
What’s Inside the Cloud?
An Architectural Map of the Cloud Landscape

Alexander Lenk, Markus Klems, Jens Nimis, Stefan Tai
FZI Karlsruhe

Haid-und-Neustr. 10-14,
76131 Karlsruhe, Germany

{alenk, klems, nimis, tai}@fzi.de

Thomas Sandholm
Hewlett-Packard Laboratories

1501 Page Mill Road,
Palo Alto, CA 94304

thomas.e.sandholm@hp.com

Abstract

We propose an integrated Cloud computing stack archi-
tecture to serve as a reference point for future mash-ups and
comparative studies. We also show how the existing Cloud
landscapemaps into this architecture and identify an infras-
tructure gap that we plan to address in future work.

1. Introduction

Cloud computing is emerging as a model in support of
“everything-as-a-service” (XaaS) [8]. Virtualized physical
resources, virtualized infrastructure, as well as virtualized
middleware platforms and business applications are being
provided and consumed as services in the Cloud. Engi-
neering software systems that use “everything-as-a-service”
and which in turn may be provided as Cloud services them-
selves, however, requires a good understanding of the nu-
merous emerging Cloud computing technologies as well as
of already available services solutions offered in the open
Cloud market.

1.1. Objective

How do the various Cloud technologies and offerings
ranging from open source frameworks like HadoopMapRe-
duce to commercial services from Amazon and Google re-
late to each other? How do we compare and understand
these Cloud technologies and services from a technology,
software architectural, and from a business perspective?

1.2. Approach

As a first step towards answering these questions, we
propose a generic Cloud computing stack that classifies
Cloud technologies and services into different layers. We

explain each layer through examples and demonstrate how
this model helps in explaining the overall Cloud computing
landscape. We further illustrate the use of the stack in mod-
eling a Cloud computing ecosystem of various providers.
The Cloud computing stack aims at facilitating commu-
nication about different Cloud technologies and services,
including placing more complex offerings such as Google
App Engine on the Cloud computing landscape, and at sup-
porting the design of software systems that wish to use and
compose existing Cloud technologies and services.
The different technologies and tools were categorized

in our stack based on the highest-level interface offered to
its users. We also recognize that some tools allow a wide
range of lower-level plug points, but we focus on repre-
senting the primary use of the technology, which is most
likely to happen on the highest level. Our architectural
stack provides guidance about how to combine, and inter-
change technologies. For example, a developer at The New
York Times [27] needed to transform a large number of doc-
uments and was able to obtain machines to run on from
a virtual machine provisioning system (Amazon EC2 [4])
and parallelize the processing using a parallel programming
framework (Hadoop MapReduce [30]). Others could learn
from his example but may wish to replace either the ma-
chine provisioning system or the programming framework
to meet their needs. Our categorization of existing technolo-
gies does not aim at being complete, which is impossible in
the currently rapid evolution of the Cloud landscape, but
rather serves as a reference point or snapshot to guide fu-
ture developments. The tools we mention are for the same
reason limited to the most popular or well known.

2. Reference Stack

Distributed computing technologies targeted at enter-
prise systems integration in the 90’s such as the Open
Group’s DCE [29], and the Object Management Groups

CLOUD’09, May 23, 2009, Vancouver, Canada
978-1-4244-3713-9/09/$25.00 © 2009 IEEE ICSE’09 Workshop23

CORBA [28] offered programmable interfaces to overcome
the complexities of remote procedure calls. Specifications
such as OMA, in the CORBA case, served as reference
architectures for services offered at different levels in the
frameworks, e.g. vertical (industry domain specific) versus
horizontal (infrastructure support) services. These catego-
rizations simplified interoperability and promoted vendor
independence. A decade later the Grid community pro-
posed the Open Grid Services Architecture (OGSA) [20]
as an effort to standardize de-facto Grid service interfaces
and help adoption of Grid technologies across organizations
at a global scale. The Service Oriented Architecture (SOA)
inherent in the WS-I specifications [18] serve a similar pur-
pose for the Web services B2B community.
What differs the Cloud from these earlier technologies

is the “grass-root” evolution of a wide range of technolo-
gies from successful Web 2.0 enterprises such as Google,
Facebook, and Amazon, and the enhanced programmabil-
ity (access to APIs, RPCs, SDKs etc) offered to develop-
ers. This plethora of interfaces brings an unprecedented op-
portunity to systems integrators or mash-up technologists to
realize their business ideas with minimal investment in in-
frastructure development. It can be a daunting task to nav-
igate around the technologies in the Cloud landscape, and
although various mind maps have been proposed (e.g. [57]),
they provide little architectural guidance as to how the of-
ferings may be integrated.
In the spirit of earlier distributed computing architectures

we therefore propose a first architectural categorization of
Cloud technologies as a stack of service types. Our stack
was inspired by the “everyting as a service” (XaaS) taxon-
omy; Infrastructure as a Service (IaaS), Platform as a Ser-
vice (PaaS), and Software as a Service (SaaS); recent de-
velopments of a Cloud stack for the HP, Intel, and Yahoo!
Open Cirrus Cloud testbed [45]; and a survey of state-of-
the-art Cloud services tools. The stack is depicted in Fig-
ure 1.

2.1. Infrastructure as a Service

On the lowest level of the infrastructure closest to the
hardware we distinguish two types of services, Physical Re-
source Set (PRS) and Virtual Resource Set (VRS) services.
Both of these service types provide a management front-end
API for a set or pool of resources in order to allow higher
level services to automate setup and tear-down, demand-
based scalability, fail-over and operating system hosting.
Primary functionality includes starting and stopping indi-
vidual resources, OS imaging, network topology setup and
capacity configuration. The PRS layer implementation is
hardware dependent and therefore tied to a hardware ven-
dor, whereas the VRS layer can be built on vendor inde-
pendent hypervisor technology such as Xen [14] or on top

of a PRS service to run in multi-vendor Clouds such as the
Open Cirrus testbed. Examples of PRS services include,
Emulab [33] and iLO [32]. VRS services include Amazon
EC2 [4], Eucalyptus [43], Tycoon [37], Nimbus [36], and
OpenNebula [53]. The reason to split these Resource Set
(RS) services into two types allows automated management
of physical as well as virtual resources. Furthermote some
Cloud applications may incur too much overhead from run-
ning on a hypervisor but might still want to use similar auto-
mated management capabilities offered by virtual machine
monitors (VMMs) and VMM management toolkits such as
the VRS examples given. Another reason for demarcation
is that different types of resources such as storage, network
and compute node resources might need to be virtualized in
different ways. However, they might still be able to have a
common PRS interface.
One level higher up in the stack but still in the

IaaS category we distinguish three types of Basic Infras-
tructure Services (BIS), computational, storage, and net-
work. Some examples are MapReduce [11] (computa-
tional), GoogleFS [52] (storage), and OpenFlow [39] (net-
work). As the highest level in the IaaS stack we con-
sider Higher Infrastructure Services (HIS). Amazon’s Dy-
namo [22], and Google’s Bigtable [17] all fall into this cat-
egory as they are typically built on top of BIS tools.

2.2. Platform as a Service

Moving up to the PaaS level of our integrated stack
we categorize the services into Programming Environ-
ments and Execution Environments. Example of the for-
mer is Sun’s project Caroline [42] and the Django frame-
work [13], and examples of the latter are Google’s App En-
gine [24], Joyent’s Reasonably Smart [34] and Microsoft’s
Azure [40]. As seen by these examples an Execution
Environment PaaS typically also encompasses a Program-
ming Environment PaaS. You could potentially replace the
Django framework in Google App Engine with your own
Programming Environment and Microsoft Azure offers a
wide range of alternative programming tools under the
Azure runtime umbrella. This decoupling between execu-
tion and development environments is thus represented by
having two categories in our stack model.

2.3. Software as a Service

All the applications that run on the Cloud and provide a
direct service to the customer are located in the SaaS layer.
The application developers can either use the PaaS layer to
develop and run their applications or directly use the IaaS
infrastructure. Here we distinguish between Basic Appli-
cation Services and Composite Application Services. Ex-
amples of Basic Application Services are the OpenId [46]

24

�������	
������

����	
������

��
�

��������	
��

������	��������	
��

��������

�
�

�
�
�

��������������	
������

�������	��������	
��

�� �	������	!��������

����	��������������	
������

�� �	"�� ��#

�� �	"�� ��	� ��$��� ���	��������������	
������

�� �	%��&��	'�(

�� �	'����$

������������

���� �

��� ����� 	'���������

)
�
�
��
�
�
�
�
�*	�

�
�
�
�
��
��
�
*	!

�
�
��
��

*	+

��
,�
�
�
��
	!
�
�
�

�
�
�
�
�

'�������	'���������

%
�
�
�
�
���

��
�

�
�
�
�
�
�
�
	�
�
�
�
�
��

!
�
��
��

*	�

���

*	%

�
��
�
�
��
�
��
�
*	-

�
�
�	�

�
�
�

�
�
�
�
�

����	%��������	
������

��������	%��������	
������

%���������

%��������	
������

�� �	.�����

�� �	.��������

�� �	"�� ��)���

/�����0 �� �	.���#���

�� �	"�� ��	%��	'� ��

�� �)1�� �

�
�
�
�

����������� �� �	!��������	2��0

�� �	����	'��������	!��0�������������	% �� ����	
������

Figure 1: Cloud stack

25

and Google Maps [26] services. In the Composite Appli-
cation Service category we have the mash-up support sys-
tems with Opensocial as the prominent example allowing
entire social networks likeMySpace to be used as Basic Ser-
vices. We categorize Basic and Composite services into Ap-
plication Services, which comprise the highest level build-
ing blocks for end-user applications running in the Cloud,
such as Google Docs [25], Microsoft’s Office Live [41] and
OpenSocial mash-ups such as Auciti’s Hangout [54].

2.4. Human as a Service

Some services rely on massive-scale aggregation and ex-
traction of information from crowds of people. Each indi-
vidual in the crowd may use whatever technology or tools
he or she see fit to solve the task. We call this top-most layer
in our stack Human as a Service (HuaaS). In some cases
human intelligence is used to contribute arbitrary services,
such as “newsworthy” video streams (YouTube [58]), or on-
demand subtask solutions (Amazon Mechanical Turk [3]).
In our stack, these tools belong to the Crowdsourcing (CS)
category. Some human intelligence aggregation services are
more controlled and more targeted at predicting events or
promoting popular ideas. Examples include the Iowa Elec-
tronic Markets [9], which are mainly used to predict out-
comes of political races, and Digg [12], which is used to
promote popular news. We call this latter category of ser-
vices Information Aggregation Services (IAS), since they
all aim at producing a single aggregate number represent-
ing the popular opinion of the crowd in various ways, for
example using market mechanisms.

2.5. Supporting services

Some services in the Cloud need to have access to all
layers in the stack to present a coordinated view to its users,
e.g., for debugging, accounting, monitoring and billing pur-
poses. This is an, as of yet, largely unexplored area of re-
search but global research testbeds such as GENI [21], the
Open Cloud Consortium [44] and Open Cirrus [45] are ex-
pected to deliver solutions in this category for their users.
Here we distinguish between the administrative support sys-
tems, well known from the Grid (e.g. EGEE GridICE [6])
and networking platforms (e.g. PlanetLab CoMon [47]),
and business support systems for billing and federated au-
thentication etc. In our survey we find the business support
systems that span Cloud layers to be the most neglected part
of the current Cloud infrastructure, and for our future work
we thus plan on experimenting with mash-ups that address
this shortcoming.

3 The Cloud Ecosystem

A rich ecosystem of Cloud computing services and
providers has emerged, forming a complex environment in
which Web-scale end-user applications and services are de-
veloped, tested, deployed and operated. While this complex
service environment provides many choices, at the same
time it poses a great challenge to engineers in charge of
building resilient application architectures. The growing di-
versity of services, frameworks, platforms and tools within
the Cloud computing community tends to obfuscate rea-
sonable use and combination of advertised offerings. Our
Cloud computing reference model serves as a means to cat-
egorize existing Cloud computing services on the basis of
distinct service features. Thereby our reference model as-
sists the design of application architectures that utilize and
combine multiple Cloud computing services.
Research analysts of Merrill Lynch identified 10 com-

panies with exposure to the Cloud, as well as a number
of other promising Cloud computing service providers and
enablers [49]. Amazon is perceived as one of the major
players in the business, offering a wide range of prominent
Cloud computing services such as Elastic Compute Cloud
(EC2), Simple Storage Service (S3), SimpleDB and Simple
Queueing Service (SQS) [4]. EC2 is a service that provides
access to different types of Xen-virtualized machine im-
ages, a core infrastructure service on the Virtual Resource
Set (VRS) layer of our reference model. Similar services
are provided by a wide range of companies, including App-
Nexus Cloud [7], Bluelock Virtual Cloud Computing [10],
ENKI Virtual Private Data Centers [15], FlexiScale Cloud
Computing[19], GoGrid Cloud Hosting [23], Joyent Accel-
erators [34], RackspaceMosso Cloud Servers [48], and Ter-
remark Infinistructure [55]. With S3 and SimpleDB, Ama-
zon provides two services that allow persistent data storage
in the Cloud. We classify S3 and similar services, such as
GoGrid Cloud Storage, Joyent BingoDisk, Nirvanix Stor-
age Delivery Network, and Rackspace Mosso Cloud Stor-
age as Basic Infrastructure Services (BIS) because they
only provide basic storage functionality. Database-as-a-
Service offerings like SimpleDB and technologies, such as
Google Bigtable [17], 10gen MongoDB [1] and Hadoop
HBase [31], on the other hand, are categorized as Higher In-
frastructure Services (HIS) because they provide additional
functionality, like a query language.
While it can be argued that Amazon’s content delivery

network service CloudFront [4] is a Higher Infrastructure
Service (HIS), this category does not apply to more com-
plex content and application delivery service offerings, such
as Akamai’s EdgePlatform. Java EE Web applications are
deployed on EdgePlatform to run on Akamai’s distributed
computing infrastructure [2]. Therefore, Java design prin-
ciples and existing program code can be used in order to

26

develop applications for EdgePlatform, since it is only the
deployment model that changes. This is why EdgePlat-
form can best be categorized as a PaaS Execution Envi-
ronment that draws on Java EE as Programming Environ-
ment. Similarly, Google App Engine is the PaaS Execution
Environment for Python applications and Microsoft Azure
a PaaS Execution Environment for applications built with
Microsoft .NET technology.

3.1 Cloud Service Composition

Simple Cloud computing services can be combined into
more complex and versatile service and application com-
positions. This is not only viable for services on the SaaS
layer, as described in section 2.3, but also on lower layers
of our stack model. Some engineers from Amazon illus-
trate how to design Web-scale application architectures by
utilizing a combination of Amazon Web Services [56]. The
example application GrepTheWeb [5] uses SQS queues in
order to decouple controllers, the Hadoop MapReduce im-
plementation on a cluster of EC2 instances, and S3 and Sim-
pleDB for data storage and data retrieval.
The combination of Google’s OpenSocial API and de-

velopment platform with Google AppEngine is another ex-
ample that demonstrates how Cloud computing technolo-
gies and services can be combined into a more powerful
application architecture [38]. OpenSocial applications that
do not draw on external server resources are subject to cer-
tain limitations, such as narrow data storage capacities or
administrative constraints associated with the application
container. Integrating an OpenSocial application with an
App Engine backend allows to combine the client-side pre-
sentation layer with external data and application logic in a
straightforward manner.
Both of the before mentioned examples show how ser-

vices from the same Cloud computing service provider, i.e.
Amazon and Google, respectively, can be combined in a
reasonable fashion. However, there are good examples of
how to combine services from different Cloud computing
service providers, as well. Instead of extending OpenSo-
cial applications with an App Engine backend it is also
possible to develop Facebook applications that use external
server capacities from Cloud computing service providers
like Amazon or Joyent [16] [35]. Another prominent exam-
ple is given by the extension of the Force.com developer
platform with Google App Engine [50]. Just like in the
examples before, the Force.com programming model and
development environment is used to build business applica-
tions that draw on stored data and complex application logic
residing on App Engine servers.
We have summarized our categorizations in Fig-

ure 2 (IaaS), Figure 3 (PaaS), Figure 4 (SaaS), and Fig-
ure 5 (HuaaS).

4. Outlook and Future Work

As our survey shows, the Cloud services landscape is
very complex and, one could argue, therefore difficult to
control centrally by any single party without severe scala-
bility implications. We therefore envision self-organizing
social support mechanisms such as federated markets to be
developed for the Cloud where local and individual cost
and benefit optimizations will evolve the offerings to be
more efficient, force consolidation, nurture collaboration
and drive serendipitous mash-ups.
To address the identified gap of business support systems

that span Cloud layers we have also embarked on an imple-
mentation of a mash-up between a market system (Tycoon),
a billing system (PayPal), a federated authentication system
(OpenID) and a distributed computing platform (Hadoop)
that we hope to present at future Cloud conferences.
Although many companies use Hadoop today in combi-

nation with other Cloud infrastructure such as EC2, there
is no generally available pay-as-you-go zero-install Hadoop
service. One reason for this is that Hadoop was designed
for in-house intra data center operations with a trusted well-
known user base. Efficient sharing of large volumes of
data and computational resources in an untrusted multi-
tenancy Cloud remains a challenging research topic. We
have obtained some initial promising results when integrat-
ing Hadoop and Tycoon [51], and the next step is to close
the end-to-end Cloud service loop by offering a custom ver-
sion of the Hadoop scheduler with PayPal and OpenId ac-
count management. Such an integrated platform would al-
low developers to more easily replicate and automate use
cases such as the New York Times experiment mentioned
in Section 1.2.
Another area of future work is to elaborate on a number

of concrete use case scenarios of end-to-end Cloud services
to refine and further motivate the use of our stack.

References

[1] 10gen. Scalable high performance data storage for web ap-
plications. http://www.10gen.com, Seen: 2009-01-
25, 2009.

[2] Akamai Technologies Inc. Akamai edgecomput-
ing. enabling applications that grow your business.
http://www.akamai.com/dl/whitepapers/
Akamai_Enabling_Apps_Grow_Business_
Whitepaper.pdf, Seen: 2009-01-25, 2009.

[3] Amazon. Mechanical turk. https://www.mturk.
com/mturk/welcome, Seen: 2009-02-18, 2009.

[4] Amazon Web Services. Amazon webservices homepage.
http://aws.amazon.com, Seen: 2008-12-05, 2008.

[5] Amazon Web Services. Building greptheweb in
the cloud, part 1: Cloud architectures. http:
//developer.amazonwebservices.com/

27

connect/entry.jspa?externalID=1632, Seen:
2009-01-25, 2008.

[6] S. Andreozzi, N. D. Bortoli, S. Fantinel, A. Ghiselli, G. Ru-
bini, G. Tortone, and M. Vistoli. GridICE: a Monitoring
Service for Grid Systems. Future Generation Computer Sys-
tems Journal, 21(4):229–571, 2005.

[7] AppNexus. Appnexus cloud. http://www.appnexus.
com, Seen: 2009-01-25, 2009.

[8] D. Baran. Cloud computing basics.
http://www.webguild.org/2008/07/
cloud-computing-basics.php, Seen: 2008-11-07,
July 2008.

[9] J. Berg, R. Forsythe, F. Nelson, and T. Rietz. Results from a
dozen years of election futures markets research. Handbook
of Experimental Economic Results, 2001.

[10] Bluelock. Bluelock. http://www.bluelock.com/,
Seen: 2009-01-25, 2009.

[11] J. Dean and S. Ghemawat. MapReduce: Simplified Data
Processing on Large Clusters. In Symposium on Operating
System Design and Implementation, 2004.

[12] Digg. What is digg? http://www.digg.com/about,
Seen: 2009-02-18, 2009.

[13] Django. Django web framework. http://www.
djangoproject.com, Seen: 2009-01-23, 2009.

[14] B. Dragovic, K. Fraser, S. Hand, T. Harris, A. Ho, I. Pratt,
A. Warfield, P. Barham, and R. Neugebauer. Xen and the Art
of Virtualization. In Proceedings of the ACM Symposium on
Operating Systems Principles, 2003.

[15] ENKI. Virtual private datacenters.
http://www.enkiconsulting.net/
virtual-private-data-centers/, Seen: 2009-
01-25, 2009.

[16] N. Everett. Hosting facebook applications on amazon ec2.
http://developer.amazonwebservices.com/
connect/entry.jspa?\entryID=1044, Seen:
2009-01-23, 11 2007.

[17] Fay Chang and Jeffrey Dean and Sanjay Ghemawat andWil-
son C. Hsieh and Deborah A. Wallach and Mike Burrows
and Tushar Chandra and Andrew Fikes and Robert E. Gru-
ber. Bigtable: A Distributed Storage System for Structured
Data. In Symposium on Operating System Design and Im-
plementation, 2006.

[18] C. Ferris, A. Karmarkar, and P. Yendluri. Basic Profile Ver-
sion 2.0. Technical report, Web Services Interoperability
Organization, 2007.

[19] FlexiScale. Flexiscale cloud computing. http://www.
flexiscale.com, Seen: 2009-01-25, 2007.

[20] I. Foster, D. Berry, A. Djaoui, A. Grimshaw, B. Horn,
H. Kishimoto, F. Maciel, A. Savva, F. Siebenlist, R. Sub-
ramaniam, J. Treadwell, and J. V. Reich. The Open Grid
Services Architecture Version 1.0. Technical report, Global
Grid Forum, 2004.

[21] GENI. Global environment for network innovations. http:
//www.geni.net. Seen: 2009-01-23, 2009.

[22] Giuseppa DeCandia and Deniz Hastorun and Madan Jam-
pani and Gunavardhan Kakulapati and Avinash Lakshman
and Alex Pilchin and Swaminathan Sivasubramanian and
Peter Vosshall and Werner Vogels. Dynamo: Amazon’s
Highly Available Key-Value Store. In ACM Symposium on
Operating Systems Principles, 2007.

[23] GoGrid. Gogrid cloud hosting. http://www.gogrid.
com, Seen: 2009-01-25, 2009.

[24] Google Inc. Google apps engine. http://www.
google.com/apps, Seen: 2008-12-05, 2008.

[25] Google Inc. Google docs. http://docs.google.
com/, Seen: 2009-01-24, 2009.

[26] Google Inc. Google maps api. http://code.google.
com/apis/maps, Seen: 2009-01-23, 2009.

[27] D. Gottfrid. Self-service, Prorated Super Computing Fun!
The New York Times, (1), November 2007.

[28] O. M. Group. The Common Object Request Broker: Archi-
tecture and Specification, 1998.

[29] T. O. Group. X/Open DCE: Remote Procedure Call, Novem-
ber 1995.

[30] Hadoop. Hadoop homepage. http://hadoop.
apache.org. Seen: 2008-11-07, 2008.

[31] H. HBase. Hbase homepage. http://hadoop.
apache.org/hbase/, Seen: 2008-11-21, 2008.

[32] Hewlett-Packard. HP Integrated Lights-Out 2 User Guide.
Technical report, HP, 2009.

[33] M. Hibler, R. Ricci, L. Stoller, J. Duerig, S. Guruprasad,
T. Stack, K. Webb, and J. Lepreau. Large-scale Virtualiza-
tion in the Emulab Network Testbed. In Proceedings of the
2008 USENIX Annual Technical Conference, 2008.

[34] Joyent. Reasonably smart. http://www.joyent.com,
Seen: 2009-01-26, 2009.

[35] Joyent Inc. Joyent accelerators for facebook devel-
opers. http://www.joyent.com/developers/
facebook, Seen: 2009-01-23, 01 2009.

[36] K. Keahey and T. Freeman. Contextualization: Providing
one-click virtual clusters. In eScience 2008, 2008.

[37] K. Lai, L. Rasmusson, E. Adar, S. Sorkin, L. Zhang, and
B. A. Huberman. Tycoon: an Implemention of a Distributed
Market-Based Resource Allocation System. Multiagent and
Grid Systems, 1(3):169–182, Aug. 2005.

[38] L. LiaBraaten. Building and opensocial app with google app
engine. http://code.google.com/intl/de-DE/
apis/opensocial/articles/appengine-0.8.
html, Seen: 2009-01-23, 09 2008.

[39] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar,
L. Peterson, J. Rexford, S. Shenker, and J. Turner. Openflow:
Enabling innovation in college networks, 2008.

[40] Microsoft. Azure services platform. http://www.
microsoft.com/azure, Seen: 2009-01-23, 2009.

[41] Microsoft. Office live. http://www.officelive.
com, Seen: 2009-01-23, 2009.

[42] S. Microsystems. Project caroline. http://research.
sun.com/projects/caroline, Seen: 2009-01-23,
2009.

[43] D. Nurmi, R. Wolski, C. Grzegorczyk, G. Obertelli, S. So-
man, L. Youseff, and D. Zagorodnov. Eucalyptus open-
source cloud-computing system. In CCA08: Cloud Com-
puting and Its Applications, 2008.

[44] OCC. The open cloud consortium. http://
www.opencloudconsortium.org, Seen: 2009-01-
23, 2009.

[45] Open Cirrus. Cloud computing testbed. http://www.
opencirrus.org, Seen: 2009-01-23, 2009.

[46] OpenId Foundation. Openid homepage. http://www.
openid.net, Seen: 2008-12-05, 2008.

28

[47] K. Park and V. S. Pai. CoMon: A Mostly-Scalable Monitor-
ing System for PlanetLab. Operating Systems Review, 40(1),
2006.

[48] Rackspace. Rackspace managed hosting. http://www.
rackspace.com, Seen: 2009-01-25, 2009.

[49] K. Rangan, A. Cooke, M. Dhruv, J. Post, N. Schindler, J. Fi-
dacaro, W. Mohan, G. A. B. III, and J. Vleeschhouwer. The
cloud wars: $100+ billion at stake. Technical report, Merrill
Lynch, 2008.

[50] Salesforce.com Inc. Force.com for google app engine: Con-
necting the clouds. http://developer.force.com/
appengine, Seen: 2009-01-23, 2008.

[51] T. Sandholm and K. Lai. MapReduce Optimization us-
ing Regulated Dynamic Prioritization. In ACM SIGMET-
RICS’09: International Conference on Measurement and
Modeling of Computer Systems, 2009. to appear.

[52] Sanjay Ghemawat and Howard Gobioff and Shun-Tak Le-
ung. The Google File System. In ACM Symposium on Op-
erating Systems Principles, 2003.

[53] B. Sotomayor, R. Montero, I. M. Llorente, and I. Foster. Ca-
pacity Leasing in Cloud Systems using the OpenNebula En-
gine. In CCA08: Cloud Computing and its Applications,
2008.

[54] A. I. Technologies. Hangout. http://fun.auciti.
com, Seen: 2009-01-23, 2009.

[55] Terremark. Infinistructure. http://www.terremark.
com/services/managed-hosting.aspx, Seen:
2009-01-25, 2009.

[56] J. Varia. Cloud architectures. Technical report, Amazon
Webservices, 2008.

[57] XMind. Cloud xmind social brainstorming and mind map-
ping. http://share.xmind.net/zhenjl/cloud,
Seen: 2009-01-25, 2009.

[58] YouTube. Company history. http://www.youtube.
com/t/about, Seen: 2009-02-18, 2009.

29

Organization Service or tool Description Layer

Amazon Elastic Compute Cloud (EC2) Virtual servers IaaS > RS > VRS

Dynamo Key-value storage system IaaS > RS > HIS

Simple Storage Service (S3) Storage buckets IaaS > IS > BIS

SimpleDB Database-as-a-Service IaaS > IS > HIS

CloudFront Content Delivery IaaS > IS > HIS

SQS Queueing services IaaS > IS > HIS

AppNexus AppNexus Cloud Virtual servers IaaS > RS > VRS

Bluelock Bluelock Virtual Cloud Computing Virtual servers IaaS > RS > VRS

Bluelock Virtual Recovery Disaster Recovery IaaS > IS > HIS

Emulab Emulab Network Testbed Network testbed IaaS > RS > PRS

ENKI ENKI Virtual Private Data Centers On-demand virtual data center

resources

IaaS > RS > VRS

EU Reservoir

project

Open Nebula Open source virtual infrastructure

engine

IaaS > RS > VRS

FlexiScale FlexiScale Cloud Computing Virtual servers IaaS > RS > VRS

GoGrid Cloud Hosting Virtual servers IaaS > RS > VRS

Cloud Storage Disk storage IaaS > IS > BIS

Google Google Big Table Distributed storage system IaaS > IS > HIS

Google File System Distributed file system IaaS > IS > BIS

HP iLO Lights out management IaaS > RS > PRS

Tycoon Market-based system for managing

compute resources in clusters

IaaS > RS > VRS

Joyent Accelerator Virtual servers IaaS > RS > VRS

Connector Pre-configured virtual servers IaaS > IS > HIS

BingoDisk Disk storage IaaS > IS > BIS

Nirvanix Nirvanix Storage Delivery Network Disk storage IaaS > IS > BIS

OpenFlow OpenFlow Network simulation IaaS > IS > BIS

Rackspace Mosso Cloud Sites Pre-configured virtual servers IaaS > IS

Mosso Cloud Storage Disk storage IaaS > IS > BIS

Mosso Cloud Servers Virtual servers IaaS > RS > VRS

Skytap Skytap Virtual Lab Virtual IT lab environment IaaS > IS

Terremark Infinistructure Virtual servers IaaS > RS > VRS

The Globus

Alliance

Nimbus Open source toolkit to turn a cluster

into an IaaS cloud.

IaaS > RS > VRS

UCSB EUCALYPTUS Open source implementation of

Amazons EC2

IaaS > RS > VRS

10gen Mongo DB Database for cloud storage IaaS > IS > HIS

Babble Application Server Web application server for cloud

deployments

IaaS > IS > HIS

Figure 2: Infrastructure-as-a-Service providers.

30

Organization Service or tool Description Layer

Akamai EdgePlatform Content, Site, Application Delivery PaaS Exec. Env.

Facebook Facebook Platform Development tools and execution

environment for social networking

applications

PaaS

Google App Engine Scalable runtime environment for

Python Web applications

PaaS

Microsoft Azure Development environment and

runtime for Microsoft applications

PaaS

Live Mesh Platform to sync, share and access a

wide range of devices with

Microsoft operating systems

PaaS

NetSuite SuiteFlex Toolkit to customize NetSuite online

business applications

PaaS

Salesforce Force.com Build and deliver on-demand

business applications

PaaS

Sun Caroline Horizontally scalable platform for

the development and deployment of

Internet services.

PaaS

Zoho Zoho Creator Toolkit to build and deliver on-

demand business applications

PaaS

Figure 3: Platform-as-a-Service providers.

Organization Service or tool Description Layer

Google Google Docs Online office suite SaaS

Google Maps API The Google Maps API lets

developers embed Google Maps in

their own web pages with

JavaScript.

SaaS > BAS

OpenSocial A common API for social

applications across multiple

websites.

SaaS > CAS

OpenID

Foundation

OpenID Distributed system to allow users to

have a single digital identity across

the Internet.

SaaS > BAS

Microsoft Office Live Online office suite SaaS

Salesforce Salesforce.com Customer Relationship Management SaaS

Figure 4: Software-as-a-Service providers.

Organization Service or tool Description Layer

Amazon Mechanical Turk Scalable workforce HuaaS > CS

Digg.com Digg.com News aggregation HuaaS > CS > IAS

The University of

Iowa

Iowa Electronic Markets Future markets based on economic

and political events

HuaaS > CS > IAS

Youtube Youtube Video portal HuaaS > CS

Figure 5: Human-as-a-Service providers.

31

