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ABSTRACT

Current social media research mainly focuses on temporal
trends of the information flow and on the topology of the
social graph that facilitates the propagation of information.
In this paper we study the effect of the content of the idea
on the information propagation. We present an efficient hy-
brid approach based on a linear regression for predicting the
spread of an idea in a given time frame. We show that a
combination of content features with temporal and topolog-
ical features minimizes prediction error.

Our algorithm is evaluated on Twitter hashtags extracted
from a dataset of more than 400 million tweets. We analyze
the contribution and the limitations of the various feature
types to the spread of information, demonstrating that con-
tent aspects can be used as strong predictors thus should
not be disregarded. We also study the dependencies be-
tween global features such as graph topology and content
features.
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1. INTRODUCTION

Social media is a natural platform for the spread of thoughts
and ideas, sometimes called memes. The spread and propa-
gation of a meme through a social network attract a lot of
research in recent years. Successful prediction of the spread
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of memes can improve “marketing” efforts, whether the tar-
get is a commercial product or an idea being promoted. It
could also help in real time identification of new trends, both
commercial and ideological.

From a graph topology perspective the social network is
viewed as a graph of nodes (users/posts) connected by edges
(readers in blogs, fans in Facebook, followers on Twitter
etc.). Recent studies focused on the topology of the social
graph, investigating what topologies and what activation
patterns facilitate efficient propagation of memes. While
graph topology plays an important role in the spread pat-
terns of ideas, the content of the meme is also of great im-
portance to the acceptance and promotion of a meme within
the community. To the best of our knowledge, no prior work
studies the way the inherent content features affect propa-
gation.

In this work we propose a complementary framework: given
an idea/meme m, and a time frame ¢, can we predict the ac-
ceptance of m in the community (a social network) within
this horizon? We are interested in the following questions:
can we accurately predict the acceptance of a meme based
solely on the meme’s content? Does the meme’s context im-
prove the prediction? What are the relations between the
graph topology and the content and how do they integrate
to facilitate efficient propagation?

Popularity is captured by the normalized count of the
meme’s occurrences in the given time frame. It is impor-
tant to clarify that we are not interested in the temporal
spreading patterns, although the temporal pattern serves as
a feature type in our hybrid model.

The rationale behind focusing on content is threefold. First
and foremost, there is a genuine interest in the way the con-
tent and structure of an idea drives its acceptance. More-
over, relying only on graph topology disregards content al-
together, implicitly assuming all memes are born equal (if
seeded equally). Second, the topology of the social graph is
not always given, while the content is usually available on-
line. Third, graph based algorithms are NP-hard and even
approximation algorithms are ineffective for large graphs in
real time.

A common definition of a meme is a short unit of text that
passes relatively unchanged through many online sources
[24]. We look at data from Twitter, considering hashtags
as potential memes. A Twitter hashtag is a string of char-
acters preceded by the hash (#) character. In many cases
hashtags can be viewed as topical markers, an indication
to the context of the tweet or as the core idea expressed



in the tweet, therefore hashtags are adopted by other users
that contribute similar content or express a related idea. A
few examples of the use of hashtags are: “ask GAGA any-
thing using the tag # Google GoesGaga for her interview! RT
so every monster learns about it!!” referring to an exclu-
sive interview for Google by Lady Gaga (singer), “ Whoever
said ’youth is wasted on the young’ must be eating his words
right now. #Marchl5 #Jan25 #Febl}”, referring to the
protest movements in the Arab world!, or “Speaker refers
to #Lanseys ’abysmal ignorance’ as demonstrated on alco-
hol strategy; this SoS #notfitforpurpose #nhs #savethenhs
#healthbill”, referring to the “national health services” and
the “health bill”.

The acceptance of a hashtag is captured by the (normal-
ized) count of its appearance in a time interval. Given a
hashtag, we aim at predicting its frequency after some time.
We cast the problem of predicting the hashtag frequency
as a regression task. We test our model on a large dataset
which consists of more than 4 million tweets and thousands
of hashtags. Our experiments show that there are three main
factors to the acceptance of a meme: the meme’s content,
the meme’s context and the social graph. A hybrid model
combining all three factors performs best. In this paper we
report several combinations of feature types, including mod-
els that incorporate early temporal patterns.

This work has two main contributions: (a) to the best of
our knowledge, it is the first study that shifts the empha-
sis towards content features, and (b) we present a simple
yet robust framework that efficiently models the exposure
and acceptance of an idea/meme, using only global features,
avoiding costly graph based algorithms.

This paper is arranged as follows. The next section sur-
veys related work. Section 3 portrays the corpus we used
and some preprocessing steps. Section 4 formally presents
the prediction model and the feature types we employed,
while Section 5 presents the experimental setup. Results are
given in Section 6 and an elaborated discussion is offered in
Section 7. In Section 8 we conclude and offer directions for
future research.

2. RELATED WORK

Diffusion of information has become an active research
area. Most works focus on the topology of the social graph,
trying to model the propagation process, maximize the spread
of information in a minimal effort by finding the most in-
fluential nodes, and maximize purchases induced by viral
marketing and social recommendation networks [18, 19, 23,
4, 5, 13], or model temporal dynamics of information spread
[12, 15, 34]. Collaborative filtering is used to predict the
probability of a tweet to get retweeted [36].

Tweet’s content is used in tasks such as profiling users
according to substance, style, status, and social tendency
[27] and for modeling the inter—influence of the linguistic
style between participants in the discourse [7]. The effect of
haghtag length (in characters) on its frequency is studied in
[6]°.

Some works do refer to the topic of the information passed
[14, 24, 34], though topic is addressed in coarse granular-

!The protest movements are named after the date of the
first demonstration, i.e. Jan25 is the Egyptian movement.
2This study refer to hashtags relevant to three events:
Micheal Jackson death, the swine flu outbreak of 2009a nd
to the Twitter idiom ‘music-monday’.
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ity (e.g. ‘sports’, ‘news’, ‘professional blogs’, ‘Apple’, ‘Mi-
crosoft’) and not very specific events or sentiment (e.g. ’save
the national health service’, ’Gaga Video Music Awards’,
‘free Iran’). Leskovec et al. [24] look at at the content in
their meme—tracker, but textual content is only used in order
to trace the evolution of a meme as it propagates.

Another line of works study the spread patterns of Twit-
ter hashtags. Yang and Leskovec [34] propose a linear model
that uses the implicit network rather than the explicit net-
work. Cataldi et al. [3] detect emerging topics in Twitter
although they refer to term frequency of tokens in Twitter.
Although not using the explicit graph topology, both works
use the level of influence of single nodes in order to model
spread of information.

Romero, Meeder and Kleinberg [29] observe that differ-
ent topical categories of hashtags have different propagation
pattern. They introduce the distinction between ‘stickiness’
and ‘persistence’ arguing that some classes are more persis-
tent than other. This work is the first to address attributes
that are inherent to the meme and that goes beyond the
most coarse topical propagation.

Our work shares these observations. However, it differs in
a number of fundamental aspects. First, our task definition
is different as we are interested in predicting the exposure
of a meme in a given time frame while they are interested
in the temporal spreading patterns. Second, we do not use
annotators to classify hashtags, and third, while they model
the spread patterns of only the most popular hashtags, we
alm at predicting the spread of all hashtags but the least
frequent ones.

Unlike other works, we are interested in the acceptance
of a meme in a long time frame, as it is better to differen-
tiate between sticky ideas (and successful campaigns) and
short term trends that flare, infect many users but quickly
disappear.

As we are interested in content based analysis, the senti-
ment of a tweet is of great importance. Sentiment analysis
of Twitter data is studied in many works, [8, 9] among oth-
ers. In this work we use the LIWC categories [32] and assign
sentiment labels to tweets and hashtags based on the LIWC
lexicons.

To the best of our knowledge, beyond the hashtag’s coarse
topic or its number of characters, there is no prior work
addressing the features inherent to the information (meme,
hashtag), such as location, orthography, number of words,
lexicality, ease of cognitive process and emotional effect on
various cognitive dimensions. These attributes are described
in detail in Section 4.3.

3. DATA

Twitter & hashtags.

Twitter is a popular microblogging platform. A Twitter
posting is called a tweet. A tweet is restricted to 140 char-
acters in length. This length constraint makes characters
“expensive”, hence tweets present an informal, sometimes
ungrammatical, language, as well as introducing many ab-
breviations. Twitter allows the usage of two meta charac-
ters: @ marking a user name (e.g. @BarackObama), and #
marking a hashtag: a sequence of non whitespace characters
preceded by the hash character (e.g. #healthCareReform).
An extensive survey of Twitter, its uses and its social as-
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Figure 1: Plot of the number of tweets collected in
weeks 22—-52 (June—December) of 2009.

pects in the first years can be found in [20]®. The use of
hashtags is a popular way to give the context of a tweet,
an important function due to the length constraint. For
example, the hashtag #savethenhs, reads as ‘save the na-
tional health service’, gives the context relevant to the tweet
“Speaker refers to #Lanseys ‘abysmal ignorance’ as demon-
strated on alcohol strategy; this SoS #notfitforpurpose #nhs
#savethenhs #healthbill”. The hashtags #iranelections and
#freeiran give the context and ideology behind the tweet
“AP: Report: #Iran ’s paramilitary launches cyber attack
http://is.gd/HiCYJU #iranelections #freeiran”. Also note
the use of #Iran both as a hashtag and as a crucial part of
the sentence.

Analysis of the content of hashtags poses some interest-
ing technical problems. The structure of the hashtag has
no restrictions. A hashtag can be a lexical word (#iran),
a compound of lexical words (#freeiran), or (compound
with) abbreviations (#savethenhs). Moreover, while the
Twitter engine is case insensitive, users do use variations
such as #freeiran (2203), #Freelran (729), #freelran (319),
#Preeiran (46), #FREEIRAN (44) or #freeIRAN (30). Al-
though semantically identical, the usage frequencies of these
hashtags differ greatly, as indicated in parenthesis.

The Corpus.

Our data consists of more than four hundred million tweets
tweeted between June-December 2009*. The data was col-
lected using Twitter API (the Spritzer and Gardenhose ser-
vices) and was submitted to Twitter’s streaming policy con-
trolling the sample size collected every day (5%-15% sample
of the non—private tweets, uniformly distributed). As Twit-
ter gained popularity and as the sampling rate changed from
time to time, the total number of tweets collected every week
varies greatly. Figure 1 presents the weekly change in the
sample size with standard deviation of 6.5 million.

We filtered out tweets that contain non—Latin characters,

3Their survey is based on about one million tweets in the
span of three years. The current stream of Twitter messages
is orders of magnitude larger.

4The data was collected and used for [26] and is generously
shared at: http://www.ark.cs.cmu.edu/tweets/.
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Figure 2: Four typical temporal trends (unnormal-
ized counts).
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Figure 3: Histogram of the log count of all the hash-
tags in our dataset (7 monthes).

trying to maintain a corpus of only English tweets. Although
we managed to remove all East Asian tweets, our corpus still
contained some non—English tweets mainly in Spanish and
Dutch. Non—English tweets can bias the results in case of
hashtags that are composed of non—English words or English
hashtags that appear in non—English content. A less noisy
corpus can lead to improved results.

Another possible bias may be introduced due to spam
tweets and spam hashtags. Identifying spam in Twitter is
beyond the scope of this work, thus we cannot estimate the
biased introduced by spammers.

Normalization of counts.

The great variance in the weekly sample size introduces
some bias to the hashtag counts, unless one assumes that all
hashtags have the same parametric distribution (over time).
This assumption does not hold as different hashtags present
different temporal patterns. The same hashtag could have
gained different number of counts in our dataset in case it
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Figure 4: Histogram of the log count of ‘fresh’ hash-
tags in 10 weeks time frame.
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Figure 5: Histogram of the log count of ‘fresh’ hash-
tags in 15 weeks time frame.

was introduced in different weeks simply due to the variance
in the sample size. See the weekly unnormalized counts of a
few hashtags in Figure 2 (and compare to the weekly sample
size in Figure 1). In order to address this bias we normalize
the hashtag counts in the following way:

’
N(ht') = count(ht}) - “
jGwZeeks ! Wi

Where ht' is the i-th hashtag, weeks = {22,...,52}, the
sampled weeks, count(ht}) is the number of times hashtag
¢ occurs in the sample of week j, w; is the sample size in
week j and w’ is a constant, we use w’ = w; so the sample
size of the first week is the base for the normalization.

In our experiments we looked only at hashtags which occur
over 100 times; assuming that less frequent hashtags are
either typos (typically a missing trailing white space hence
creating a concatenation of tokens that are not part of the
tag), used only in a weakly connected component of the
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Figure 6: Histogram of the log count of ‘fresh’ hash-
tags in 20 weeks time frame.
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Figure 7: Histogram of the log count of ‘fresh’ hash-
tags in 25 weeks time frame.

social graph or were introduced at the end of our date range
therefore did not have the chance to be widely adopted (or
ignored).

We look only on ‘fresh’ hashtags — hashtags that did not
get popular before our corpus was collected (e.g. unlike
#teaParty in Figure 2). We define a hashtag as fresh if
it did not appear in the first week (week 22) or if its nor-
malized count in the first week is less than 10% of its nor-
malized count in its peak. Figures 3, 4, 5, 6 and 7 show
the differences between the long tailed distributions of all
the hashtags vs. the normal distribution of the fresh ones
(we elaborate on the differences between different horizons
in the General Discussion section).

As mentioned above, all hashtags that appear less than
100 times (< 250e~°%) were removed from the dataset.



Preprocessing.

Identifying the distinct words composing a hashtag is a
mandatory step in order to process it and convert it to its
vectorial representation. Matching hashtags against a lex-
icon of English words and using dynamic programming to
perform segmentation of compound hashtags seems straight-
forward. However, many compound hashtags consists of non
standard words and abbreviations that do not appear in
standard dictionaries, e.g. ‘luv’ instead ‘of love’ in #weluvjb
(reads as ‘we love Justin Beiber’), and #savethenhs (reads
as ‘save the national health service’). In order to perform
the segmentation of compound hashtags, besides matching
hashtags against lexicons, we employed a simple heuristic
algorithm that exploits redundancy of hashtags that dif-
fer only orthographically. The algorithm matches tuples
like #freeiran, #Freelran and #Freelran and performs seg-
mentation according to the capital letters, assuming they
are used for visual segmentation (just like naming conven-
tions of variables in programming). This heuristic algorithm
achieves high precision and decent recall. However, we spend
a few hours validating the results and manually fixing some
untokenized hashtags.

4. PREDICTION MODEL

In order to predict the acceptance of a hashtag we learn a
regression model. In this section we describe our regression
model and the features we utilize in our model.

4.1 The Target Function

In a regression task, we want to learn a target function
f(ht) = n, where ht is a vector space representation of a
given hashtag, and n € Ny is the normalized count of its
occurrences in a time frame. Function f is typically learned
from a training set of example hashtags and their counts,
{hti,n;}. In this work we learn the transformed target func-
tion f’(ht) = log(n).

Using f’ instead of f serves two purposes: (a) We are
interested in predicting the magnitude of the acceptance in a
time frame, thus while a hashtag occurring 500 times is very
different from a hashtag occurring 1000 times, occurrence of
30000 is similar to 30500. f’ captures this observation. (b)
f' allows us better smoothing of temporal variations induced
due to different times of first appearance in the dataset.

4.2 Regression Model

We denote the training set by (X,Y) = {;, y:}, where z;
is a feature vector representation of hashtag ht; and y; =
log(n;), is the log of the normalized number of its occur-
rences. A linear function b + w”X = b + > w] X7 is a
simple yet robust way to model the dependency of Y on X
[11].

In its standard setting, the linear function is found ana-
lytically, however, this requires inversion of large matrices,
thus impractical. Instead we use stochastic gradient descent.
We use an L1 regularization to learn the optimal model pa-
rameters b and w:

. 2
Lebw) = 55, (i = b0+ X, 0fal)) + Sl

Where ¢ denotes the i—th training example and j denotes
the j—th attribute in z;. Regularization is introduced in or-
der to overcome sparsity and to lower the risk of overfitting.
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To learn the parameter values we use Stochastic Gradient
Descent (SGD) [2], for which the parameter update is as
follows:

Ab
Awi

ne(ys — (b+w"z))
Mt (yz' —(b+ wT:ci)xi — /\w,-)

We cycle through random permutations of the observa-
tions to achieve convergence. For each learning rate we use
a schedule of the form 7 ;’TOT where 7 > 0, and ¢ is
the number of epochs. The schedule satisfies the Robbins-
Monro conditions [28], 3 7: = oo and > 77 < oo, hence
convergence is guaranteed.

The final model strongly depends on a proper choice of
hyper-parameters, n and A. We use the Nelder-Mead [25]
method in order to find the optimal values of the hyper pa-
rameters. Though not guaranteed to converge to the func-
tion’s minimum [21], it is a widely used algorithm with ex-
cellent results on real world scenarios [33].

4.3 Model Features

In order to learn our regression models we represent each
hashtag as a binary vector. We define four types of features:

1. Hashtag content — features that can be extracted from
the hashtag itself.

2. Global tweet features — features related to the content
of the tweets containing the hashtag.

3. Graph topology features — features related to graph
topology and retweet statistics.

4. Global temporal features — features related to temporal
pattern of the use of the hashtag.

All features are binary therefore each attribute in each
feature type is represented by a short feature vector. The
concatenation of these vectors spans our vectorial space. In
the remaining of this section we give a detailed description of
the extracted features along with the intuition behind using
these features.

4.3.1 Hashtag content

For each hashtag we extract attributes belonging to a
number of main categories: length (characters and words),
hashtag orthography, emotional and cognitive dimension,
hashtag location, and match with lexical lists such as gen-
eral dictionary, proper names, holidays and celebrity names.
These attributes are extracted based on the hashtag alone,
e.g. #freelran is 9 characters long, 2 words long, both words
are listed lexical items, Iran is a state, the word free is a pos-
itive sentiment word etc.

Character length.

As a tweet’s length is limited to 140 characters, each char-
acter becomes expensive. Using a hashtag as part of the
tweet consumes space that could be used for the free text.
On the other hand, if a hashtag is too short it might not be
understood and will not serve its purpose. We used 7 bins
for this attribute, bins capture hashtag of 2,3,4,5,6-9,10-14
and >14 characters long.



Number of words.

55% of the hashtags in our data are compounds of more
than one word (e.g. #freelran, #GoogleGoesGaga). A word
compound can make a hashtag/meme clearer or too com-
plex, thus more/less appealing to be adopted by users. Four
bins were used for this feature: 1 word, 2,3 and 4 words or
more. Acronyms (e.g. ZNYC, #nhs and #[f) were consid-
ered one word.

Orthography.

Hashtags can be written in capital letters, contain some
capital letters and/or digits, e.g. #myheart4JB, reads as
‘my heart for Justin Beiber’. Using the ‘right’ writing style
can make the hashtag readable (savethenhs vs. saveTheNhs),
while on the other hand it requires more typing effort (re-
quires using the shift key). We use four attributes for this
group: no caps, some caps, all caps and contains digits.

Lexical items.

Working on a development set, we noticed that internet
memes sometimes evolve around celebrities, holidays or lo-
cations. We match the hashtag or its words against five
predefined lists: (1) a general lexicon containing all words
from a large portion (612MB) of English Wikipedia (ap-
proximating that the hashtag is a proper English word), (2)
a list of proper names taken from the name list compiled
at the US census of 1995 and published online, (3) a list of
celebrity names compiled from Forbes’ ‘The Celebrity 100’
lists of 2008-2010°. (4) A short list of holidays and days of
the week and (5) a list of all the world’s countries. Each of
these five lexicons is an attribute in our vector.

Location.

Hashtags can appear anywhere in a tweet. The location of
a hashtag can give an indication to the way it is used®. For
example, if located in the middle of the tweet, the hashtag
also serves as part of the sentence and not only as a meta
tag. We acknowledge three locations: prefix, infix and suffix.
We treat sequences of hashtags as a single location, thus,
for example, the two last hashtags in “AP: Report: #Iran
s paramilitary launches cyber attack hitp://is.gd/HiCYJU
#iranelections #freeiran” are both considered to be suffixes,
while #Iran is infix. Generally, if a hashtag has more that
25% of its occurrences in one position it is considered to fit
this position role. We note that a hashtag can, therefore,
have up to three locations.

Collocation.

Some hashtags tend to collocate with other hashtags. This
was captured with one binary attribute, where the value 1
is assigned if more than 40% of the hashtag occurrences are
collocated with other hashtags.

Cognitive dimension.
Words can be classified according to a number of psy-

5Based on a development set we added 3 names of recently
emerged celebrities to the celebrity lexicon.

®Ideally, we would like to know what POS tag is most suit-
able for a given hashtag, however, the informal nature of
tweets along with the fact that hashtags can be composed
of a number of words, sometime a complete clause, along
with the lack of POS annotated Twitter data, makes cur-
rent POS tagging techniques inapplicable.
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chological and cognitive dimensions. Some words trigger
specific emotions and encourage specific behavior, such as
increased empathy, involvement and cooperation [22]. The
psychological dimensions in which a hashtag is located, are
assumed to influence its spread. The LIWC project [32]
assigns words to a number of emotional and cognitive di-
mensions in various granularities. Among the dimensions
are positive sentiment, negative sentiment, physical, social,
optimistic, self, anger etc., 69 attributes in total.

4.3.2 Global Tweet Features

Although an ideal meme is self contained, in the Twitter
domain, the context in which the hashtag appears might con-
tribute to its acceptance as discourse communities on Twit-
ter (and offline) tend to converge linguistically and stylisti-
cally [7]. In order to capture the context in which hashtags
appear, we looked on the cognitive dimension of the 1000
most frequent words each tag cooccurred with.

Cognitive dimension.

Similarly to the cognitive dimension for the hashtags, the
most frequent words appearing with the hashtag are mapped
to the 69 LIWC categories. Thus if a hashtag ht tends to
appear with the word ’great’ — the contextual positive sen-
timent attribute will be 1.

4.3.3 Graph Topology Features

It is clear that graph topology plays an important role in
the spread patterns [18, 19, 23, 4, 5, 13, 29]. Since we are
mainly interested in how the content of an idea affects its
acceptance, we only use basic topological features with the
strongest predictive power.

Average number of followers.
We divide the average number of followers of users who
used the hashtag to 19 bins on a sub logarithmic scale.

Max number of followers.

Although a user with many followers does not necessarily
has influence proportional to the number of his/her followers
[4], the number of followers could be a crude estimator to
the influential power of the user. We divide the max number
of followers observed for users who used the hashtag to 19
bins on a logarithmic scale.

Retweets ratio.

This attribute captures the tendency of a hashtag to ap-
pear in retweeted messages. We are interested in this feature
in order to create dependency with the orthographic feature
set as retweeting is a simple operation that does not require
extensive use of the shift key in case the hashtag has many
capital letters. We used 25 bins for different retweet rates
from less than 1% of retweets (first bin) to 60%-100% of
retweets (last bin).

4.3.4 Global Temporal Features

Different hashtags are characterized by different temporal
trends observed in close proximity to peak hours of usage of a
hashtag [35]. We are modeling the acceptance of a hashtag in
a longer time frame of weeks and month, therefore we model
the temporal trend in the first few weeks to the appearance
of a hashtag, using it to project about the future trend.



Temporal features.

We sampled the normalized weekly counts of each hashtag
in four time stamps: w;, ¢ € {t,t + 1,¢t + 2,t + 6}, where
t is the first week the hashtag occurred in our data, and
t + j is the j—th week after the first occurrence. The four
samples give three lag values, denoted as direi1,2,3. di is
the ratio of change from the previous time stamp. These
3-lag values capture the change in the meme usage in the
first two weeks and then again after another four weeks,
approximating ‘stickiness’ and ‘persistence’.

For each lag value we use 17 bins on a logarithmic scale
from a change larger than -200% (decreased usage) to more
than 200% change (increased usage). If the d ratio falls
between -5% and 5% we consider the hashtag to be stable
in that week.

We call this feature type ‘global’ since it is based on the
global count of hashtags occurrences in a given week and not
on occurrences induced locally by cascading from specific
nodes.

S. EXPERIMENTAL SETUP

In our experiments we were trying to learn three aspects
in the prediction: (i) what is the attribute combination that
yields the best prediction? (ii) what are the strongest at-
tributes and how do they complement each other? (iii)
how does the prediction accuracy change given different time
frames.

All our experiments were executed in a 10-fold cross val-
idation manner. Performance is measured by the mean
square error (MSE), a standard measure for regression tasks
[1].

We note that when computationally possible, besides the
stochastic gradient descent (SGD) described in Section 4.2,
we also applied analytic regression algorithm and Support
Vector Machine for regression (SVR) [31] with various ker-
nels and optimization of hyper parameters (both implemented
as part of the Weka toolkit [16]). Both SVR and analytic
regression outperformed the SGD insignificantly. We backed
to the SGD as it is orders of magnitude more efficient on high
dimensional vectors and since the regression model produced
by the SGD is more interpretable than some kernel models.

Baseline model.

Our basic model is a regression that optimizes only the
intercept B, which always converges to the average, predict-
ing the log—average normalized number of occurrences as a
fixed function, keeping the error close to o2, the variance of
the observed counts.

Other basic models.
Each of the four feature types in Section 4.3 was used in
a different regression model.

Hybrid models.

Finally, we experimented with different combinations of
the four feature types, studying the mutual effect of various
feature types.

6. RESULTS

Table 1 shows our results for the baseline, the four ba-
sic models and the hybrid model. Results are presented
for four different horizons. Each of the basic models out-
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Model MSE]_() MSE15 MSE20 MSE25
baseline 4.988 3.796 3.125 2.698
HT,.), 4.380 3.410 2.902 2.565
TWeontont | 4.776 3.500 2.743 2.291
Graph 4.295 3.144 2.404 1.923
Temporal 3.294 2.893 2.507 2.112
Hybridan 2.584 2.098 1.685 1.315

Table 1: MSE of basic models and the hybrid model
in horizons. MSFE, indicates results for acceptance
prediction in an n weeks time frame.

Time frame | weeksig | weeksis | weekszg | weeksas
Sample size 21683 19020 15635 10864
Mean avg. 4.342 5.005 5.513 5.891
STD 4.986 3.794 3.125 2.699
Table 2: Sample size, average log of normalized

counts and standard deviation of ‘fresh’ hashtags in
different time frames.

performs the baseline, while the global models (graph and
temporal) outperforms the content based models. The hy-
brid model, combining all feature types is significantly better
than all partial models. All models achieve better predic-
tion as prediction horizon grows. This can be attributed to
the decreased standard deviation of the counts as shown in
Table 2 and in Figures 4,5,6 and 7.

Table 3 presents the contribution of different combina-
tions of feature types, demonstrating that all feature types
contribute to the prediction and no feature type is masked
under a strong signal produced by other feature types. Ta-
ble 3 also presents the correlation coefficient between the
predicted values and the real values. The baseline, always
optimized so the MSE is close to o2, presents no correlation
with the target values as it is a fixed function. A correlation
of 0.669, achieved in the all-inclusive hybrid model, shows
that our linear model serves as a good approximation to the
actual model. We also note that even the 0.268 correlation
achieved by the HTy; is reasonable in real-world noisy data.

It is interesting to note that even though the content at-
tributes of the hashtag and the tweet context show only a
small improvement over the baseline with MSE of 3.41 and
3.509, combining both content types presents a much smaller
error with MSE of 2.967.

7. GENERAL DISCUSSION

Model MSE | Corr—coeff
baseline 3.796 -0.021
Htan 3.410 0.319
TWecont 3.509 0.275
Graph 3.144 0.414
Temporal 2.893 0.487
HTcont + TWeont 2.967 0.467
HTcont + TWeont + Graph | 2.546 0.573
HTcont + TWeont + Temp 2.321 0.6234
Graph+Temporal 2.450 0.594
Hybridan 2.098 0.669

Table 3: MSE and correlation coefficient for various
combinations of feature types for a 15 weeks time
frame.



Features MSE | corr—coeff
baseline 3.796 -0.021
number of words | 3.695 0.162
length chars 3.693 0.163
orthography 3.781 0.061
lexicons 3.667 0.183
let+nw 3.662 0.187
collocation 3.651 0.195
cognitive 3.637 0.204
location 3.613 0.218
lc+nw+ortho 3.654 0.192
lc+nw+cog 3.637 0.204
lct+nw-+lex 3.631 0.207
Htan 3.410 0.319
TWcont 3.509 0.275
HT.n + TWeont 2.967 0.467

Table 4: MSE and correlation coefficient of each sin-
gle content feature set and combinations of content
features for a 15 weeks time frame.

Model MSE | Corr—coeff
di 3.236 0.383
da 3.39 0.326
ds 3.44 0.303
di +d2 3.088 0.431
d; +ds 2.97 0.464
dz +ds 3.19 0.398
d; +d2 +ds | 2.893 0.487

Table 5: MSE and correlation coefficient for differ-
ent number of lags and different distances between
sampling points in 15 weeks horizon. d; indicates
the the i-th lag described in Section 4.3.4.

In this section we discuss some of the results in greater
detail.

Temporal based prediction.

Our temporal feature set (Section 4.3.4) is based on lags
computed from samples in four time stamps, assuming that
the lags portrait the tendency of a hashtag to stick around
and propagate. Table 3 shows that hybrid models that in-
clude temporal features always outperform other models for
a 15 weeks horizon. Table 1 shows that the temporal models
performs better than other feature types in 10 and 15 weeks
horizon while the graph—based model performs better in 20
and 25 weeks horizon.

Looking at our data, 4766 hashtags have a single spike.
While our temporal features correctly model single-spiked
hashtags, they fail to model hashtags with multiple spikes
(see Figure 8), thus do not perform as well on longer hori-
zons and hashtags with reoccurring spikes. An algorithm for
clustering and predicting patterns of short temporal varia-
tions was proposed by [34, 35]. Table 5 illustrates the MSE
for different numbers and distances of lags.

A close examination of spiked hashtags show that these
are usually related to Twitter games and idioms that flare
for an instant then quickly vanish, sometimes reoccurring
for another playful round. Twitter games can be sometimes
captured by our content features. An analysis of the infor-
mation diffusion of (the most popular) Twitter idioms was
done in [29].
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— #aolradiorequest
- - #howgoodisGod
*-+ #FOverYou

log(occurrence (normalized))
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Figure 8: Hashtags with one, two and three spikes.

The effect of cognitive attributes.

Table 4 presents various combinations of attributes from
the content type. While the baseline’s MSE is 3.796, using
all hashtag attributes (listed in Section 4.3) achieves MSE
of 3.41, each attribute having a small contribution to the
model. One of our hypotheses was that the hashtag’s cog-
nitive attributes have a great effect on the hashtag’s pop-
ularity. While this hypothesis does not hold, the LIWC
cognitive categories had a positive impact when applied to
the context of the tweet (T'Weont), still supporting the in-
tuition that the use of certain words drives users to adopt
a hashtag or get involved in a certain discourse (defined by
specific hashtags). We attribute the marginal contribution
of the cognitive attributes of the hashtag to its ‘sparseness’,
as these attributes were useful in the richer context.

These findings also validate sociolinguistic theories about
the correlation between the use of certain words and person-
ality traits such as the image of self and on team work [10,
30, 22, 17, 32].

Dependencies and collinearity.

In order to better understand the dependencies between
attributes and feature types, we trained models with dummy
attributes. Dummy attributes are second order attributes
created by a Cartesian product over the feature space. Since
all features are binary, a new feature type z;; was added:
zij = 1iff x; = 1 Ax; = 1, where x; and x; are attributes in
the standard model. For example, while in the standard (hy-
brid) model we have two different attributes containsCaps
(some, but not all, letters in the hashtag are capitalized) and
rtRateg.a—o.6 (the hashtag has retweet rate of 40%—60% of
its appearances); a dummy attribute in our new model is
containsCaps + rtRatep.a—o.¢ which equals 1 iff both at-
tributes had 1 in the hashtag’s vector (e.g. the hashtag
#BoyFriends). The dimension of our Cartesian models is
very large (thousands) compared to the size of the sample
(see Table 2), thus overfitted. While overfitted, analysis of
model coefficients captures the relations between different
variables.



Attribute Coefficient
charsiong + rtRateg.4a_o0.6 0.7677
charss + rtRateg.4—0.6 0.5718
charss + rtRateg.4_0.6 0.3543
charss + rtRateg.4_0.6 0.3469
charsg—9 + rtRateg.a—0.6 0.3417
charsio—14 + rtRateg.4—0.6 0.3060
charsy + rtRateg.4_0.6 0.1266
wordsy + rtRateg.a—o0.6 0.6086
wordss + rtRateg.4—0.6 0.4224
wordss + rtRateg.a_o.6 0.2581
wWordsiong + rtRateg.4—o.6 0.0260
containscaps + rtRatep.4—0.6 0.3131
nocaps + rtRateg.4—0.6 0.002
allcaps + rtRateg.a—0.6 -0.3437

Table 6: model coefficients dummy attributes of
hashtag length and orthography combined with high
retweet rates (40%-60% of the message contain-
ing these hashtags are retweeted), chariony indicated
hashtags longer than 14 characters, wordsiongy indi-
cates hashtags that contain more than 3 distinct
words.

Cognitive load and physical constraints.

Choosing attributes for our model we had several hypothe-
ses about the the acceptance of hashtags. One such hy-
pothesis is inspired by the optimality theory framework. A
successful hashtag should be clear, informative and yet not
too complex. The complexity of a hashtag can be measured
by its length (in chars), the number of words it consists of
and its orthographic features. Longer hashtags are harder to
type, they are not economical unless very informative (due
to the Twitter 140 characters policy) and they can be harder
to interpret (a sequence of words with no white spaces). All
these aspects can be broken down if one takes retweeting
into account, as a retweeted message doesn’t require retyp-
ing a complex hashtag. Table 6 illustrates the differences in
the coefficients when the typing constraint is accounted for
by looking only on hashtags with high retweet rate.

Examining the coefficients of the dummy attributes repre-
senting the hashtag length (chars and number of words) with
the retweet rates, we observe an interesting phenomena. The
coefficients show contradictory effects of the hashtag number
of words and its character length. It seems that while users
do not care so much about longer hashtags, they still prefer
hashtags that are less complex. It might be because these
are harder to remember or interpret (compare #savethenhs
vs. #technology, both 10 characters long). While a larger
number of words seems to be a burden, we observe that once
capital letters are introduced to mark word boundaries, the
coefficient of the dummy attribute that captures the depen-
dency between number of words and retweets grows (com-
pare #savethenhs vs. #saveTheNHS).

8. CONCLUSIONS

Predicting the spread of ideas in online communities is
an interesting task from both commercial and psychological
perspectives. Traditional approaches model the propagation
of ideas in social media by analyzing the topology of the so-
cial graph. In this work we took a hybrid approach to pre-
dicting the spread of ideas according to their content as well
as the topology of the social graph. We viewed Twitter hash-
tags as ideas and as potential memes and learned a regres-
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sion model that predicts the spread of each hashtag/meme
in a time frame. Our experiments demonstrated that the
content of the idea plays an important role in its acceptance
by the community. We demonstrated that an elegant hy-
brid approach, combining the meme’s content, the meme’s
context, global temporal features and graph topology shows
the best results, while maintaining computational efficiency.
However, some of the feature types we used require more
data that is not always available. In contrast, using the
meme’s content alone is free of the need of any global infor-
mation but the meme itself. Our experiments also demon-
strate some psychological and cognitive-linguistic principles
on a large scale data.

There are many directions for future research. One of the
main directions is to gain a better understanding of the mu-
tual roles the different feature types play. Another direction
is to better characterize psychological aspects and cognitive
constraints and the ways they interact.

9. ACKNOWLEDGMENTS

We thank Gideon Dror and Idan Szpektor for valuable
discussions and advice about this research.

10. REFERENCES

[1] J. Bibby and H. Toutenburg. Prediction and Improved
Estimation in Linear Models. John Wiley & Sons,
Inc., New York, NY, USA, 1 edition, 1978.

L. Bottou. Stochastic learning. In O. Bousquet and

U. von Luxburg, editors, Advanced Lectures on
Machine Learning, Lecture Notes in Artificial
Intelligence, LNAI 3176, pages 146—-168. Springer
Verlag, Berlin, 2004.

M. Cataldi, L. Di Caro, and C. Schifanella. Emerging
topic detection on Twitter based on temporal and
social terms evaluation. In Proceedings of the Tenth
International Workshop on Multimedia Data Mining,
pages 1-10. ACM, 2010.

M. Cha, H. Haddadi, F. Benevenuto, and K. P.
Gummadi. Measuring User Influence in Twitter: The
Million Follower Fallacy. In In Proceedings of the 4th
International AAAI Conference on Weblogs and Social
Media (ICWSM), Washington DC, USA, 2010.

W. Chen, C. Wang, and Y. Wang. Scalable influence
maximization for prevalent viral marketing in
large-scale social networks. In Proceedings of the 16th
ACM SIGKDD international conference on Knowledge
discovery and data mining, pages 1029-1038. ACM,
2010.

E. Cunha, G. Magno, G. Comarela, V. Almeida,

M. Gongalves, and F. Benevenuto. Analyzing the
dynamic evolution of hashtags on twitter: a
language-based approach. ACL HLT 2011, page 58,
2011.

C. Danescu-Niculescu-Mizil, M. Gamon, and

S. Dumais. Mark my words!: linguistic style
accommodation in social media. In Proceedings of the
20th international conference on World wide web,
pages 745-754. ACM, 2011.

D. Davidov, O. Tsur, and A. Rappoport. Enhanced
sentiment learning using twitter hashtags and smileys.
In Proceedings of the 23rd International Conference on

2]

3]

[4]

[5]

[6]

[7]

8]



Computational Linguistics: Posters, pages 241-249.
Association for Computational Linguistics, 2010.

D. Davidov, O. Tsur, and A. Rappoport.
Semi-supervised recognition of sarcastic sentences in
twitter and amazon. In Proceedings of the Fourteenth
Conference on Computational Natural Language
Learning, pages 107-116. Association for
Computational Linguistics, 2010.

D. Davis and T. Brock. Use of first person pronouns
as a function of increased objective self-awareness and
performance feedback. Journal of Ezperimental Social
Psychology, 11(4):381-388, 1975.

N. R. Draper and H. Smith. Applied Regression
Analysis (Wiley Series in Probability and Statistics).
Wiley-Interscience, third edition, April 1998.

M. Gé6tz, J. Leskovec, M. McGlohon, and C. Faloutsos.
Modeling blog dynamics. In International Conference
on Weblogs and Social Media, 2009.

A. Goyal, F. Bonchi, and L. Lakshmanan. Learning
influence probabilities in social networks. In
Proceedings of the third ACM international conference
on Web search and data mining, pages 241-250. ACM,
2010.

D. Gruhl, R. Guha, D. Liben-Nowell, and A. Tomkins.
Information diffusion through blogspace. In
Proceedings of the 13th international conference on
World Wide Web, WWW 04, pages 491-501, New
York, NY, USA, 2004. ACM.

L. Guo, E. Tan, S. Chen, X. Zhang, and Y. Zhao.
Analyzing patterns of user content generation in
online social networks. In Proceedings of the 15th
ACM SIGKDD international conference on Knowledge
discovery and data mining, pages 369-378. ACM,
20009.

M. Hall, E. Frank, G. Holmes, B. Pfahringer,

P. Reutemann, and I. Witten. The WEKA data
mining software: an update. ACM SIGKDD
Ezxplorations Newsletter, 11(1):10-18, 2009.

J. Kahn, R. Tobin, A. Massey, and J. Anderson.
Measuring emotional expression with the Linguistic
Inquiry and Word Count. The American journal of
psychology, pages 263-286, 2007.

D. Kempe, J. Kleinberg, and E. Tardos. Maximizing
the spread of influence through a social network. In
Proceedings of the ninth ACM SIGKDD international
conference on Knowledge discovery and data mining,
pages 137-146. ACM, 2003.

D. Kempe, J. Kleinberg, and E. Tardos. Influential
nodes in a diffusion model for social networks.
Automata, Languages and Programming, pages
1127-1138, 2005.

H. Kwak, C. Lee, H. Park, and S. Moon. What is
twitter, a social network or a news media? In
Proceedings of the 19th international conference on
World wide web, pages 591-600. ACM, 2010.

J. C. Lagarias, J. A. Reeds, M. H. Wright, and P. E.
Wright. Convergence properties of the nelder-mead
simplex algorithm in low dimensions. SIAM Journal of
Optimization, 9:112-147, 1996.

G. Leshed, J. Hancock, D. Cosley, P. McLeod, and

G. Gay. Feedback for guiding reflection on teamwork
practices. In Proceedings of the 2007 international

652

23]

(24]

(25]

(26]

27]

(28]

29]

(30]

(31]

(32]

(33]

(34]

(35]

(36]

ACM conference on Supporting group work, pages
217-220. ACM, 2007.

J. Leskovec, L. A. Adamic, and B. A. Huberman. The
dynamics of viral marketing. ACM Trans. Web, 1,
May 2007.

J. Leskovec, L. Backstrom, and J. Kleinberg.
Meme-tracking and the dynamics of the news cycle. In
Proceedings of the 15th ACM SIGKDD international
conference on Knowledge discovery and data mining,
pages 497-506. Citeseer, 2009.

J. A. Nelder and R. Mead. A Simplex Method for
Function Minimization. The Computer Journal,
7(4):308-313, January 1965.

B. O Connor, R. Balasubramanyan, B. Routledge, and
N. Smith. From tweets to polls: Linking text
sentiment to public opinion time series. In Proceedings
of the International AAAI Conference on Weblogs and
Social Media, pages 122-129, 2010.

D. Ramage, S. Dumais, and D. Liebling.
Characterizing microblogs with topic models. In
International AAAI Conference on Weblogs and Social
Media. The AAAT Press, 2010.

H. Robbins and S. Monro. A stochastic approximation
method. Annals of Mathematical Statistics,
22:400-407, 1951.

D. M. Romero, B. Meeder, and J. Kleinberg.
Differences in the mechanics of information diffusion
across topics: Idioms, political hashtags, and complex
contagion on twitter. In Proceedings of the 13th
international conference on World Wide Web, WWW
11, 2011.

S. Rude, E. Gortner, and J. Pennebaker. Language use
of depressed and depression-vulnerable college
students. Cognition and Emotion, 18(8):1121-1133,
2004.

A. Smola and B. Scholkopf. A tutorial on support
vector regression. Statistics and computing,
14(3):199-222, 2004.

Y. R. Tausczik and J. W. Pennebaker. The
Psychological Meaning of Words: LIWC and
Computerized Text Analysis Methods. Journal of
Language and Social Psychology, 29(1):24-54, Mar.
2010.

M. Wright. Direct search methods: Once scorned, now
respectable. In D. Griffiths and G. Watson, editors,
Numerical Analysis, pages 191-208. Addison Wesley,
Redwood City, 1995.

J. Yang and J. Leskovec. Modeling Information
Diffusion in Implicit Networks. In 2010 IEEE
International Conference on Data Mining, pages
599-608. IEEE, 2010.

J. Yang and J. Leskovec. Patterns of temporal
variation in online media. In Proceedings of the fourth
ACM international conference on Web search and
data mining, pages 177-186. ACM, 2011.

T. Zaman, R. Herbrich, J. Van Gael, and D. Stern.
Predicting information spreading in twitter. In
Workshop on Computational Social Science and the
Wisdom of Crowds, NIPS, 2010.



