178 39 2

emma-2.0.5312 Yes 21 76 79 16

exoportal-v1.0.2 Yes 96 1050 296 41

findbugs-1.3.9 Yes 111 458 418 28

fitjava-1.1 Yes 3 66 0 0

fitlibraryforfitnesse DV 47 508 265 24

freecol-0.10.3 DV 106 555 130 1

freecs-1.3.20100406 Yes 23 61 25 0

galleon-2.3.0 Yes 61 232 78 0

ganttproject-2.1.1 DV 49 293 256 17

6 DV indicates a different version of this system was used in the replication study, Yes

indicates the same version was used, No indicates the system was not included in the

original study.
7 Small parts of some systems could not be loaded due to missing dependencies or build

errors. This is the number of physical code lines that were actually analysed, in thousands.

60

Name In original?6 KLOC7 CC Edges CI Edges II Edges

geotools-9.2 No 684 2464 1210 529

hadoop-1.1.2 No 320 1293 935 54

hsqldb-2.0.0 Yes 144 205 98 9

htmlunit-2.8 Yes 101 705 89 0

informa-0.7.0-alpha2 Yes 14 40 64 46

iReport-3.7.5 Yes 218 713 110 0

itext-5.0.3 Yes 78 191 99 4

ivatagroupware-0.11.3 No 29 21 25 0

jag-6.1 No 16 25 20 0

jasml-0.10 Yes 6 22 2 0

jasperreports-3.7.4 No 170 780 606 273

javacc-5.0 No 15 60 8 0

jboss-5.1.0 No 85 157 189 18

jchempaint-3.0.1 Yes 213 1197 598 55

jedit-4.3.2 Yes 110 245 177 0

jext-5.0 Yes 60 350 94 0

jFin_DateMath-R1.0.1 Yes 9 20 2 0

jfreechart-1.0.13 Yes 143 294 286 35

jgraph-5.13.0.0 Yes 32 120 76 3

jgraphpad-5.10.0.2 Yes 24 236 28 0

jgrapht-0.8.1 Yes 17 103 117 6

Jgroups-2.10.0 Yes 96 328 229 10

jhotdraw-7.5.1 Yes 80 348 145 14

jmeter-2.5.1 DV 95 460 323 3

jmoney-0.4.4 Yes 8 21 16 0

jOggPlayer-1.1.4s Yes 30 49 25 0

jpf-1.5.1 DV 13 39 44 19

jrefactory-2.9.19 Yes 123 816 134 1

Jruby-1.7.3 DV 244 1203 2029 29

JSPWiki-2.8 Yes 60 173 94 6

jsXe-04 Yes 18 37 15 0

jtopen-7.1 Yes 342 807 306 13

log4j-2.0-beta DV 33 154 103 10

lucene-4.2.0 DV 413 3684 426 44

marauroa-3.8.1 Yes 18 75 31 0

maven-3.0.5 DV 66 95 230 11

megamek-0.35.18 Yes 243 1283 213 10

mvnforum-1.2.2-ga Yes 105 107 289 2

61

Name In original?6 KLOC7 CC Edges CI Edges II Edges

nakedobjects-4.0.0 Yes 134 1595 841 349

nekohtml-1.9.14 Yes 8 14 9 0

netbeans-7.3 No 1928 7504 4317 1204

openjms-0.7.7-beta-1 Yes 39 232 143 9

oscache-2.3 DV 8 27 10 4

pmd-4.2.x DV 61 484 131 3

poi-3.6 Yes 203 842 327 30

proguard-4.9 DV 63 310 644 4

quartz-1.8.3 No 29 67 139 5

quickserver-1.4.7 No 18 20 59 0

quilt-0.6-a-5 Yes 8 20 35 0

rssowl-2.0.5 No 101 370 230 72

sablecc-3.2 DV 28 174 33 1

springframework-3.0.5 DV 234 1577 938 82

struts-2.2.1 Yes 143 1096 454 22

sunflow-0.07.2 Yes 22 16 110 8

tapestry-5.1.0.5 Yes 97 398 868 65

tomcat-7.0.2 Yes 181 679 362 43

velocity-1.6.4 Yes 27 203 110 13

wct-1.5.2 No 48 137 97 14

webmail-0.7.10 Yes 10 36 51 2

weka-3-6-9 DV 273 871 1265 9

xalan-2.7.1 Yes 184 568 236 118

xerces-2.10.0 Yes 126 371 260 85

62

Appendix D. Cases of unexplained

attribute assignments
This section defines a few interesting cases where the original study reported attributes

for relationships that could not be explained. For each case, all source code potentially

leading to the assignment of an attribute is included. Attributes marked with bold red

could not be found in the source code.

System marauroa-3.8.1

Child type marauroa.server.game.messagehandler.OutOfSyncHandler

Parent type marauroa.server.game.messagehandler.MessageHandler

Relationship Class-Class

Attributes Category, Internal Reuse (method & field), External Reuse (Method

Call), Subtype

All code referencing OutOfSyncHandler

src/marauroa/server/game/messagehandler/OutOfSyncHandler.java

class OutOfSyncHandler extends MessageHandler {

 ...

 @Override

 public void process(Message message) {

 ...

 //Internal Reuse (field access)

 PlayerEntry entry = playerContainer.get(clientid);

 //Internal Reuse (method call)

 if (!isValidEvent(msg, entry, ClientState.GAME_BEGIN)) {

 ...

 }

 ...

 }

}

src/marauroa/server/game/messagehandler/MessageDispatcher.java

public class MessageDispatcher {

 private Map<MessageType, MessageHandler> handlers ...

 ...

 private void initMap() {

 ...

 //subtype

 handlers.put(C2S_OUTOFSYNC, new OutOfSyncHandler());

 ...

 }

 ...

}

63

System marauroa-3.8.1

Child type marauroa.server.db.adapter.H2DatabaseAdapter

Parent type marauroa.server.db.adapter.AbstractDatabaseAdapter

Relationship Class-Class

Attributes Category, Internal Reuse (method & field), External Reuse

(Method Call), Subtype, Super

All code referencing H2DatabaseAdapter:

src/marauroa/server/db/adapter/H2DatabaseAdapter.java

public class H2DatabaseAdapter extends AbstractDatabaseAdapter {

 ...

 public H2DatabaseAdapter(...) {

 super(connInfo); //super

 }

 @Override

 protected Connection createConnection(...) {

 //internal reuse (method)

 Connection con = super.createConnection(connInfo);

 ...

 }

 ...

 @Override

 public boolean doesTableExist(...) {

 //internal reuse (field)

 DatabaseMetaData meta = connection.getMetaData();

 ...

 }

}

src/marauroa/server/db/adapter/H2DatabaseAdapterTest.java

public class H2DatabaseAdapterTest {

 ...

 public void testRewriteSql() {

 H2DatabaseAdapter adapter = new H2DatabaseAdapter();

 //rewriteSql is overridden by H2DatabaseAdapter

 assertThat(adapter.rewriteSql(""), equalTo(""));

 ...

 }

}

Note that this class is instantiated by means of reflection, depending on the system

configuration. No other static references exist.

64

System cobertura-1.9.4.1

Child type net.sourceforge.cobertura.javancss.parser.java15.Token.GTToken

Parent type net.sourceforge.cobertura.javancss.parser.java15.Token

Relationship Class-Class (child is also an inner class of the parent)

Attributes Cast, Category, Single, Downcall, External Reuse (Method Call),

Subtype

Note: this edge reports both Category and Single. These attributes should be

mutually exclusive by definition (see 0 for the list of definitions by Tempero et al.)

All code referencing GTToken:

src/net/sourceforge/cobertura/javancss/parser/java15/Token.java

public class Token {

 ...

 public static final Token newToken(int ofKind)

 {

 switch(ofKind)

 {

 ...

 //subtype through return

 case JavaParser15Constants.GT:

 return new GTToken();

 }

 }

 public static class GTToken extends Token

 {

 int realKind = JavaParser15Constants.GT;

 }

}

src/net/sourceforge/cobertura/javancss/parser/java15/JavaParser15TokenManager.java

void TokenLexicalActions(Token matchedToken)

{

 ...

 //cast, four other similar cases omitted

 ((Token.GTToken)matchedToken).realKind = RUNSIGNEDSHIFT;

 ...

}

65

Appendix E. Detailed data
This appendix presents system-by-system data for metrics used in the results section.

Some charts have system size defined on the x-axis in the form of “o”, “oo” and “ooo”.
This indicates the order of magnitude of size, as the number of edges. A single “o”
means the system has less than 100 edges, “oo” means less than 1000 and “ooo” means

less than 10.000. See https://github.com/basbrekelmans/inheritance-msc for all data.

Downcall proportions

Shows downcall distribution among systems, related to Figure 5 on page 28.

0

0,2

0,4

0,6

0,8

1

o o o o o o o o o o o o o o o o o o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

C# Replication - downcall proportion per system

0

0,2

0,4

0,6

0,8

1

o o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

Java Replication - downcall proportion per system

0

0,2

0,4

0,6

0,8

1

o o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o

Original Study - downcall proportion per system

https://github.com/basbrekelmans/inheritance-msc

66

Subtype/Reuse for CC edges

Shows the relative proportions of subtype (ST), external reuse but not subtype (EX-ST)

and internal reuse only (INO) among systems, ordered by size. Data shown here is

presented in Figure 6 (page 29) and Figure 8 (page 31).

0

0,2

0,4

0,6

0,8

1

o o o o o o o o o o o o o o o o o o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

C# Replication - CC Subtype use ST EX-ST INO

0

0,2

0,4

0,6

0,8

1

o o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

Java Replication - CC Subtype use ST EX-ST INO

0

0,2

0,4

0,6

0,8

1

o o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o

Original Study - CC Subtype use ST EX-ST INO

67

Usage of CI Edges

Shows use of subtype (ST), suspected subtype (SUS), organisational (ORG) and

unknown purpose (UNK) for CI edges. Complements Figure 7 (page 30) and Figure 10

(page 33).

0

0,2

0,4

0,6

0,8

1

o o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

C# Replication - Observed use of CI edges ST SUS ORG UNK

0

0,2

0,4

0,6

0,8

1

o o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o

Java Replication - Observed use of CI edges ST SUS ORG UNK

0

0,2

0,4

0,6

0,8

1

o o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

Java Original- Observed use of CI edges ST SUS ORG UNK

68

Usage of II edges

Shows use of subtype (ST), external reuse but not subtype (EX-ST), suspected subtype

(SUS), organisational (ORG) and unknown purpose (UNK) for CI edges. Complements

Figure 7 (page 30) and Figure 10 (page 33).

0

0,2

0,4

0,6

0,8

1

o o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o

C# Replication - Observed use of II Edges ST EX-ST SUS ORG UNK

0

0,2

0,4

0,6

0,8

1

o o
o

o
o

o
o

o
o

o
o

o o…

Java Replication - Observed use of II Edges ST EX-ST SUS ORG UNK

0

0,2

0,4

0,6

0,8

1

o o
o

o
o

o
o

o
o

o

Java Original - Observed use of II Edges ST EX-ST SUS ORG UNK

69

Var keyword

Show the proportion of variables declared using ‘var’ compared to the total variable
declarations per C# system. The x-axis represents the number of CC edges. This

represents the data presented in section 9.6 - Figure 18 (page 45).

Dynamic use

Show the proportion of times a reference was made to the dynamic type versus any

static type per C# system. The x-axis represents the number of CC edges. Note that this

is only relevant for C# systems. This represents the summary presented in section 9.7.

The y-axis has a different scale than previous data, the maximum is 1.2% instead of

100%.

0

0,2

0,4

0,6

0,8

1

o o o o o o o o o o o o o o o o o o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

Proportion of 'var' usage among C# systems

0,0%

0,2%

0,4%

0,6%

0,8%

1,0%

1,2%

o o o o o o o o o o o o o o o o o o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

Proportion of 'dynamic' usage among C# systems

70

Appendix F. Summary of metrics
The table below reports median values for the metrics used in the results of this study. For a more detailed list of

descriptions related to these values see the page by Tempero at the following url:

https://www.cs.auckland.ac.nz/~ewan/qualitas/studies/inheritance/docs.html

Metric Name Description

Replication Original

C# Java Java

nExplicitCC Number of system defined CC edges 268 241 228

pCCUsed CC edges used (subtype + external and internal

reuse)

0,82 0,90 0,99

pCCDC CC edges with downcalls 0,22 0,28 0,34

pCCSubtype CC edges with subtyping as the proportion of

pCCUsed

0,65 0,75 0,76

pCCExreuseNoSubtype CC edges with external reuse and without

subtyping as the proportion of pCCUsed

0,03 0,03 0,22

pCCUsedOnlyInRe CC edges used only in internal reuse as the

proportion of pCCUsed

0,28 0,19 0,02

pCCUnexplSuper CC edges that are not used, but show super

constructor use

0,01 0,00 0,00

pCCUnexplCategory CC edges that do not show super constructor use,

but have the Category attribute

0,01 0,00 0,00

pCCUnknown CC edges not explained by above metrics 0,05 0,01 0,00

nExplicitCI Number of system defined CI edges 134 133 127

pOnlyCISubtype CI edges having subtype use 0,50 0,69 0,69

pExplainedCI CI edges not having subtype but have one of

Framework, Generic, Marker or Constants

attributes

0,03 0,07 0,07

pCategoryExplCI CI edges having the Category attribute, but none of

the above

0,12 0,07 0,05

pUnexplainedCI CI edges not explained by above metrics 0,27 0,12 0,08

nExplicitII Number of system defined II edges 11 8 6

pIISubtype II edges having subtype use 0,41 0,67 0,72

pOnlyIIReuse II edges showing external reuse, but not subtyping 0,04 0,06 0,17

pExplainedII II edges not having subtype or reuse but have one

of Framework, Generic, Marker or Constants

attributes

0,00 0,00 0,00

pCategoryExplII II edges having the Category attribute, but none of

the above

0,09 0,00 0,00

pUnexplainedII II edges not explained by above metrics 0,17 0,00 0,00

https://www.cs.auckland.ac.nz/~ewan/qualitas/studies/inheritance/docs.html

71

Appendix G. Code listings
This is an extraction of some of the important bits of source code used to analyse the data presented in the

results. All source code is available at the GitHub repository, see

https://github.com/basbrekelmans/inheritance-msc.

Three samples are included – the code that visits ASTs for C# code, the main rascal visiting code and a view that

calculates metrics.

C# - Ast visiting

This is the class CallVisitor in the C# analysis tool. It uses context information (types, methods) to extract facts

from source code files.

1 using System;
2 using System.Collections.Generic;
3 using System.Diagnostics;
4 using System.Linq;
5 using CSharpInheritanceAnalyzer.Model.Relationships;
6 using CSharpInheritanceAnalyzer.Model.Types;
7 using ICSharpCode.NRefactory.CSharp;
8 using ICSharpCode.NRefactory.CSharp.Resolver;
9 using ICSharpCode.NRefactory.Semantics;
10 using ICSharpCode.NRefactory.TypeSystem;
11
12 namespace CSharpInheritanceAnalyzer.ViewModel
13 {
14 public class CallVisitor : VisitorBase
15 {
16 public CallVisitor(CSharpAstResolver resolver, IDictionary<string, CSharpType> types,
17 List<IInheritanceRelationship> edges, HashSet<string> ownCodeAssemblyNames)
18 : base(resolver, types, edges, ownCodeAssemblyNames)
19 {
20 }
21
22 public override void VisitConditionalExpression(ConditionalExpression conditionalExpression)
23 {
24 base.VisitConditionalExpression(conditionalExpression);
25 Expression left = conditionalExpression.TrueExpression;
26 Expression right = conditionalExpression.FalseExpression;
27
28 ResolveResult leftResolve = Resolver.Resolve(left);
29 ResolveResult rightResolve = Resolver.Resolve(right);
30
31 if (leftResolve.IsError || rightResolve.IsError) return;
32 CreateSubtypeRelation(conditionalExpression, rightResolve.Type, leftResolve.Type,

SubtypeKind.Assignment,
33 right is ThisReferenceExpression);
34 CreateSubtypeRelation(conditionalExpression, leftResolve.Type, rightResolve.Type,

SubtypeKind.Assignment,
35 left is ThisReferenceExpression);
36 }
37
38 public override void VisitInvocationExpression(InvocationExpression invocationExpression)
39 {
40 base.VisitInvocationExpression(invocationExpression);
41 var result = Resolver.Resolve(invocationExpression) as InvocationResolveResult;
42 if (result == null)
43 {
44 Trace.WriteLine(String.Format("Unknown invocation resolution at {0}",

invocationExpression));
45 return;
46 }
47 CSharpType methodDeclaringType = GetTypeOrCreateExternal(result.Member.DeclaringType);
48 CheckCallForSubtype(invocationExpression.Arguments, result.Member);
49
50 CSharpType targetDeclaringType = GetTypeOrCreateExternal(result.TargetResult.Type);
51 ResolveResult currentDeclaringTypeResolve =
52 Resolver.Resolve(invocationExpression.GetParent<TypeDeclaration>());

https://github.com/basbrekelmans/inheritance-msc

72

53 if (currentDeclaringTypeResolve.IsError) return;
54 var currentMethod = invocationExpression.GetParent<MethodDeclaration>();
55 string fromReference = currentMethod == null ? "(field initializer)" :

currentMethod.Name;
56 var currentDeclaringType = (Class)

GetTypeOrCreateExternal(currentDeclaringTypeResolve.Type);
57 if (currentDeclaringType.IsChildOf(methodDeclaringType))
58 {
59 IEnumerable<IInheritanceRelationship> items =

currentDeclaringType.GetPathTo(methodDeclaringType);
60 bool direct = currentDeclaringType.IsDirectChildOf(methodDeclaringType);
61 foreach (IInheritanceRelationship item in items)
62 {
63 item.InternalReuse.Add(new Reuse(direct, ReuseType.MethodCall,

result.Member.Name,
64 currentDeclaringType, fromReference));
65 }
66 }
67 else if (targetDeclaringType.IsChildOf(methodDeclaringType))
68 {
69 IEnumerable<IInheritanceRelationship> items =

targetDeclaringType.GetPathTo(methodDeclaringType);
70 bool direct = targetDeclaringType.IsDirectChildOf(methodDeclaringType);
71 foreach (IInheritanceRelationship item in items)
72 {
73 item.InternalReuse.Add(new Reuse(direct, ReuseType.MethodCall,

result.Member.Name,
74 currentDeclaringType, fromReference));
75 }
76 }
77
78 if (result.IsVirtualCall &&
79 (currentDeclaringType == methodDeclaringType ||

currentDeclaringType.IsChildOf(methodDeclaringType)))
80 {
81 Method method = CreateMethod(result.Member);
82 //maybe a downcall somewhere
83 foreach (
84 CSharpType downcallCandidate in
85 methodDeclaringType.AllDerivedTypes().Where(t =>

t.DeclaredMethods.Contains(method)))
86 {
87 IInheritanceRelationship relation =

downcallCandidate.GetImmediateParent(methodDeclaringType);
88 relation.Downcalls.Add(
89 new Downcall(relation.BaseType, relation.DerivedType, method,

fromReference));
90 }
91 }
92 }
93
94 private void CheckCallForSubtype(IEnumerable<Expression> args, IParameterizedMember member)
95 {
96 IEnumerator<IParameter> paramsEnumerator = EnumerateParameters(member).GetEnumerator();
97 IEnumerator<Expression> argumentsEnumerator = args.GetEnumerator();
98
99 while (argumentsEnumerator.MoveNext() & paramsEnumerator.MoveNext())

100 {
101 Expression argument = argumentsEnumerator.Current;
102 IParameter parameter = paramsEnumerator.Current;
103 ResolveResult argumentResolve = Resolver.Resolve(argument);
104 CreateSubtypeRelation(argument, argumentResolve.Type, parameter.Type,

SubtypeKind.Parameter,
105 argument is ThisReferenceExpression);
106 }
107 }
108
109 private IEnumerable<IParameter> EnumerateParameters(IParameterizedMember member)
110 {
111 bool isParams = false;
112 int i = 0;
113 while (i < member.Parameters.Count || isParams)
114 {
115 yield return member.Parameters[i];
116 isParams |= member.Parameters[i].IsParams;
117 if (!isParams)
118 ++i;

73

119 }
120 }
121
122 public override void VisitObjectCreateExpression(ObjectCreateExpression

objectCreateExpression)
123 {
124 base.VisitObjectCreateExpression(objectCreateExpression);
125 //constructor call, can never be internal/external reuse
126 ResolveResult resolve = Resolver.Resolve(objectCreateExpression);
127
128 if (resolve.IsError)
129 {
130 Trace.WriteLine("Could not resolve constructor: " + objectCreateExpression);
131 return;
132 }
133
134 if (resolve is ConversionResolveResult)
135 {
136 //found an occurrance of "new Action(MyMethod)" pattern
137 //don't care about those
138 return;
139 }
140
141 if (resolve is DynamicInvocationResolveResult)
142 {
143 //cannot do something with dynamic invocation
144 return;
145 }
146
147 CheckCallForSubtype(objectCreateExpression.Arguments, ((InvocationResolveResult)

resolve).Member);
148
149 IType test = resolve.Type;
150 }
151
152 public override void VisitVariableInitializer(VariableInitializer variableInitializer)
153 {
154 base.VisitVariableInitializer(variableInitializer);
155 IType leftType = null;
156 ResolveResult result = Resolver.Resolve(variableInitializer);
157 if (result.IsError)
158 {
159 Trace.WriteLine("Error resolving: " + variableInitializer);
160 return;
161 }
162 var memberResult = result as MemberResolveResult;
163 if (memberResult != null)
164 {
165 leftType = memberResult.Member.ReturnType;
166 }
167 else
168 {
169 var localResult = result as LocalResolveResult;
170 if (localResult != null)
171 {
172 leftType = localResult.Variable.Type;
173 }
174 else
175 {
176 Debugger.Break();
177 }
178 }
179 ResolveResult initializerResolve = Resolver.Resolve(variableInitializer.Initializer);
180
181 CreateSubtypeRelation(variableInitializer, initializerResolve.Type, leftType,
182 SubtypeKind.VariableInitializer, variableInitializer.Initializer is

ThisReferenceExpression);
183 }
184
185 public override void VisitCastExpression(CastExpression castExpression)
186 {
187 base.VisitCastExpression(castExpression);
188
189 ResolveResult targetTypeResolve = Resolver.Resolve(castExpression);
190 ResolveResult fromTypeResolve = Resolver.Resolve(castExpression.Expression);
191 CSharpType leftType = GetTypeOrCreateExternal(targetTypeResolve.Type);
192 CSharpType rightType = GetTypeOrCreateExternal(fromTypeResolve.Type);

74

193 if (rightType.IsObject)
194 {
195 leftType.HasBeenCastFromObject = true;
196 }
197 CreateSubtypeRelation(castExpression, targetTypeResolve.Type, fromTypeResolve.Type,

SubtypeKind.Cast,
198 castExpression.Expression is ThisReferenceExpression);
199 CreateSubtypeRelation(castExpression, fromTypeResolve.Type, targetTypeResolve.Type,

SubtypeKind.Cast,
200 castExpression.Expression is ThisReferenceExpression);
201 }
202
203 public override void VisitReturnStatement(ReturnStatement returnStatement)
204 {
205 base.VisitReturnStatement(returnStatement);
206 Expression expr = returnStatement.Expression;
207 ResolveResult exprResolve = Resolver.Resolve(expr);
208 CSharpType exprType = GetTypeOrCreateExternal(exprResolve.Type);
209 IType returnType = TryGetReturnType(returnStatement);
210 if (returnType != null)
211 {
212 CreateSubtypeRelation(returnStatement, exprResolve.Type, returnType,

SubtypeKind.Return,
213 returnStatement.Expression is ThisReferenceExpression);
214 }
215 }
216
217 private IType TryGetReturnType(AstNode node)
218 {
219 IType resolvedType = TryGetEntityDeclarationReturnType(node);
220 if (resolvedType == null)
221 {
222 var anonymousMethodExpression = node.GetParent<AnonymousMethodExpression>();
223 if (anonymousMethodExpression == null) return null;
224 AstNode parent = anonymousMethodExpression.Parent;
225 if (parent is AssignmentExpression)
226 {
227 resolvedType = Resolver.Resolve(((AssignmentExpression) parent).Left).Type;
228 }
229 else if (parent is VariableInitializer)
230 {
231 resolvedType = Resolver.Resolve(((VariableDeclarationStatement)

parent.Parent).Type).Type;
232 }
233 }
234 return resolvedType;
235 }
236
237 private IType TryGetEntityDeclarationReturnType(AstNode node)
238 {
239 var method = node.GetParent<EntityDeclaration>();
240 if (method != null)
241 {
242 ResolveResult resolve = Resolver.Resolve(method);
243 if (!resolve.IsError)
244 return resolve.Type;
245 }
246 return null;
247 }
248
249 public override void VisitAsExpression(AsExpression asExpression)
250 {
251 base.VisitAsExpression(asExpression);
252
253 ResolveResult targetTypeResolve = Resolver.Resolve(asExpression);
254 ResolveResult fromTypeResolve = Resolver.Resolve(asExpression.Expression);
255 CSharpType rightType = GetTypeOrCreateExternal(fromTypeResolve.Type);
256 CSharpType leftType = GetTypeOrCreateExternal(targetTypeResolve.Type);
257 if (rightType.IsObject)
258 {
259 leftType.HasBeenCastFromObject = true;
260 }
261 CreateSubtypeRelation(asExpression, fromTypeResolve.Type, targetTypeResolve.Type,

SubtypeKind.Cast,
262 asExpression.Expression is ThisReferenceExpression);
263 CreateSubtypeRelation(asExpression, targetTypeResolve.Type, fromTypeResolve.Type,

SubtypeKind.Cast,

75

264 asExpression.Expression is ThisReferenceExpression);
265 }
266
267 public override void VisitAssignmentExpression(AssignmentExpression assignmentExpression)
268 {
269 base.VisitAssignmentExpression(assignmentExpression);
270 //subtype occurs if left type is a base class of right type
271 ResolveResult resolveLeft = Resolver.Resolve(assignmentExpression.Left);
272 ResolveResult resolveRight = Resolver.Resolve(assignmentExpression.Right);
273 CreateSubtypeRelation(assignmentExpression, resolveRight.Type, resolveLeft.Type,

SubtypeKind.Assignment,
274 assignmentExpression.Right is ThisReferenceExpression);
275 }
276
277 private void CreateSubtypeRelation(AstNode node,
278 IType right, IType left, SubtypeKind kind, bool isRightTypeThis)
279 {
280 CSharpType leftType = GetTypeOrCreateExternal(left);
281 CSharpType rightType = GetTypeOrCreateExternal(right);
282
283 EntityDeclaration currentMethod = node.GetParent<MethodDeclaration>() ??
284 node.GetParent<ConstructorDeclaration>() as

EntityDeclaration ??
285 node.GetParent<PropertyDeclaration>();
286 string fromReference = currentMethod == null ? "(field initializer)" :

currentMethod.Name;
287 ResolveResult currentDeclaringTypeResolve =

Resolver.Resolve(node.GetParent<TypeDeclaration>());
288 fromReference += " in " + currentDeclaringTypeResolve.Type.FullName;
289
290 //left is the parent, right is the child
291 for (int i = 0; i < left.TypeArguments.Count && i < right.TypeArguments.Count; i++)
292 {
293 IType leftArg = left.TypeArguments[i];
294 IType rightArg = right.TypeArguments[i];
295 CreateSubtypeRelation(node, leftArg, rightArg, SubtypeKind.CovariantTypeArgument,

false);
296 CreateSubtypeRelation(node, rightArg, leftArg, SubtypeKind.ContravariantTypeArgument,

false);
297 }
298
299 if (rightType.IsChildOf(leftType))
300 {
301 rightType.HasSubtypeToObject |= leftType.IsObject;
302 IEnumerable<IInheritanceRelationship> relations = rightType.GetPathTo(leftType);
303 foreach (IInheritanceRelationship item in relations)
304 {
305 item.Subtypes.Add(new Subtype(item.BaseType == leftType && item.DerivedType ==

rightType, kind,
306 fromReference));
307 }
308 }
309 if (isRightTypeThis && kind == SubtypeKind.Parameter)
310 {
311 foreach (CSharpType derivedType in rightType.AllDerivedTypes())
312 {
313 IInheritanceRelationship relation = derivedType.GetImmediateParent(rightType);
314 relation.Subtypes.Add(new Subtype(derivedType.IsDirectChildOf(rightType),
315 SubtypeKind.ThisChangingType, fromReference));
316 }
317 }
318 }
319
320 public override void VisitIdentifierExpression(IdentifierExpression identifier)
321 {
322 base.VisitIdentifierExpression(identifier);
323 //prevent duplicate entries from member reference
324 if (identifier.GetParent<MemberReferenceExpression>() != null) return;
325 ResolveResult resolveResult = Resolver.Resolve(identifier);
326 var memberResolve = resolveResult as MemberResolveResult;
327 //variable access without this qualifier
328 if (memberResolve != null && memberResolve.Member.DeclaringType.Kind != TypeKind.Enum)
329 {
330 CSharpType targetType = GetTypeOrCreateExternal(memberResolve.Member.DeclaringType);
331 ResolveResult currentDeclaringTypeResolve =

Resolver.Resolve(identifier.GetParent<TypeDeclaration>());

76

332 //it is possible that we are inside an enumeration, inside a nested type, referencing
an identifier

333 //defined in the outer type. In that case, we want to use the outer type as the
source

334 //22-9: fixed refernce to boolean constant defined in outer type
335 if (currentDeclaringTypeResolve.Type.Kind == TypeKind.Enum
336 || currentDeclaringTypeResolve.Type.Kind == TypeKind.Interface
337 || currentDeclaringTypeResolve.Type.Kind == TypeKind.Delegate)
338 {
339 currentDeclaringTypeResolve =
340

Resolver.Resolve(identifier.GetParent<TypeDeclaration>().GetParent<TypeDeclaration>());
341 }
342
343 string currentReferenceName = identifier.GetParent<MethodDeclaration>() == null
344 ? "(field initializer)"
345 : identifier.GetParent<MethodDeclaration>().Name;
346 var currentDeclaringType = (Class)

GetTypeOrCreateExternal(currentDeclaringTypeResolve.Type);
347 bool possibleUpCall = currentDeclaringType.IsChildOf(targetType);
348 if (possibleUpCall)
349 {
350 bool direct = currentDeclaringType.IsDirectChildOf(targetType);
351 foreach (IInheritanceRelationship item in

currentDeclaringType.GetPathTo(targetType))
352 {
353 item.InternalReuse.Add(new Reuse(direct, ReuseType.FieldAccess,

memberResolve.Member.Name,
354 currentDeclaringType, currentReferenceName));
355 }
356 }
357 }
358 }
359
360 public override void VisitMemberReferenceExpression(MemberReferenceExpression

memberReferenceExpression)
361 {
362 OnVisitMemberReference(memberReferenceExpression);
363 foreach (AstNode astNode in memberReferenceExpression.Children)
364 {
365 astNode.AcceptVisitor(this);
366 }
367 }
368
369 public override void VisitForeachStatement(ForeachStatement foreachStatement)
370 {
371 base.VisitForeachStatement(foreachStatement);
372 AstType variableType = foreachStatement.VariableType;
373 IType variableTypeResolve = Resolver.Resolve(variableType).Type;
374 ResolveResult enumerableResolution = Resolver.Resolve(foreachStatement.InExpression);
375 if (enumerableResolution.IsError) return;
376
377 ParameterizedType enumerableInterfaceBase =
378 enumerableResolution.Type.GetAllBaseTypes().OfType<ParameterizedType>()
379 .FirstOrDefault(
380 t => t.Kind == TypeKind.Interface && t.FullName ==

"System.Collections.Generic.IEnumerable");
381 IType elementType;
382 if (enumerableInterfaceBase != null)
383 {
384 elementType = enumerableInterfaceBase.TypeArguments[0];
385 }
386 else if (enumerableResolution.Type.Kind == TypeKind.Array)
387 {
388 elementType = ((ArrayType) enumerableResolution.Type).ElementType;
389 }
390 else if (enumerableResolution.Type.Kind == TypeKind.Dynamic)
391 {
392 DynamicUsage++;
393 return;
394 }
395 else if (enumerableResolution.Type.Kind == TypeKind.Unknown)
396 {
397 //unbound generic or unknown element type;
398 return;
399 }
400 else

77

401 {
402 IType nonGenericEnumerableBase = enumerableResolution.Type.GetAllBaseTypes()
403 .FirstOrDefault(b => b.Kind == TypeKind.Interface && b.FullName ==

"System.Collections.IEnumerable");
404 if (nonGenericEnumerableBase != null)
405 {
406 elementType =
407 nonGenericEnumerableBase.GetAllBaseTypes().FirstOrDefault(t => t.FullName ==

"System.Object");
408 }
409 else
410 {
411 //corner case: Only implements GetEnumerator()
412 IMethod method =
413 enumerableResolution.Type.GetMethods()
414 .FirstOrDefault(m => m.Name == "GetEnumerator" && m.Parameters.Count ==

0);
415 IProperty property;
416 if (method != null &&
417 (property =
418 method.ReturnType.GetProperties()
419 .FirstOrDefault(p => p.Name == "Current" && p.CanGet)) != null)
420 {
421 elementType = property.ReturnType;
422 }
423 else
424 {
425 Trace.WriteLine("Unresolved foreach statement at " + foreachStatement);
426 return;
427 }
428 }
429 }
430 CreateSubtypeRelation(foreachStatement, elementType, variableTypeResolve,

SubtypeKind.Foreach,
431 foreachStatement.InExpression is ThisReferenceExpression);
432 CreateSubtypeRelation(foreachStatement, variableTypeResolve, elementType,

SubtypeKind.Foreach,
433 foreachStatement.InExpression is ThisReferenceExpression);
434 }
435
436 private void OnVisitMemberReference(MemberReferenceExpression memberReferenceExpression)
437 {
438 ResolveResult resolveResult = Resolver.Resolve(memberReferenceExpression);
439 var methodGroupResolve = resolveResult as MethodGroupResolveResult;
440 var memberResolve = resolveResult as MemberResolveResult;
441 if (methodGroupResolve != null)
442 {
443 //handled by invocation
444 }
445 else if (memberResolve != null)
446 {
447 CSharpType memberDeclaringType =

GetTypeOrCreateExternal(memberResolve.Member.DeclaringType);
448 ResolveResult target = memberResolve.TargetResult;
449 ResolveResult currentTypeResolve =
450 Resolver.Resolve(memberReferenceExpression.GetParent<TypeDeclaration>());
451 if (currentTypeResolve.IsError) return;
452 string currentReferenceName =

memberReferenceExpression.GetParent<MethodDeclaration>() == null
453 ? "(field initializer)"
454 : memberReferenceExpression.GetParent<MethodDeclaration>().Name;
455
456 CSharpType currentType = GetTypeOrCreateExternal(currentTypeResolve.Type);
457 CSharpType targetType = GetTypeOrCreateExternal(target.Type);
458 bool possibleDownCall = currentType.IsParentOf(memberDeclaringType);
459 bool possibleUpCall = currentType.IsChildOf(memberDeclaringType);
460 bool externalReuse = !possibleUpCall && targetType.IsChildOf(memberDeclaringType);
461 bool isDirectRelation = false;
462
463 IEnumerable<IInheritanceRelationship> upcallRelations = null;
464 IEnumerable<IInheritanceRelationship> externalReuseRelations = null;
465 if (possibleUpCall)
466 {
467 upcallRelations = currentType.GetPathTo(memberDeclaringType);
468 isDirectRelation = currentType.IsDirectChildOf(memberDeclaringType);
469 }
470 if (externalReuse)

78

471 {
472 externalReuseRelations = targetType.GetPathTo(memberDeclaringType);
473 isDirectRelation = targetType.IsDirectChildOf(memberDeclaringType);
474 }
475
476 ReuseType reuseType;
477 switch (memberResolve.Member.SymbolKind)
478 {
479 case SymbolKind.Field:
480 reuseType = ReuseType.FieldAccess;
481 //downcall not possible
482 break;
483 case SymbolKind.Property:
484 case SymbolKind.Indexer:
485 case SymbolKind.Event:
486 case SymbolKind.Operator:
487 case SymbolKind.Constructor:
488 //upcall for "Super"
489 case SymbolKind.Destructor:
490 reuseType = ReuseType.MethodCall;
491 break;
492 default:
493 throw new ArgumentOutOfRangeException();
494 }
495 if (possibleUpCall)
496 {
497 foreach (IInheritanceRelationship item in upcallRelations)
498 {
499 item.InternalReuse.Add(new Reuse(isDirectRelation, reuseType,
500 memberResolve.Member.Name,
501 (Class) currentType, currentReferenceName));
502 }
503 }
504 if (externalReuse)
505 {
506 foreach (IInheritanceRelationship item in externalReuseRelations)
507 {
508 item.ExternalReuse.Add(new Reuse(isDirectRelation, reuseType,
509 memberResolve.Member.Name,
510 (Class) currentType, currentReferenceName));
511 }
512 }
513 }
514 //other cases: Type/Namespace access; not relevant for this case.
515 }
516 }
517 }

Rascal – Main visitor code

This code visits ASTs and delegates to various functions that determine if a relevant fact such as a subtype

occurrence is present. File is named ‘Main.rsc’

1 module Main
2

3 import lang::java::jdt::m3::Core; //code analysis
4 import lang::java::m3::AST; //code analysis
5 import util::Resources; //projects()
6 import IO; //print
7 import Relation; //invert
8 import List; //size
9 import Map; //size

10 import Set; //takeOneFrom
11 import String; //split
12 import ValueIO; //readBinaryValueFile
13

14 import FileInfo; //getBasePath;
15 import Types; //inheritance context
16 import TypeHelper; //method return type
17 import ModelCache; //loading models

79

18 import InheritanceType; //inheritance types (CC/CI/II)
19 import Subtype;
20 import ExternalReuse;
21 import InternalReuse;
22 import Downcall;
23 import Super;
24 import Generic;
25

26

27

28 public void analyzePreloaded() {
29 loc baseLoc = defaultStoragePath();
30 set[loc] done = {};
31 if (exists(baseLoc + "done.locset"))
32 done = readBinaryValueFile(#set[loc], baseLoc + "done.locset");
33 println("Loading <size(done)> projects");
34 int i = 0;
35 for (p <- done) {
36 try {
37 i = i + 1;
38 print("<i>/<size(done)>: <p.authority>...");
39 analyzeProject(p, false);
40 }
41 catch error: {
42 println("Error!!!");
43 println(error);
44 }
45 }
46 println("Completed");
47 }
48

49 public void analyzeProject(loc projectLoc) {
50 analyzeProject(projectLoc, false);
51 }
52

53 public void analyzeProject(loc projectLoc, bool forceCacheRefresh) {
54 M3 model = getM3(projectLoc, forceCacheRefresh);
55 asts = getAsts(projectLoc, forceCacheRefresh);
56
57 //if (forceCacheRefresh) {
58 //print("Counting LOC....");
59 //writeLinesOfCode(projectLoc);
60 //println("done");
61 //}
62 print("Creating additional models....");
63 rel[loc, loc] directInheritance = model@extends + model@implements;
64 rel[loc, loc] allInheritance = directInheritance+;
65 map[loc, loc] declaringTypes = (f:t | <t,f> <- model@containment, t.scheme == "java+enum" ||

t.scheme == "java+class" || t.scheme == "java+interface" || t.scheme == "java+anonymousClass");
66 map[loc, TypeSymbol] typeMap = (f:t | <f,t> <- model@types);
67 InheritanceContext ctx = ctx();
68 ctx@m3 = model;
69 ctx@asts = asts;
70 ctx@directInheritance = directInheritance;
71 ctx@allInheritance = allInheritance;
72 ctx@super = [];
73 ctx@generic = [];
74 ctx@typesWithObjectSubtype = {};
75 ctx@declaringTypes = declaringTypes;
76 ctx@invertedOverrides = invert(model@methodOverrides);
77 ctx@typeMap = typeMap;
78 println("done");
79 getInheritanceTypes(projectLoc, ctx);
80 ctx = visitCore(ctx);
81 print("Saving output....");
82 saveTypes(projectLoc, ctx);
83 saveInternalReuse(projectLoc, ctx);
84 saveExternalReuse(projectLoc, ctx);
85 saveSubtype(projectLoc, ctx);
86 saveDowncall(projectLoc, ctx);
87 saveSuper(projectLoc, ctx);
88 saveGeneric(projectLoc, ctx);
89 println("done");

80

90 }
91

92 private InheritanceContext visitCore(InheritanceContext ctx) {
93 //visit all methods, field initializers, constructors and type initializers
94 list[Reuse] internalReuse = [];
95 list[Reuse] externalReuse = [];
96 list[Subtype] subtypes = [];
97 list[Generic] generics = [];
98 list[Super] supers = [];
99 set[loc] typesWithObjectSubtype = {};

100 list[Downcall] downcallCandidates = [];
101 print("Analyzing project..");
102 total = size(ctx@asts);
103 n = 0;
104 for(k <- ctx@asts) {
105 if (n % 300 == 0) {
106 print("<n * 100 / total>%..");
107 }
108 n = n + 1;
109 Declaration ast = ctx@asts[k];
110 loc returnType = tryGetReturnType(ast);
111 loc methodDeclaringType = |unresolved:///|;
112 if (hasDeclAnnotation(ast) && (ast@decl in ctx@declaringTypes)) {
113 methodDeclaringType = ctx@declaringTypes[ast@decl];
114 }
115 else
116 {
117 //find field initializer, first occurrence of field
118 //use its declaration to find the containing type
119
120 top-down-break visit (ast) {
121 case Expression variable: \variable(str name, int extraDimensions): {
122 methodDeclaringType = ctx@declaringTypes[variable@decl];
123 }
124 case Expression variable: \variable(str name, int extraDimensions, Expression

\initializer): {
125 methodDeclaringType = ctx@declaringTypes[variable@decl];
126 }
127 }
128
129 }
130 visit (ast) {
131 //case \arrayAccess(Expression array, Expression index):
132 //internal reuse through array access is handled by the \simplename case;
133 //external reuse through the qualifiedName case;
134
135 //case \newArray(Type \type, list[Expression] dimensions, Expression init):
136 //handled by other cases
137
138 //case \newArray(Type \type, list[Expression] dimensions):
139 //handled by other cases
140
141 //case \arrayInitializer(list[Expression] elements):
142 //handled by other cases
143 case Statement foreach: \foreach(Declaration parameter, Expression collection, Statement

body): {
144 <stResult, objectSubtypes> = checkForeachForSubtype(ctx, parameter, collection);
145 subtypes += stResult;
146 typesWithObjectSubtype += objectSubtypes;
147 }
148 case Expression assignment: \assignment(Expression lhs, str operator, Expression rhs): {
149 <stResult, objectSubtypes> = checkAssignmentForSubtype(ctx, assignment, lhs, rhs);
150 subtypes += stResult;
151 typesWithObjectSubtype += objectSubtypes;
152 }
153
154 case Expression castExpression: \cast(Type \type, Expression expression): {
155 //TODO: Generic attribute
156 generics += checkCastForGeneric(ctx, \type, expression);
157 //SUBTYPE: cast a child to a parent type
158 <stResult, objectSubtypes> = checkDirectCastForSubtype(ctx, castExpression, \type,

expression);
159 subtypes += stResult;
160 typesWithObjectSubtype += objectSubtypes;

81

161 }
162
163 //case \characterLiteral(str charValue):
164 //not applicable
165
166 case Expression ctor: \newObject(Expression expr, Type \type, list[Expression] args,

Declaration class): {
167 <stResult, objectSubtypes> = checkCallForSubtype(ctx, ctor@decl, args);
168 subtypes += stResult;
169 typesWithObjectSubtype += objectSubtypes;
170 }
171 case Expression ctor: \newObject(Expression expr, Type \type, list[Expression] args): {
172 <stResult, objectSubtypes> = checkCallForSubtype(ctx, ctor@decl, args);
173 subtypes += stResult;
174 typesWithObjectSubtype += objectSubtypes;
175 }
176 case Expression ctor: \newObject(Type \type, list[Expression] args, Declaration class): {
177 <stResult, objectSubtypes> = checkCallForSubtype(ctx, ctor@decl, args);
178 subtypes += stResult;
179 typesWithObjectSubtype += objectSubtypes;
180 }
181 case Expression ctor: \newObject(Type \type, list[Expression] args): {
182 <stResult, objectSubtypes> = checkCallForSubtype(ctx, ctor@decl, args);
183 subtypes += stResult;
184 typesWithObjectSubtype += objectSubtypes;
185 }
186 case \qualifiedName(Expression qualifier, Expression expression): {
187 //Requires: accessed item's type, declaring type on accessed item
188 //Declaring type on parent
189 externalReuse += checkQualifiedNameForExternalReuse(ctx, qualifier, expression);
190
191 }
192 case Expression conditional: \conditional(Expression expression, Expression thenBranch,

Expression elseBranch): {
193 <stResult, objectSubtypes> = checkConditionalForSubtype(ctx, methodDeclaringType,

conditional, thenBranch, elseBranch);
194 subtypes += stResult;
195 typesWithObjectSubtype += objectSubtypes;
196 }
197 case Expression fieldAccess: \fieldAccess(bool isSuper, Expression expr, str name):

{
198 //REMARK: isSuper only true when the Super keyword was used; so not relevant
199 //INTERNAL REUSE: handles cases this.x and super.x
200 //EXTERNAL REUSE: handles cases x.y;
201 externalReuse += checkFieldAccessForExternalReuse(ctx, fieldAccess, expr);
202
203 internalReuse += checkFieldAccessForInternalReuse(ctx, methodDeclaringType,

fieldAccess, expr);
204 }
205 case Expression fieldAccess: \fieldAccess(bool isSuper, str name): {
206 //REMARK: isSuper only true when the Super keyword was used; so not relevant for us
207 //INTERNAL REUSE: handles cases this.x and super.x
208 //EXTERNAL REUSE: not applicable
209 internalReuse += checkFieldAccessForInternalReuse(ctx, methodDeclaringType,

fieldAccess);
210 }
211 //case \instanceof(Expression leftSide, Type rightSide):
212 case Expression methodCall: \methodCall(bool isSuper, str name, list[Expression]

arguments): {
213 //internal reuse
214 //receiver is not present here; external reuse is not possible. E.g. super.X() or

X();
215 internalReuse += checkCallForInternalReuse(ctx, methodCall, methodDeclaringType);
216
217
218 <stResult, objectSubtypes> = checkCallForSubtype(ctx, methodCall@decl, arguments);
219 subtypes += stResult;
220 typesWithObjectSubtype += objectSubtypes;
221 //downcall candidate possible
222 if (!isSuper) {
223 loc decl = hasDeclAnnotation(ast) ? ast@decl : |type://unresolved/|;
224 downcallCandidates += checkCallForDowncall(ctx, methodCall, methodDeclaringType,

decl);
225 }

82

226
227 }
228 case Expression methodCall: \methodCall(bool isSuper, Expression receiver, str name,

list[Expression] arguments): {
229 internalReuse += checkCallForInternalReuse(ctx, methodCall, methodDeclaringType,

receiver);
230 externalReuse += checkCallForExternalReuse(ctx, methodDeclaringType, receiver,

methodCall);
231 <stResult, objectSubtypes> = checkCallForSubtype(ctx, methodCall@decl, arguments,

receiver);
232 typesWithObjectSubtype += objectSubtypes;
233 subtypes += stResult;
234 if (!isSuper) {
235 //if we are in a field initializer, we cannot provide the current method

declaration. However; the field initializer
236 //cannot be overridden, so we don't care about the method declaration
237 //therefore we provide an unresolved location
238 loc astDeclaration = |unresolved:///|;
239 if (hasDeclAnnotation(ast)) {
240 astDeclaration = ast@decl;
241 }
242 downcallCandidates += checkCallForDowncall(ctx, methodCall, methodDeclaringType,

astDeclaration, receiver);
243 }
244 }
245 //case \null():
246 //case \number(str numberValue):
247 //case \booleanLiteral(bool boolValue):
248 //case \stringLiteral(str stringValue):
249 //case \type(Type \type):
250 //case \variable(str name, int extraDimensions):
251 case Expression variable: \variable(str name, int extraDimensions, Expression

\initializer): {
252 <stResult, objectSubtypes> = checkVariableInitializerForSubtype(ctx, variable,

\initializer);
253 subtypes += stResult;
254 typesWithObjectSubtype += objectSubtypes;
255 }
256 //case \bracket(Expression expression):
257 //case \this():
258 //case \this(Expression thisExpression):
259 //case \super():
260 //case \declarationExpression(Declaration decl):
261 //case \infix(Expression lhs, str operator, Expression rhs, list[Expression]

extendedOperands):
262 //case \postfix(Expression operand, str operator):
263 //case \prefix(str operator, Expression operand):
264 case Expression simpleName: \simpleName(str name): {
265 //parent is a var access expr:
266 //handles direct field access through a field name without this or super qualifier
267 internalReuse += checkSimpleNameForInternalReuse(ctx, methodDeclaringType,

simpleName);
268 }
269 //case \markerAnnotation(str typeName):
270 //case \normalAnnotation(str typeName, list[Expression] memberValuePairs):
271 //case \memberValuePair(str name, Expression \value):
272 //case \singleMemberAnnotation(str typeName, Expression \value):
273 // STATEMENTS
274 case \return(Expression expression): {
275 //subtype might occur here
276 <stResult, objectSubtypes> = checkReturnStatementForSubtype(ctx, returnType,

expression);
277 subtypes += stResult;
278 typesWithObjectSubtype += objectSubtypes;
279 }
280
281 case Statement ctorCall: \constructorCall(bool isSuper, Expression expr, list[Expression]

arguments): {
282 if (isSuper) {
283 s = {t | t <- ctx@directInheritance[methodDeclaringType],t.scheme == "java+class"

};
284 if (size(s) > 0) //nonsystem type
285 supers += super(methodDeclaringType, getOneFrom(s), ctorCall@src);
286 }

83

287
288 <stResult, objectSubtypes> = checkCallForSubtype(ctx, ctorCall@decl, arguments);
289 subtypes += stResult;
290 typesWithObjectSubtype += objectSubtypes;
291 }
292 case Statement ctorCall: \constructorCall(bool isSuper, list[Expression] arguments):{
293 if (isSuper) {
294 s = {t | t <- ctx@directInheritance[methodDeclaringType],t.scheme == "java+class"

};
295 if (size(s) > 0) //nonsystem type
296 supers += super(methodDeclaringType, getOneFrom(s), ctorCall@src);
297 }
298
299 <stResult, objectSubtypes> = checkCallForSubtype(ctx, ctorCall@decl, arguments);
300 subtypes += stResult;
301 typesWithObjectSubtype += objectSubtypes;
302 }
303 }
304 }
305 ctx@internalReuse = internalReuse;
306 ctx@externalReuse = externalReuse;
307 ctx@downcallCandidates = downcallCandidates;
308 ctx@subtypes = subtypes;
309 ctx@super = supers;
310 ctx@generic = generics;
311 ctx@typesWithObjectSubtype = typesWithObjectSubtype;
312 println("100%..done");
313 return ctx;
314 }

T-SQL – computing metrics from relationship attributes

This is a small sample of the SQL code used to analyse extracted facts.

1 CREATE view [dbo].[BaseMetrics] as
2 select a.ProjectId,
3 a.FromType,
4 a.ToType,
5 --nExplicitCC Number of explicit userdefined cc edges
6 --- {(UserDefined) and (Explicit) and (CC)}
7 case when UserDefined = 1 and Explicit = 1 and RelationType = 'CC'
8 then 1.0 else 0.0 end as nExplicitCC,
9 --nCCUsed Explicit class edges for which some subtype use or reuse use was seen
10 --- {(UserDefined) and (Explicit) and (CC) and (DirectExReuseField or IndirectExReuseField or

DirectExReuseMethod
11 ---or IndirectExReuseMethod or DirectSubtype or IndirectSubtype or UpcallField or UpcallMethod)}
12 case when UserDefined = 1 and Explicit = 1 and RelationType = 'CC'
13 and (ExternalReuse = 1 or Subtype = 1 or Upcall = 1)
14 then 1.0 else 0.0 end as nCCUsed,
15 --nCCDC Number of explicit CC edges that have Downcall use
16 --- {(UserDefined) and (Explicit) and (CC) and (Downcall)}
17 case when UserDefined = 1 and Explicit = 1 and RelationType = 'CC' and Downcall = 1
18 then 1.0 else 0.0 end as nCCDC,
19 --nCCSubtype Used system CC edges for which subtype use was seen
20 --- {(UserDefined) and (Explicit) and (CC) and (DirectSubtype or IndirectSubtype)}
21 case when UserDefined = 1 and Explicit = 1 and RelationType = 'CC' and Subtype = 1
22 then 1.0 else 0.0 end as nCCSubtype,
23 --nCCSubtype Used system CC edges for which subtype use was seen
24 --- {(UserDefined) and (Explicit) and (CC) and (DirectSubtype or IndirectSubtype)}
25 case when UserDefined = 1 and Explicit = 1 and RelationType = 'CC' and (Subtype = 1 or Generic = 1

or Framework = 1)
26 then 1.0 else 0.0 end as nCCSuspectedSubtype,
27 --nCCExreuseNoSubtype Used system CC edges for which no subtype use was seen, but external reuse use

was seen
28 --- {(UserDefined) and (Explicit) and (CC) and (DirectExReuseField or IndirectExReuseField or

DirectExReuseMethod or IndirectExReuseMethod)
29 --- and (not DirectSubtype) and (not IndirectSubtype)}
30 case when UserDefined = 1 and Explicit = 1 and RelationType = 'CC' and ExternalReuse = 1 and Subtype

= 0
31 then 1.0 else 0.0 end as nCCExreuseNoSubtype,
32 --nCCUsedOnlyInRe Used system CC edges for which only internal reuse was seen

84

33 --- {(UserDefined) and (Explicit) and (CC)
34 --and (not DirectExReuseField) and (notIndirectExReuseField) and (not DirectExReuseMethod) and

(not IndirectExReuseMethod) a
35 --nd (not DirectSubtype) and (not IndirectSubtype) and (UpcallField or UpcallMethod)}
36 case when UserDefined = 1 and Explicit = 1 and RelationType = 'CC' and ExternalReuse = 0 and Subtype

= 0 and Upcall = 1
37 then 1.0 else 0.0 end as nCCUsedOnlyInRe,
38 --nCCUnexplSuper Explict system edges that have no use or explanation but super constructor calls
39 --- {(UserDefined) and (Explicit) and (CC) and (not DirectExReuseField) and (not IndirectExReuseField)

and (not DirectExReuseMethod)
40 --and (not IndirectExReuseMethod) and (not DirectSubtype) and (not IndirectSubtype) and

(not UpcallField) and (not UpcallMethod)
41 --and (not Downcall) and (not ConstantsClass) and (not ConstantsInterface) and (not Marker) and

(notFramework) and (not GenericUse)
42 --and (UpcallConstructorSuper)}
43 case when UserDefined = 1 and Explicit = 1 and RelationType = 'CC' and ExternalReuse = 0 and Subtype

= 0 and Upcall = 0
44 and Downcall = 0 and Constants = 0 and Marker = 0 and Framework = 0 and Generic = 0 and

UpcallConstructor = 1
45 then 1.0 else 0.0 end as nCCUnexplSuper,
46 --nCCUnexplCategory Explict system edges that have no use or explanation (incl. super constructor

calls) but has category use
47 --- {(UserDefined) and (Explicit) and (CC) and (not DirectExReuseField) and (not IndirectExReuseField)

and (not DirectExReuseMethod)
48 --and (not IndirectExReuseMethod) and (not DirectSubtype) and (not IndirectSubtype) and

(not UpcallField) and (not UpcallMethod)
49 --and (not Downcall) and (not ConstantsClass) and (not ConstantsInterface) and (notMarker) and

(not Framework) and (not GenericUse)
50 --and (not UpcallConstructorSuper) and (Category)}
51 case when UserDefined = 1 and Explicit = 1 and RelationType = 'CC' and ExternalReuse = 0 and Subtype

= 0 and Upcall = 0
52 and Downcall = 0 and Constants = 0 and Marker = 0 and Framework = 0 and Generic = 0 and

UpcallConstructor = 0 and Category = 1
53 then 1.0 else 0.0 end as nCCUnexplCategory,
54 --nCCUnknown Explicit system class edges that no use or explanation is known (nCCUnused =

nCCExplained+nCCUnknown)
55 --- {(UserDefined) and (Explicit) and (CC) and (not DirectExReuseField) and (not IndirectExReuseField)

and (not DirectExReuseMethod)
56 ---and (not IndirectExReuseMethod) and (not DirectSubtype) and (not IndirectSubtype) and

(not UpcallField)
57 ---and (not UpcallMethod) and (not Downcall) and (not ConstantsClass) and (not ConstantsInterface) and

(not Marker)
58 ---and (not Framework) and (not GenericUse) and (not UpcallConstructorSuper) and (not Category)}
59 case when UserDefined = 1 and Explicit = 1 and RelationType = 'CC' and ExternalReuse = 0 and Subtype

= 0 and Upcall = 0
60 and Downcall = 0 and Constants = 0 and Marker = 0 and Framework = 0 and Generic = 0 and

UpcallConstructor = 0 and Category = 0
61 then 1.0 else 0.0 end as nCCUnknown,
62 --nExplicitCI Explicit edges between user-defined classes and user-defined interfaces
63 --- {(UserDefined) and (Explicit) and (CI)}
64 case when UserDefined = 1 and Explicit = 1 and RelationType = 'CI'
65 then 1.0 else 0.0 end as nExplicitCI,
66 --nOnlyCISubtype Edges between classes and interfaces for which subtype use was seen (the only use

possible for such edges)
67 --- {(UserDefined) and (Explicit) and (CI) and (DirectSubtype or IndirectSubtype)}
68 case when UserDefined = 1 and Explicit = 1 and RelationType = 'CI' and Subtype = 1
69 then 1.0 else 0.0 end as nOnlyCISubtype,
70 --nExplainedCI Edges from class to interface with no subtype use seen, but with one of Framework,

Generic, etc (not Category)
71 --- {(UserDefined) and (Explicit) and (CI) and (not DirectSubtype) and (not IndirectSubtype)
72 ---and (Framework or GenericUse or Marker or ConstantsInterface or ConstantsClass)}
73 case when UserDefined = 1 and Explicit = 1 and RelationType = 'CI' and Subtype = 0
74 and (Framework = 1 or Generic = 1 or Marker = 1 or Constants = 1)
75 then 1.0 else 0.0 end as nExplainedCI,
76 --nCategoryExplCI Edges for which no subtype use or other explanation was seen, but which have

Category
77 --- {(UserDefined) and (Explicit) and (CI) and (notDirectSubtype) and (not IndirectSubtype) and

(not Framework)
78 --- and (not GenericUse) and (not Marker) and (not ConstantsInterface) and (notConstantsClass) and

(Category)}
79 case when UserDefined = 1 and Explicit = 1 and RelationType = 'CI' and Subtype = 0
80 and Framework = 0 and Generic = 0 and Marker = 0 and Constants = 0 and Category = 1
81 then 1.0 else 0.0 end as nCategoryExplCI,
82 --nUnexplainedCI Edges from class to interface with no subtype use seen or explained (including

Category)
83 --- {(UserDefined) and (Explicit) and (CI) and (notDirectSubtype) and (not IndirectSubtype) and

(not Framework)

85

84 --- and (not GenericUse) and (not Marker) and (not ConstantsInterface) and (notConstantsClass) and
(not Category)}

85 case when UserDefined = 1 and Explicit = 1 and RelationType = 'CI' and Subtype = 0
86 and Framework = 0 and Generic = 0 and Marker = 0 and Constants = 0 and Category = 0
87 then 1.0 else 0.0 end as nUnexplainedCI,
88 --nExplicitII Explicit edges between user-defined interfaces
89 --- {(UserDefined) and (Explicit) and (II)}
90 case when UserDefined = 1 and Explicit = 1 and RelationType = 'II'
91 then 1.0 else 0.0 end as nExplicitII,
92 --nIISubtype Edges between interfaces with at least subtype use
93 --- {(UserDefined) and (Explicit) and (II) and (DirectSubtype or IndirectSubtype)}
94 case when UserDefined = 1 and Explicit = 1 and RelationType = 'II' and Subtype = 1
95 then 1.0 else 0.0 end as nIISubtype,
96 --nOnlyIIReuse Edges between interfaces for which reuse was seen but not subtype
97 --- {(UserDefined) and (Explicit) and (II)
98 --- and (DirectExReuseField orIndirectExReuseField or DirectExReuseMethod or IndirectExReuseMethod)
99 --- and (not DirectSubtype) and (not IndirectSubtype)}

100 case when UserDefined = 1 and Explicit = 1 and RelationType = 'II' and Subtype = 0 and ExternalReuse
= 1

101 then 1.0 else 0.0 end as nOnlyIIReuse,
102 --nExplainedII Unused edges between interface with some explanation (not category)
103 --- {(UserDefined) and (Explicit) and (II) and (not DirectExReuseField) and (notIndirectExReuseField)
104 --- and (not DirectExReuseMethod) and (not IndirectExReuseMethod) and (not DirectSubtype) and

(not IndirectSubtype)
105 -- and (Framework or GenericUse or Marker or ConstantsInterface or ConstantsClass)}
106 case when UserDefined = 1 and Explicit = 1 and RelationType = 'II' and Subtype = 0 and ExternalReuse

= 0
107 and (Framework = 1 or Generic = 1 or Marker = 1 or Constants = 1)
108 then 1.0 else 0.0 end as nExplainedII,
109 --nCategoryExplII Edges for which no use or other explanation has been seen, but which have Category
110 --- {(UserDefined) and (Explicit) and (II) and (notDirectExReuseField) and (not IndirectExReuseField)
111 --- and (not DirectExReuseMethod) and (not IndirectExReuseMethod) and (not DirectSubtype) and

(notIndirectSubtype)
112 --- and (not Framework) and (not GenericUse) and (not Marker) and (not ConstantsInterface) and

(not ConstantsClass) and (Category)}
113 case when UserDefined = 1 and Explicit = 1 and RelationType = 'II' and Subtype = 0 and ExternalReuse

= 0
114 and Framework = 0 and Generic = 0 and Marker = 0 and Constants = 0 and Category = 1
115 then 1.0 else 0.0 end as nCategoryExplII,
116 --nUnexplainedII Edges between interfaces with no explanation (including Category)
117 --- {(UserDefined) and (Explicit) and (II) and (not DirectExReuseField) and (notIndirectExReuseField)
118 --- and (not DirectExReuseMethod) and (not IndirectExReuseMethod) and (not DirectSubtype) and

(not IndirectSubtype)
119 --- and (notFramework) and (not GenericUse) and (not Marker) and (not ConstantsInterface) and

(not ConstantsClass) and (not Category)}
120 case when UserDefined = 1 and Explicit = 1 and RelationType = 'II' and ExternalReuse = 0 and Subtype

= 0
121 and Framework = 0 and Generic = 0 and Marker = 0 and Constants = 0 and Category = 0
122 then 1.0 else 0.0 end as nUnexplainedII
123 from dbo.RelationAttributes a

