PhUSE 2006

Paper TS03

What's New in SAS® 9.1.3 for Clinical Programmers

Dave Smith, SAS, Marlow, UK

ABSTRACT

SAS 9 has brought a wealth of new features for a huge variety of industries, and it is often difficult to spot the details
that will help programmers in their daily task of completing new drug submissions. This paper will highlight some of
the new features that could assist clinical programmers up to SAS 9.1.3 Service pack 4. Focus areas will include
Base SAS, SAS Enterprise Guide 4 and the Add-in to Microsoft Office.

INTRODUCTION

This paper is directed at those who are performing the day to day tasks associated with clinical programming,
especially those who either have SAS 9 or are looking for reasons to upgrade from SAS 8. Most of the topics
covered are available to users with standard modules (Base, Stat, Graph); where this is not the case this will be
indicated.

BASE SAS
The following section covers features common to the core of the SAS language; the first two parts concentrate on
improving programming efficiency; the third on improving output and the last part on adherence to standards.

HASH TABLES

Hash tables appeared with SAS 9.0 and are a highly efficient way of joining tables, especially where one table is
large and the other small. They are more efficient than using SAS formats as a look-up and much more flexible, as
multiple tables can be joined in one step and complex keys can be used.

The basic procedure is to declare a hash on the table being accessed and then either perform a look-up or iterate
over the table (i.e. process each row in turn). The declaration step defines the keys that the hash will be using and
the data that is accessed.

For a simple example, consider adding treatment codes to a demography table. Instead of sorting the input datasets
and merging them, the hash is declared on the treatment table. Note that the TREAT variable must be defined in
advance with a length statement to avoid errors in the log. It is also important for efficiency to only declare the hash
on the first iteration of the dataset.

dat a new;
set rawdat a. denogr aphy ;
length treat $14. ;
if _n_=1 then do;
decl are hash th(dataset: "rawdata.treatment");
th. defineKey(' CENTER , ' | NVEST', ' PATI ENT") ;
t h. defi neDat a(' TREAT') ;
t h. Def i neDone();
end;
rc=th.find();
if rc=0 then output;
drop rc;
run;

The find() function returns a zero if the values of CENTER, INVEST and PATIENT in the demography table match up
with the hash table, and the TREAT variable is appended.

The data definition gives all the variables being returned; if you want all the variables in the dataset then you can use
th. defineData(all: 'yes').

For comparison, on small tables the above code ran in 0.03 seconds, two sorts and a merge took a total of 0.11
seconds and proc sql took 0.90 seconds.

PhUSE 2006

A second example which shows the use of hash iterators is presented below. This example creates lab shift values
from a lab table with normal and alert range values and the treatment table in a single data step. The documentation
is largely in the form of comments in the code, but it is important to consider what is being achieved here.

1) The lab data is being augmented with a flag for each test and visit indicating whether the test is outside the normal
or alert values

2) The baseline value of the flag is retained as is the most extreme value of the flag post-baseline.

3) The data are re-organised to a one row per test structure

4) The treatment codes are appended

Note that the different hashes have different keys, which increases the number of merges that can be performed in a
single step. The iterators are defined to allow passes through the data referred to by the hash. The check() function
looks to see if a key combination is present, the add() function adds to the object and the replace() function is used
to update the current values.

data test1;
if _n_=1 then do;
** Set up between-row variables **;
retain Imh O tenplmh 0 baseline_Imh O ;
** You need to decl are hash key variabl es before using them **;
length CENTER 8. invest 8. patient 8 |labtest $8 visit 8. treat $14. ;

** Create the first hash on the | abs dataset **;

decl are hash | absHash(hashexp: 9, dataset: "staging.|abs_w th_ranges”,
ordered: "a");

| absHash. defi neKey(' CENTER ,' | NVEST' , ' PATI ENT' ,' LABTEST') ;

| absHash. defi neDat a(' CENTER ,' | NVEST' , ' PATI ENT' ,' LABTEST' ,' VISIT',
"RESULT'," H_NORM ,"' Hl _ALERT' ,' LO_ NORM , ' LO ALERT");

| absHash. Defi neDone();

** Create the second hash for the output table **;

** This allows the change in structure fromone per visit to **;
** one per test **,

decl are hash out put Hash(hashexp: 4, ordered: "a ;
out put Hash. defi neKey(' CENTER , ' | NVEST' , ' PATI ENT' , ' LABTEST") ;

out put Hash. defi neDat a(' CENTER , ' | NVEST' , ' PATI ENT' , ' LABTEST' , ' RESULT",

"H _NORM , ' H _ALERT' ,"' LO_NORM , ' LO ALERT' , ' LMH , ' BASELI NE_LMH , ' TREAT');
out put Hash. Def i neDone();

** Create the third hash for the treatnent table **;

decl are hash treat Hash(hashexp: 4, dataset: "raw treatmmt",
ordered: "a");

treat Hash. defi neKey(' CENTER , ' | NVEST' , ' PATI ENT") ;

treat Hash. defi neDat a(' CENTER , ' | NVEST' , ' PATI ENT' , ' TREAT") ;
treat Hash. Defi neDone();

** Set everything to missing. This prevents uninitialised **;

** messages in the log **;

call mssing (center, invest, patient, l|labtest, visit, result, hi_norm
hi _alert,lo_normlo_alert,treat);

** Create the first hash iterator on the |abs table **;
declare hiter labs_iter("labsHash");
** Create the second hash iterator on the output table **;
decl are hiter output_iter("outputHash");

end;

** Now iterate through the [abs table **;
rc=labs_iter.first();
do while (rc=0);
** See if the current key values are in the output table **;
cr c=out put Hash. check() ;
if crc ne 0 then do;
** |f this is a new set of keys in the output hash, |ookup the
treat nent code **;

PhUSE 2006

frc=treatHash. find();
** then add the keys with the treatnment to the output hash **;
out put Hash. add() ;
** set the default low high alert flag for a new test **;
I mh=0;

end;

** Now a little business logic to identify flag status **;
if . <LO NORMKRESULT<HI _NORM>. then tenpl mh=0;

el se i f H _NORMK=RESULT<HI _ALERT t hen tenpl mh=1;

el se i f RESULT>=H _ALERT then tenpl mh=2;

el se i f LO NORM>=RESULT>LO ALERT then tenpl mh=-1;

el se i f RESULT<=LO ALERT then tenpl mh=-2;

** For baseline set the baseline flag **;
if visit=0 then do;
basel i ne_| mh=t enpl nmh ;

I mh=0 ;

end;

el se do;
** After baseline, set the nobst extrene flag val ue **;
if abs(tenplmh)>abs(lnmh) then | mh=tenpl m ;

end;

** As you go through the lab table update the output hash **;
r c=out put Hash. repl ace();
** go and get another row fromthe |abs table **;
rc=labs_iter.next();

end;

** Finally, now the output hash contains what we need, wite the output **;
** table. This could have been done directly into the table, but this **;
** nethod cuts down on the i/o0 overhead **;
rc=output _iter.first();
do while (rc=0);
out put ;
rc=output __iter.next();
end;
run;

To achieve the same without hash tables would be likely to take multiple sorts and data steps with by processing.
Whether the relative obscurity of the hash table code compared to more standard methods is outweighed by its
greater efficiency is a matter for discussion, but the flexibility and power of hash tables is clear. In circumstances
where the code is to be thoroughly validated and then used repeatedly and efficiency is vital hash tables should be
considered as the first option.

REGULAR EXPRESSIONS
With SAS 9.1 SAS supports the use of pattern matching functions, either as regular expressions or Perl regular

expressions. These can be used to validate text structures and to search and replace substrings in a very code-
efficient manner.

There are two similar sets of functions with slightly different syntaxes in the expression text. Perl gives a richer
pattern matching set, although this can lead to relatively increased complexity. It has been said that Perl is a write-
only language because reading the sequence of characters and translating that back into business rules can be
tortuous; it is therefore recommended that full and careful documentation is employed!

Regular expressions are best illustrated by example, and the first of these would be to check the structure of a study
number. The valid structure is ddd-ddd-dddd where each d represents a numeric digit.

data test ;

i nput studylD $1-14 ;

if _n_=1 then regl D=prxparse("/\d{3}-\d{3}-\d{4}/");

if prxmatch(regid, studylD)=0 then put studylD " is not a valid studylD";
cards;

PhUSE 2006

123- 456- 7890
654_654- 2765
88- 765- 0987
766- 876- 987

The output given is

654 _654-2765 is not a valid studylD
88-765-0987 is not a valid studylD
766-876-987 is not a valid studylD

The key to this code is the Perl expression \ d{3} -\ d{ 3}-\d{4}. Each\d represents a numeric digit and the
{3} indicates exactly three of them. The syntax of Perl expressions is given in the SAS help, and there are plenty of
web sources. In this example the regular expression is parsed into a variable called reglD and can then be used
throughout the rest of the datastep; this ensures that the parsing can be done in a single iteration. The prxmatch
function then validates the data against the parsed expression and returns a zero if the pattern does not match.

Another example would be where genotypic information needs to be in a certain format and validated to contain the
correct letters (cagt). Here some data have been entered in a format that proc allele would not accept, and needs to
be altered:

data test?2 ;

| ength genotype2 $8;

i nput genotype $1-2 ;

regl D=prxparse("/ [GATC] {2} $/i");

if prxmatch(regid, genotype)=0 then genotype2="";

el se genot ype2=prxchange('s/(\D)(\D)/$1-$2/', -1, genotype);

put genotype= genotype2= ;

cards;

aa

ga

GG

gt

ax

tt

[EE RN

The output given is

genot ype=aa genot ype2=a-a
genot ype=ga genot ype2=g-a
genot ype=GG genot ype2=G G
genot ype=gt genotype2=g-t
genot ype=ax genotype2=

genot ype=tt genotype2=t-t

Here the prxparse function validates that there are two characters in the first two places in the input field and that
only GATC are valid values, independent of case. The prxchange function then changes the pattern from two
consecutive characters to two characters separated by a dash. The form of the substitution expression is s/ old/new/
and each section of the input text is bracketed so that it can then be referred to by $1 for the first segment and $2 for
the second segment.

The examples given above used the Perl syntax; the equivalent functions for regular expressions would be
RXPARSE, RXMATCH, RXCHANGE etc. The main advantage of these versions is that the syntax is simpler, but
they do also include a function to validate that a word is a valid SAS name.

Code efficiency is greatly enhanced by using these expressions; you certainly could perform many of these tasks
using traditional functions but the code would be lengthy and difficult to read.

ODS STAT GRAPHICS

The introduction of ODS Stat graphics brings a welcome improvement to the appearance of statistical displays. They
are currently experimental, and are due to go production with the 9.2 release.

To use them all that is required is to turn the option on with the statement

ods graphics on;

PhUSE 2006

The results are much more attractive: for example using proc corr as follows

ods graphics on;

proc corr data=sasuser.vitals plots;

var bplsys bpldia pul se ;

run;
ods graphics off;

Scatter Plot Matrix

100 120 140 180 180 50 &l 70 a0 an
]]]]]]]]]]]]]]]
180 o o —
160 — —
140 o o —
- bp1sys o uo%‘& o % oog o 0 goo
20 4 a o B B.0 —
© ﬁg%og%iﬁﬁuﬁu o 4 S@ggogo %B ggg 00"
100 — b n 8 o o8 S0 o
o < <o s}
o o
_| o o —320
© 284500 o
& o
i o 8% 8§22, ° [
o o0
_ bhptdia o o ngioﬁog o, 008 — 71
% o
- e %o § @ § 8o — &l
- 8 — 50
°8
af - ‘}8 o o L
o o Yo o
&0 - 00 _0.00 0,0] -
coo Bofo g% o o
M 0o Ono o goo cg pulse |
8
Al — ° nog} g on&onog <] =
o o
a0 < OO o —
T T T T T T T T T T T T T T T
50 &l 70 a0 an

Enhancements have been made to several procedures including REG, PHREG, LIFETEST, GLM, MIXED, and
PRINCOMP, some of the output from Proc REG is shown below:

PhUSE 2006

MODELA1
60

E 4[] —

=

=

wn

a

o

Residual

Percent

100

110 120

T
130
Predicted Value

60 -

40

20+

e

2014 @

T
=3

I E—
-1 0 1

Quantile

|
2

50 4
40+
30
20+
10+

04

T
-30 -1

T
010 30 50 7O

Residual

Fit Diagnostics for bp1sys

RStudent

bp1sys

e}

T T
110 120 130

T
100
Predicted Value

180 o
160
140 0
u{)@ o
120 ﬁgo
L] 000
100 - ﬁ%@ ES‘Q
o o
ko]
T T T T
100 110 120 130
Predicted Value
Fit-Mean || Residual
60 o
40 1
20
(=
-0+
T T T T T T
0 0408 0 0408

Proportion Less

RStudent

Cook's D

5

Coogifo

+]

%

(]

T
0.02

T
0.04 006

Hat Diagonal

0.4+

0.3+

0.2+

0.1

i | TR

Observation Number

| |
100

MOhs
MParm
EDF
MSE
RSguare
AdiRSq

114

-~
o<

112
24.493
0.413
0.4078

PhUSE 2006

MODEL1 Fit Plot for bp1sys
180)

160 5

140 NObs 114
9 MParm 2
(1] EDF 112
Y MSE 84.493
a2 120 RSquare 0.413
AdjRSg 04078
100
80+
T T T T T
50 60 Y 20 a0
Diastolic Blood Prassure
| Fit 95% Prediction Limits O 95% Confidence Limits |

Further reading will be indicated at the end of the paper.

PROC CDISC

The CDISC procedure continues to be enhanced as the standards emerge, and updates are made available
regularly on http://support.sas.com . The latest enhancements relate to the SDTM model, and the procedure will now
validate that the structures of the files comply with the SDTM guidelines.

The syntax is straightforward:

PRCC CDI SC MODEL=SDTM ;

SDTM SDTWersion = "3.1" ;

DOVAI NDATA DATA = results. AE
DOVAI N = AE

CATEGORY = EVENTS ;
RUN;

The procedure tests the input at two levels. At the metadata level the procedure
Verifies that all required variables are present in the dataset
Reports as an error any variables in the dataset that are not defined in the domain
Reports a warning for any expected domain variables which are not in the dataset
Notes any permitted domain variables which are not in the dataset
Verifies that all domain variables are of the expected data type and proper length
Detects any domain variables which are assigned a controlled terminology specification by the domain and
do not have a format assigned to them

http://support.sas.com

PhUSE 2006

At the data level the procedure
Verifies that all required variable fields do not contain missing values
Detects occurrences of expected variable fields that contain missing values
Detects the conformance of all ISO-8601 specification assigned values; including date, time, datetime,
duration, and interval types
Notes correctness of yes/no and yes/no/null responses

This is a major benefit where SDTM structures are being created. As new standards are released proc CDISC will
continue to develop to support them. The next planned version will support CRT-DDS, with development well
underway.

ENTERPRISE GUIDE

PROC TABULATE MADE EASY

It is a common conception that proc tabulate is a very useful procedure that has been greatly hampered by being
difficult to use. Once the complexity of the table increases beyond simple cross-tabulations the amount of trial and
error that is generally employed to produce the desired output leads to many programmers simply avoiding the
procedure altogether and producing the output by a combination of data step and proc report. With the advent of the
wizard in Enterprise Guide the tabulate procedure is revitalized, as it is now very easy to produce the tabulations that
are required first (or second) time.

In the screenshot below the analysis and classification variables are selected by drag and drop and the order of the
output can be selected for the class levels.

E§ Summary Tables for QUERY_FOR_¥ITALS x|
Task Roles
Summary Tables
Results Yariables to assign: Tazk roles:
Titles Hame | || Analysis variables
—= E (1] {1}
@EENTEH @ BP15YS Clasz level "THEAT
@ INVEST @ BER1DIA Sort by I rformatte...
@ PATIENT r@’ Clazzification variables Order Azcending
iz PULSE @ CENTER Missing val.. Include
@ BP15YS _,1"?- TREAT Restrict lev.. Disabled
@l BP1DIA LHM 0" Multilabel f.. Disabled
%wsn Relative weight (Limit: 1) it e
&THE.&T | |&8) Frequency count (Lirit: 1] Heading for..
<
@ | t
E] Freview code Bur | Save | Cancel Help |
|YDu must add at least one variable ta the table definition 4

The next screenshot shows the empty palette for the table. Variables (or All) can be dragged onto the palette, and
icons appear to show where the items are being placed (above, left, right, below). Statistics are available to drag
onto the palette from the left.

PhUSE 2006

i Sumimary Tables for QUERY_FOR._¥ITALS N ﬂ

Task Roles Summary T ables

Summary T ables

Fesults Awailable wariables: Prewvigw: i“'?'I ﬁ'l E EI

Titles 49 alL funiversal ... Bonidires =
& Bp1DIA ke
8 BP15YS li A
&P CEMTER
#P TREAT

Awailable ztatistics:

MNarne |Descript... -

ColP... Column ...

CalP... Colomn ... —
55 Carreck, .,
'ty Coeffici. ..
Max Maximu, ..
Mean Mean (a...
Median Median ...
Min Miniroum. ..

=

4 L IEE

ml Blroher |Page by <hones
=
i
r:l Freview code B Save Cancel Help |
|YDu must add at least one variable ta the table definition 4

The next screenshot shows the completed table for the example, created in a few seconds. If the individual elements
of the table are selected a right mouse gives a menu of formatting options to further customize the table such as
data value format, borders and shading, and header values.

i Sumimary Tables for QUERY_FOR._¥ITALS _

Tazk Roles
Summary T ables
Fesults

Title=s

Freview code

Summary T ables

PhUSE 2006

x|

Awailable wariables:

Prewview:

49 alL funiversal ,
$8 BP1DIA

8 BP1SYS

4P CENTER

¥ TREAT

1 |]

Bow firea

49 TREAT

ol ||
=

& BP1DIA |@ BP15YS |g31 BP1DIA |@ BF‘154

-
F

| Mean
49 CEMTER

Mean

=

Awailable statistics:

MNarne | Diescri
ColP... Colurmi
ZalP... Columi
55 Carrec
'ty Coeffir
Max Maxim
Mean Mean

Median Mediar
LT, Airmirea
1' I .3

| FPage by

| Mean

| & Al

< 4

<hane

Save

Cancel

The resulting table is shown below.

Randomized treatment assignment

Drug A

Drug B

Diastolic Blood

Systolic Blood Pressure

Diastolic Blood Pressure

Systolic Blood Pressure

Pressure
Center
145 Mean 724 112.7 73.9 114.5
227 Mean 71.5 112.7 70.9 113.9
379 Mean 73.2 112.8 73.5 114.3
All Mean 72.7 112.8 73.3 114.3

10

PhUSE 2006

PARAMETERS

Parameters were introduced in Enterprise Guide 4.1 and allow the creation of macro variables which can be used
across the project. For example, if the previous example was to be limited by visit numbers, a parameter of visit
number could be created. Once the variable name is selected, the data type can be selected and optionally the list of
valid values can be loaded up from the input data sources.

x

General Data Tope and Values I

D ata type:

I |nteger ;I

D ata walue type:

I.-’-'-. list of values LI
—Walue izt — Ophions:

1] - [Default walue:

; =

5 |

3

g i~ Single valug only

g [T | Allaws valiue ot i e list

:II'ID & Allow multiple values

13 Separator: I

14 Ll '

15

16

17

::g [T & walue is required at runtime

20 v Prompt for walue

21 =
i -

Xl T | ! | Load YWaluezr |

Add and Hew | | Add and Close I Cancel Help |

The query can now be augmented with a filter, selecting the new parameter from drop-down list.

11

PhUSE 2006

8 Query for YITALS - Query Builder

Luery name: |I]uer_|.J for WITALS Output name: |WDHK.Duer_I,I_fnr_VITALS
E Computed Columns E;; Parameters @ Walidate - ﬁ Preview @ Options
x
| Fh AddTables.. 9%
W Calurnn: WITALS WISIT
iz CENTER [Ce
% INVEST [Iy ZPeErator IIn alist of values !
{z) PATIENT [P,
[E] WSDATE [Wit : EWisit_Mumber
@ FILSE [FPuls e <Click here to twpe a walue or click Add:
~{iz BP1SYS [Sy
{2 BP1DIA [Dia Bzt |
SRR /IS IT [Visit 1 |]

=] TREATMNT

i CENTER [Ce

i~ Filter definition

(@) INVEST [Inv
~{3) PATIENT [P.
/By, TREAT [Fiar
-[3] RANDDATE

VITALS MISIT IN [ffizt Murnber]

[" Enclose values in quates

¥ lUse formatted dates

Change... |

Xk s

red data.

Combine Filters,.. |

¢ |s |«

Save and Cloze |

Cancel |

Help |

%

When the query is re-run, a dialog box appears

Select values for these parameters]

Wigit Mumber

Select up to
29 valuelz].

5 x|

2Sas.

12

PhUSE 2006

When this is run the subset is applied to the whole process. The parameter can also be used elsewhere, for example
in a title. When a stored process is created from this the parameter is automatically assumed to be a parameter in

the stored process.

COMPLIANCE FEATURES

Enterprise Guide has always made the SAS log available as part of the associations of the icons in the process flow,
but this is less useful in a pharmaceutical context, because the code, log and output usually need to be stored on a
server or shared drive in a defined location, making the use of Enterprise Guide projects nearly impossible.
Enterprise Guide 4.1 introduces the concept of exporting components as a step in the project. This applies to the
log, the last submitted code, the output and the input data. The wizard guides users through the export process with
appropriate options for the output types (i.e. .log or .txt for log files, several options for data export) and then gives

options for output location.

iy Export)

X

10f4 Selectthe file to expart. Jsas,

The export tagk allows a uzer to export a file and diztribute the new file to another physical location. Some files
zuch az data and report filez can be converted to a new type prior to zaving.

—File Ta Expart;
Mame ¢ | Type | Source | Container | [rate todified :l
:ﬂ Last Submitted Code Surmmary T ables Process Flow /320068 3.10:48
I-:é-’l Log 545 Log Qe for WITALS Process Flow 9/3/2008 5 44: 22
| Log 545 Log Sumrnary T ables Pror 9/3/2006 ¢ 3
Ef-j Cluery for _WITALS Input Data Frocess Flow 9/3/2006 &:44:49
‘.@ SAS Report - Summ... 005 Report Summary T ables Frocess Flow 9/3/2006 3.10:49
E:'F TREATRMT st M ata Procezs Flow Hf?f?nrr: H'd?'illl

< Back | - | Hewt » Eirish Cancel Help

The options include saving to the SAS server in the Files location (which can be customized)

13

3of4

PhUSE 2006

x

=specify the location and name for the output file.

— Output File:

£~ Local Computer

¥ SAS Servers

Edit.. |

ISAS ain:FilezhLog far Summarny Tables. log

Edit... I

< Back |- Hewt » Eirish Cancel Help
A
The export of the log then appears as a step in the process flow.
=l =
| Bt BE Wew Gode Das Cegoibe @agh Anchor AR QAR Took Wedow Help
| S -el~ M| o v 0 0 X | o om |0 _ | BogProlect Desioner [T Blesinics Wodapaoe. | B Task Stabus
| TREATHMT [Pecoess Pl =2l W
[Pt Dsipnes o=
% iv;Pu-cuﬂ'Ml
| 2e ::;.I _':- ‘!_Iﬂ- =
E- 1 ' By m]
TREATMMT lu‘ Dl Fer Dy _for s k! AL Fmport
{ [wTaLs Taes -Gl
{ Log Eupeat Lisgy e
Jl, Fia Summaee T
ATaLS
[] TREATMNT peadank) | [T VITALS [madtonk] | 7] Duesp_for ATALS fmadordd | %5} 545 Report - Busmany Table 1] Loates Summmaay T sbhes ®
7455 /¥ Column Dinkngion "/ B
TRen TREAT® [
THE1 EP1DIA
T BP 1SV
TEEA i
FO64
06 RU;
21
BZMOTE: PROCEDURE TABULATE ussd (Total procsss time): J
g3 renl ©lsew 0.11 seconds
a4 opu time 0.0} meoonds
]
CEMOTE: Thars wik S130 chsscvallons Cead Ioowm The deata sat UE‘RH-QUER'I'_F‘)F_‘-I'IT.'.Iﬁ- =
o] " ;I’l

|.I'I mecemo a5 545 Demao User, corresched bo SLEDHE sk sz oo BB Foundson i.hﬂl}ﬂ A

14

PhUSE 2006

Enterprise Guide 4.1 also introduces the project log, where the log of the entire project is recorded. This can then be
exported.

This is still different from the traditional methods of observing compliance common in most pharmaceutical
companies, where a single program creates a single log and a single set of output; what this does do is allow the
use of Enterprise Guide projects in the compliant environment. This could be useful where a set of reports are
regularly run by data managers that require parameter selection (for example of centre or patient) but there is
insufficient complexity or regularity of use to justify the effort in application development to provide a front-end.

THE REPORT OBJECT

The report object was introduced with Enterprise Guide 4.1, and enables reports created from different SAS
procedures to be combined in a structured layout and embedded images and text. With SAS 9.1.3 Service pack 4
these reports can then be published directly to SAS Web Report Studio (which is available as part of the SAS Bl
Server offering).

For example, in the previous example the report object was selected as the output type, so a right-click brings up the
option to create a report.

By S5 End e i e Giabide - SaSaeniFiles B0 Prapech £ wWihal s e Preo ol san 10 =
Pz B hews Code Date e Gesph Ansheas bdd-Ine CLAR Tools Windewr HIpD
- O - | Jah ows O I 2 ¥ onl - | B Pt Dasignes [Masimize Waakspace BT Tack Statis - _

ey _foe_WITALS (Process Pl - 155

g hl-ﬂ j-"i.._il"_ ":'l . ,IE L |_".|.- L:-P-;.w
TREATHIMT I‘ m Dty _fow -EI— -_'i;lmr l"_‘ it P
':" \1‘ -; w |
I 1:';, s S I F
| li-i Craate Erport P

7
i
7

| ‘ -Hg
| 1 z e
é g lﬂ -l _;.I_J=]
FI B Fiot SAS Fepait
| -Bcu Flot i
] e bon VITALS [rembonk] 2] SAS Repost-Summary Tables | 2 89 fago - Ben Pl |) SA5 Fliport - B Pt | %
Surmanany, Tabla: i
Randmwized treatonat assignusnt)
L : Prig A ; = : Drug § e J
| |Mastolic Blood Pressure | Syviokbic B lnod Prewsors | istotic Elooed Presore | S bo o Blood Prossone |
[Center |
(M5 e | Ta4) 137 3.9 1145,
1227 |Mdesn | M 127] T8 1128
AT | Mhean | 72| 1za] 7351 1183
Al bz gy Tz 133 K] 1143 -
Fun an 2¥EP2006 at 8:11 AM 4
[Rmacty [} sasdeme 52 845 Demo Liser, connected in BLIKDHE ok sas oom 8561 Foundaion v

This allows the report to be edited. Other report objects from the project can then be dragged onto a design palette.

ltems can be stretched across different parts of the grid to achieve custom layouts, text and images can be inserted
into the report and custom headers and footers can be added.

15

PhUSE 2006

B4 Edit Report Contents

Select 545 items;

Inzert Test...

Inzert Image...

il

RBeport lapaut;

Summaty Tables
(|
o
et
il B
Bo Plot Box Plot

[x

X Jole el

Show Preview |

Cancel

Help

16

PhUSE 2006

By Sas Enterpi ke Gabde - SASaanFiles B0 Prapect o bl s e Peo oot ege E alol=
B B s Code Dets Degorbe Geaph Anedyae Sdd-In ClAP Tools Wndows Bl
- - | v Oy U 2 ey ow 2| Teg Pt Designes [Plasimize woskspace | [y Task Statis _
ey _foe_WITALS (Process Flowh e 155
| By Prciect Dmsignes |
[} Ouey b MITALS [reodbonk] | 2] SAS Fepo - Summery Teblss | 55 508 Repl - BowFlol | 28] S48 Flepot - Box Pint | Reepan® | b
Edit Aeport = HeaderkFooler Pape Sehup | Fage View

i3

Study 357 Blood Pressure by Treatment

Summany Tabla:

Randomized troal ment assign moni
| e X . lrsg
| Disstalic Biood Presare | Sysbolic Blood Prosase | Diasho o Blood Presum | Bnsefc Blaod

oL nater |]
125 Libpan | 24! 11271 723)
TZ7 [Menam| Tia| 1127] ET)
3T [iboan | T3z| 1126 75!
LA it i 1128 [EE]
Run on 295EF2006 ar 3:11 AW
Faue Eveai £
Syitolic Blood Pressure by Treatment Diastalic B
Systalic Blood Pressure Diastalic Blood Preiswre
180 = 120
- =f .
.
M= &
160= &

[
| E— j_ n:lu-l .
= | R -
140 = | | | _PlJ

l] I
Fraecat Vst rocecilid o 220/ 2006 1346 AM
G [} zasdemc 22 845 Demo Uiser, conmected o BLKE HE ub sas com 5561 Founddton

The report can then be published to Web Report Studio, through a simple wizard, and the report is then instantly
available to Web Report Studio or Portal users.

STORED PROCESSES

Whereas reports created as report objects have static content, SAS provides the capability for dynamic content
through stored processes. A stored process is an encapsulation of code and data, with the possibility of using
additional user parameters to select the analysis to run. These parameters appear in the code as macro variables
and are substituted in the manner you would expect in SAS Macro.

An Enterprise Guide project or set of project steps can be turned into a stored process using a wizard, and the
stored process is then available across the enterprise through Enterprise Guide, Web Report Studio, the Information
Delivery Portal or the Add-in to Microsoft Office. In each of these an automatic parameter window will appear if
required.

A security model is applied to stored processes, controlled by the SAS Management Console. This ensures that
individuals only see the reports and data to which they are entitled.

An example of where this might be used by clinical programmers is to provide a parameterized report to data
managers to give details of study status without having to develop an application around the report.

ADD-IN TO MICROSOFT OFFICE

The Add-in to Microsoft Office (which is available as part of the SAS BI Server offering) provides a SAS tab in the
menu bar of Microsoft Word, Excel and PowerPoint to bring the power of SAS to the Windows desktop. Reports and
analyses can be run from the menu on either SAS data or the contents of an Excel spreadsheet. These analyses are
identical to those available through Enterprise Guide, and subject to the same restrictions (i.e. if a user is prevented
from running complex statistical routines in Enterprise Guide they will also not see them in Microsoft Office).
Additionally stored processes can be run into the spreadsheet, presentation or document. This is where the
application for clinical programming has greatest potential; the in-text tables for a submission can be surfaced as a
sequence of stored processes. These can then be refreshed in the document as the data becomes finalized without
altering the text around the tables, giving a great efficiency saving.

CONCLUSION
17

PhUSE 2006

There are a great many enhancements in recent releases of SAS for the clinical programmer, and this is only a small
subset. Most of the immediate benefit comes from Base SAS and Enterprise Guide, which (depending upon
architectures) should be readily available to most existing clinical programmers on upgrading to SAS 9.1.3 SP4.

RECOMMENDED READING
An introduction to ODS Stat graphics http://www2.sas.com/proceedings/suqi29/204-29.pdf

CONTACT INFORMATION
Your comments and questions are valued and encouraged. Contact the author at:

Dave Smith

SAS Institute
Wittington House
Henley Road
Medmenham
Marlow

Bucks

SL7 2EB

Work Phone: 01628 404379

Fax: 01628 490550

Email: david.smith@suk.sas.com
Web: http://www.sas.com

SAS and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of SAS
Institute Inc. in the USA and other countries. ® indicates USA registration.

Other brand and product names are trademarks of their respective companies.

18

http://www2.sas.com/proceedings/sugi29/204-29.pdf
mailto:david.smith@suk.sas.com
http://www.sas.com

