
F
or more than a decade, molecular biol-
ogist Martin Beck and his colleagues 
have been trying to piece together 
one of the world’s hardest jigsaw puz-
zles: a detailed model of the largest 
molecular machine in human cells. 

This behemoth, called the nuclear 
pore complex, controls the flow of 

molecules in and out of the nucleus of the 
cell, where the genome sits. Hundreds of these 
complexes exist in every cell. Each is made 
up of more than 1,000 proteins that together 
form rings around a hole through the nuclear 
membrane.

These 1,000 puzzle pieces are drawn from 
more than 30 protein building blocks that 
interlace in myriad ways. Making the puz-
zle even harder, the experimentally deter-
mined 3D shapes of these building blocks 
are a potpourri of structures gathered from 
many species, so don’t always mesh together 
well. And the picture on the puzzle’s box — a 
low-resolution 3D view of the nuclear pore 
complex — lacks sufficient detail to know how 
many of the pieces precisely fit together.

In 2016, a team led by Beck, who is based at 
the Max Planck Institute of Biophysics (MPIBP) 

A top-down view of the human nuclear pore complex, the largest molecular machine in human cells.

WHAT’S NEXT FOR 
THE AI PROTEIN-
FOLDING REVOLUTION 
AlphaFold, software that can predict the 3D 
shape of proteins, is already changing biology. 
By Ewen Callaway
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in Frankfurt, Germany, reported a model1 that 
covered about 30% of the nuclear pore com-
plex and around half of the 30 building blocks, 
called Nup proteins. 

Then, last July, London-based firm DeepMind, 
part of Alphabet — Google’s parent company — 
made public an artificial intelligence (AI) tool 
called AlphaFold2. The software could predict 
the 3D shape of proteins from their genetic 
sequence with, for the most part, pinpoint 
accuracy. This transformed Beck’s task, and 
the studies of thousands of other biologists 
(see ‘AlphaFold mania’).

“AlphaFold changes the game,” says Beck. 
“This is like an earthquake. You can see it every-
where,” says Ora Schueler-Furman, a compu-
tational structural biologist at the Hebrew 
University of Jerusalem in Israel, who is using 
AlphaFold to model protein interactions. 
“There is before July and after.”

Using AlphaFold, Beck and others at the 
MPIBP — molecular biologist Agnieszka 
Obarska-Kosinska and a group led by biophysi-
cist Gerhard Hummer — as well as a team led by 
structural modeller Jan Kosinski, at the Euro-
pean Molecular Biology Laboratory (EMBL) in 
Hamburg in Germany, could predict shapes 
for human versions of the Nup proteins more 
accurately. And by taking advantage of a tweak 
that helped AlphaFold to model how proteins 
interact, they managed to publish a model last 
October that covered 60% of the complex3. It 
reveals how the complex stabilizes holes in the 
nucleus, as well as hinting at how the complex 
controls what gets in and out. 

In the past half-year, AlphaFold mania has 
gripped the life sciences. “Every meeting I’m 
in, people are saying ‘why not use AlphaFold?’,” 
says Christine Orengo, a computational biolo-
gist at University College London.

In some cases, the AI has saved scientists 
time; in others it has made possible research 
that was previously inconceivable or wildly 
impractical. It has limitations, and some sci-
entists are finding its predictions to be too 
unreliable for their work. But the pace of 
experimentation is frenetic.

Even those who developed the software are 
struggling to keep up with its use in areas rang-
ing from drug discovery and protein design to 
the origins of complex life. “I wake up and type 
AlphaFold into Twitter,” says John Jumper, 
who leads the AlphaFold team at DeepMind. 
“It’s quite the experience to see everything.” 

A startling success
AlphaFold caused a sensation in December 
2020, when it dominated a contest called 
the Critical Assessment of Protein Structure 
Prediction, or CASP. The competition, held 
every two years, measures progress in one of 
biology’s grandest challenges: determining 
the 3D shapes of proteins from their ami-
no-acid sequence alone. Computer-software 
entries are judged against structures of the 

same proteins determined using experimen-
tal methods such as X-ray crystallography or 
cryo-electron microscopy (cryo-EM), which 
fire X-rays or electron beams at proteins to 
build up a picture of their shape.

The 2020 version of AlphaFold was the soft-
ware’s second edition. It had also won the 2018 
CASP, but its earlier efforts mostly weren’t 
good enough to stand in for experimentally 
determined structures, says Jumper. However, 
AlphaFold2’s predictions were, on average, on 
par with the empirical structures.

It wasn’t clear when DeepMind would make 
the software or its predictions widely available, 
so researchers used information from a pub-
lic talk by Jumper, and their own insights, to 
develop their own AI tool, called RoseTTAFold. 

Then on 15 July 2021, papers describing 
RoseTTAFold and AlphaFold2 appeared2,4, 
along with freely available, open-source code 
and other information needed for specialists 

to run their own versions of the tools. A week 
later, DeepMind announced that it had used 
AlphaFold to predict the structure of nearly 
every protein made by humans, as well as the 
entire ‘proteomes’ of 20 other widely stud-
ied organisms, such as mice and the bacte-
rium Escherichia coli — more than 365,000 
structures in total (see ‘What’s known about 
proteomes’). DeepMind also publicly released 
these to a database maintained by the EMBL’s 
European Bioinformatics Institute (EMBL–
EBI), in Hinxton, UK. That database has since 
swelled to almost one million structures. 

This year, DeepMind plans to release a total 
of more than 100 million structure predictions. 
That is nearly half of all known proteins — and 

hundreds of times more than the number of 
experimentally determined proteins in the 
Protein Data Bank (PDB) structure repository.

AlphaFold deploys deep-learning neu-
ral networks: computational architectures 
inspired by the brain’s neural wiring to discern 
patterns in data. It has been trained on hun-
dreds of thousands of experimentally deter-
mined protein structures and sequences in 
the PDB and other databases. Faced with a new 
sequence, it first looks for related sequences 
in databases, which can identify amino acids 
that have tended to evolve together, suggest-
ing they’re close in 3D space. The structure of 
existing related proteins provides another way 
to estimate distances between amino-acid 
pairs in the new sequence. 

AlphaFold iterates clues from these parallel 
tracks back and forth as it tries to model the 3D 
positions of amino acids, continually updat-
ing its estimate. Specialists say the software’s 
application of new ideas in machine learning 
research seems to be what makes AlphaFold 
so good — in particular, its use of an AI mech-
anism termed ‘attention’ to determine which 
amino-acid connections are most salient for 
its task at any moment.

The network’s reliance on information 
about related protein sequences means that 
AlphaFold has some limitations. It is not 
designed to predict the effect of mutations, 
such as those that cause disease, on a pro-
tein’s shape. Nor was it trained to determine 
how proteins change shape in the presence of 
other interacting proteins, or molecules such 
as drugs. But its models come with scores that 
gauge the network’s confidence in its predic-
tion for each amino-acid unit of a protein — and 
researchers are tweaking AlphaFold’s code to 
expand its capabilities.

By now, more than 400,000 people have 
used the EMBL-EBI’s AlphaFold database, 
according to DeepMind. There are also 
AlphaFold ‘power users’: researchers who’ve 
set up the software on their own servers or 

The number of research papers and preprints citing the AlphaFold2 AI software 
has shot up since its source code was released in July 2021*.

ALPHAFOLD MANIA

*Nature analysis using Dimensions database; removing duplicate preprints and papers/R. Van Noorden, E. Callaway.
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turned to cloud-based versions of AlphaFold 
to predict structures not in the EMBL-EBI data-
base, or to dream up new uses for the tool. 

Solving structures
Biologists are already impressed with Alpha-
Fold’s ability to solve structures. “Based on what 
I’ve seen so far, I trust AlphaFold quite a lot,” says 
Thomas Boesen, a structural biologist at Aar-
hus University in Denmark. The software has 
successfully predicted the shapes of proteins 
that Boesen’s centre has determined but not 
yet published. “That’s a big validation from my 
side,” he says. He and Aarhus microbial ecolo-
gist Tina Šantl-Temkiv are using AlphaFold to 
model the structure of bacterial proteins that 
promote the formation of ice — and which could 
contribute to the cooling effects of ice in clouds 
— because biologists haven’t been able to fully 
determine the structures experimentally5.

As long as a protein curls up into a single 
well-defined 3D shape — and not all do — 
AlphaFold’s prediction can be hard to beat, 
says Arne Elofsson, a protein bioinformati-
cian at Stockholm University. “It’s a one-click 
solution to get probably the best model you’re 
going to get.”

Where AlphaFold is less confident, “it’s 
very good at telling you when it doesn’t work”, 
Elofsson says. In such cases, predicted struc-
tures can resemble floating spaghetti strands 
(see ‘The good, the bad and the ugly’). This 
often corresponds to regions of proteins 
that lack a defined shape, at least in isolation. 
Such intrinsically disordered regions — which 
make up around one-third of the human pro-
teome — might become well defined only when 
another molecule, such as a signalling partner, 
is present.

Norman Davey, a computational biologist 
at the Institute of Cancer Research in London, 
says AlphaFold’s ability to identify disorder has 
been a game-changer for his work studying the 
properties of these regions. “Instantly there was 
a huge increase in the quality of the predictions 
we had, without any effort on our part,” he says. 

AlphaFold’s dump of protein structures into 
the EMBL-EBI database is also immediately 
being put to use. Orengo’s team is searching 
it to identify fresh kinds of proteins (without 
experimentally verifying them) and has turned 
up hundreds, perhaps thousands, of poten-
tially new protein families, expanding scien-
tists’ knowledge of what proteins look like and 
can do. In another effort, the team is scouring 
databases of DNA sequences harvested from 
the ocean and waste water, to try to identify 
new plastic-eating enzymes. Using AlphaFold 
to quickly approximate the structures of thou-
sands of proteins, the researchers hope to bet-
ter understand how enzymes evolved to break 
down plastic, and potentially to improve them.

The ability to transform any protein-coding 
gene sequence into a reliable structure should 
be especially powerful for evolution studies, 

says Sergey Ovchinnikov, an evolutionary 
biologist at Harvard University in Cambridge, 
Massachusetts. Researchers compare genetic 
sequences to determine how organisms and 
their genes are related across species. For 
distantly related genes, comparisons might 
fail to turn up evolutionary relatives because 
the sequences have changed so much. But by 
comparing protein structures — which tend 
to change less rapidly than genetic sequences 
— researchers might be able to uncover over-

looked ancient relationships. “This opens up 
an amazing opportunity to study the evolution 
of proteins and the origins of life,” says Pedro 
Beltrao, a computational biologist at the Swiss 
Federal Institute of Technology in Zurich.

To test this idea, a team led by Martin 
Steinegger, a computational biologist at Seoul 
National University, and his colleagues used a 
tool they developed, called Foldseek, to look 
for relatives of the RNA-copying enzyme of 
SARS-CoV-2 — the virus that causes COVID-
19 — in the EMBL-EBI’s AlphaFold database6. 
This search turned up previously unidentified 
possible ancient relatives: proteins across 

eukaryotes — including slime moulds — that 
resemble, in their 3D structure, enzymes called 
reverse transcriptases that viruses such as HIV 
use to copy RNA into DNA, despite very little 
similarity at the genetic-sequence level. 

Experimental assistant
For scientists who want to determine the 
detailed structure of a specific protein, an 
AlphaFold prediction isn’t necessarily an imme-
diate solution. Rather, it provides an initial 
approximation that can be validated or refined 
by experiment — and which itself helps to make 
sense of experimental data. Raw data from 
X-ray crystallography, for instance, appear as 
patterns of diffracted X-rays. Typically, scien-
tists need a starting guess at a protein’s struc-
ture to interpret these patterns. Previously, 
they’d often cobble together information from 
related proteins in the PDB or use experimental 
approaches, says Randy Read, a structural biol-
ogist at the University of Cambridge, UK, whose 
lab specialized in some of these methods. Now, 
AlphaFold’s predictions have rendered such 
approaches unnecessary for most X-ray pat-
terns, Read says, and his lab is working to make 
better use of AlphaFold in experimental mod-
els. “We’ve totally refocused our research.”

He and other researchers have used Alpha-
Fold to determine crystal structures from X-ray 
data that were uninterpretable without an 
adequate starting model. “People are solving 
structures that, for years, had not been solved,” 
says Claudia Millán Nebot, a former postdoc 
in Read’s lab who now works at the analytics 
firm SciBite in Cambridge. She expects to see 
a glut of new protein structures submitted to 
the PDB, in large part as a result of AlphaFold.

The same is true for labs specializing in 
cryo-EM, which captures pictures of flash-fro-
zen proteins. In some instances, AlphaFold’s 
models have accurately predicted unique 
features of proteins called G-protein-coupled 
receptors (GPCRs) — which are important drug 
targets — that other computational tools got 
wrong, says Bryan Roth, a structural biologist 
and pharmacologist at the University of North 
Carolina at Chapel Hill. “It seems to be really 
good for generating first models, which we 
then refine with some experimental data,” he 
says. “That saves us some time.”

But Roth adds that AlphaFold isn’t always 
that accurate. Of the several dozen GPCR struc-
tures his lab has solved, but not yet published, 
he says, “about half the time, the AlphaFold 
structures are fairly good, and half the time 
they’re more or less useless for our purposes”. 
In some instances, he says, AlphaFold labels 
predictions with high confidence, but exper-
imental structures show that it is wrong. Even 
when the software gets it right, it cannot 
model how a protein would look when bound 
to a drug or other small molecule (ligand), 
which can substantially alter the structure. 
Such caveats make Roth wonder how useful 
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*PDB: Protein Data Bank. AlphaFold can also be used to calculate these 
 structures — but doesn’t add significantly to what’s already known.  

Source of knowledge about proteome

AlphaFold’s predictions have greatly increased the 
proportion of confidently known structures in the 
human proteome — the collection of all human 
proteins. The software is even more 
useful for other species.

WHAT’S KNOWN 
ABOUT PROTEOMES

“Because it looks nice 
doesn’t mean it is correct. 
You need some experimental 
data that show you’re right.”
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AlphaFold will be for drug discovery.
It’s increasingly common in drug-discovery 

efforts to use computational-docking soft-
ware that screens billions of small molecules 
to find some that might bind to proteins — one 
indication that they could make useful drugs. 
Roth is now working with Brian Shoichet, a 
medicinal chemist at the University of Cali-
fornia, San Francisco, to see how AlphaFold’s 
predictions compare with experimentally 
determined structures in this exercise.

Shoichet says they are limiting their work 
to proteins for which AlphaFold’s prediction 
chimes with experimental structures. But even 
in these instances, the docking software is 
turning up different drug hits for the exper-
imental structure and AlphaFold’s take, sug-
gesting that small discrepancies could matter. 
“That doesn’t mean we won’t find new ligands, 
we’ll just find different ones,” says Shoichet. 
His team is now synthesizing potential drugs 
identified using AlphaFold structures, and 
testing their activity in the lab.

Critical optimism
Researchers at pharmaceutical companies and 
biotechnology firms are excited about Alpha-
Fold’s potential to help with drug discovery, 
says Shoichet. “Critical optimism is how I’d 
describe it.” In November 2021, DeepMind 
launched its own spin-off, Isomorphic Labs, 
which aims to apply AlphaFold and other AI 
tools to drug discovery. But the company has 
said little else about its plans.

Karen Akinsanya, who leads therapeutics 
development at Schrödinger, a drug-discov-
ery firm headquartered in New York City that 
also publishes chemical-simulations software, 
says she and her colleagues are already hav-
ing some success using AlphaFold structures, 
including for GPCRs, in virtual screens and 
compound design for drug candidates. She 
finds that, just as with experimental struc-
tures, extra software is needed to get at the fine 
details of amino-acid side chains or locations 
where individual hydrogen atoms might sit. 
Once this is done, AlphaFold structures have 
proved good enough to guide drug discovery 
— in some cases. 

“It’s hard to say ‘this is a panacea’; that 
because you can do it very well for one struc-
ture — surprisingly and excitingly well — that 
it is eminently applicable to all structures. It 
clearly isn’t,” Akinsanya says. And she and her 
colleagues have found that AlphaFold’s accu-
racy predictions don’t show whether a struc-
ture will be useful for later drug screening. 
AlphaFold structures will never fully replace 
experimental ones in drug discovery, she says. 
But they might speed up the process by com-
plementing experimental methods.

Drug developers curious about AlphaFold 
received good news in January, when Deep-
Mind lifted a key restriction on its use for 
commercial applications. When the company 

released AlphaFold’s code in July 2021, it had 
stipulated that the parameters, or weights, 
needed to run the AlphaFold neural network 
— the end result of training the network on 
hundreds of thousands of protein structures 
and sequences — were for non-commercial use 
only. Akinsanya says this was a bottleneck for 
some in industry, and there was a “wave of 
excitement” when DeepMind changed tack. 
(RoseTTAFold came with similar restrictions, 
says Ovchinnikov, one of its developers. But 
the next version will be fully open-source.) 

AI tools are not just changing how scien-
tists determine what proteins look like. Some 
researchers are using them to make entirely 
new proteins. “Deep learning is completely 
transforming the way that protein design is 
being done in my group,” says David Baker, a 
biochemist at the University of Washington 
in Seattle and a leader in the field of design-
ing proteins, as well as predicting their struc-
tures. His team, with computational chemist 
Minkyung Baek, led the work to develop 
RoseTTAFold.

Baker’s team gets AlphaFold and 
RoseTTAFold to “hallucinate” new proteins. The 
researchers have altered the AI code so that, 
given random sequences of amino acids, the 
software will optimize them until they resemble 
something that the neural networks recognize 
as a protein (see ‘Dreaming up proteins’).

In December 2021, Baker and his colleagues 
reported expressing 129 of these hallucinated 
proteins in bacteria, and found that about one-
fifth of them folded into something resem-
bling their predicted shape7. “That’s really 
the first demonstration that you can design 
proteins using these networks,” Baker says. 

His team is now using this approach to design 
proteins that do useful things, such as catalyse 
a particular chemical reaction, by specifying 
the amino acids responsible for the desired 
function and letting the AI dream up the rest.

Hacking AlphaFold
When DeepMind released its AlphaFold code, 
Ovchinnikov wanted to better understand 
how the tool worked. Within days, he and 
computational-biology colleagues, including 
Steinegger, set up a website called ColabFold 
that allowed anyone to submit a protein 
sequence to AlphaFold or RoseTTAFold and 
get a structure prediction. Ovchinnikov 
imagined that he and other scientists would 
use ColabFold to try and ‘break’ AlphaFold, 
for instance, by supplying false information 
about a target protein sequence’s evolutionary 
relatives. By doing this, Ovchinnikov hoped he 
could determine how the network had learnt 
to predict structures so well. 

As it turned out, most researchers who 
used ColabFold just wanted to get a protein 
structure. But others used it as a platform to 
modify the inputs to AlphaFold to tackle new 
applications. “I didn’t expect the number of 
hacks of various types,” says Jumper.

By far the most popular hack has been to 
wield the tool on protein complexes com-
prised of multiple, interacting — and often 
intertwined — chains of peptides. Just as with 
the nuclear pore complex, many proteins in 
cells gain their function when they form com-
plexes with multiple protein subunits.

AlphaFold was designed to predict the 
shape of single peptide chains, and its train-
ing consisted entirely of such proteins. But the 

AlphaFold’s predictions of a folded protein’s structure come with confidence estimates. Superimposing each 
model on the experimentally determined structure (if available) shows the accuracy of the prediction. 

THE GOOD, THE BAD AND THE UGLY
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AlphaFold structure, with confidence
estimates for each section.

AlphaFold model of 
phosphohistidine 
phosphatase overlaps 
closely with PDB structure.

AlphaFold model of 
human insulin bears 
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structure.

AlphaFold has little confidence across 
much of its prediction for this human 
ubiquitin-protein ligase. There is no 
PDB structure to compare it with.
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network seems to have learnt something about 
how complexes fold together. Several days 
after AlphaFold’s code was released, Yoshitaka 
Moriwaki, a protein bioinformatician at the 
University of Tokyo, tweeted that it could accu-
rately predict interactions between two pro-
tein sequences if they were stitched together 
with a long linker sequence. Baek soon shared 
another hack to predict complexes, gleaned 
from developing RoseTTAFold. 

ColabFold later incorporated the abil-
ity to predict complexes. And in October 
2021, DeepMind released an update called 
AlphaFold-Multimer8 that was specifically 
trained on protein complexes, unlike its pre-
decessor. Jumper’s team applied it to thou-
sands of complexes in the PDB, and found that 
it predicted around 70% of the known protein–
protein interactions.

These tools are already helping research-
ers to spot potential new protein partners. 
Elofsson’s team used AlphaFold to predict 
the structures of 65,000 human protein pairs 
that were suspected to interact on the basis of 
experimental data9. And a team led by Baker 
used AlphaFold and RoseTTAFold to model 
interactions between nearly every pair of pro-
teins encoded by yeast, identifying more than 
100 previously unknown complexes10. Such 
screens are just starting points, says Elofsson. 
They do a good job of predicting some protein 
pairings, particularly those that are stable, but 
struggle to identify more transient interac-
tions. “Because it looks nice doesn’t mean it is 
correct,” says Elofsson. “You need some exper-
imental data that show you’re right.” 

The nuclear pore complex work is a good 
example of how predictions and experimental 
data can work together, says Kosinski. “It’s not 
like we take all the 30 proteins, throw them into 
AlphaFold and get the structure out.” To put 
the predicted protein structures together, the 
team used 3D images of the nuclear pore com-
plex, captured using a form of cryo-EM called 
cryo-electron tomography. In one instance, 
experiments that can determine the proximity 

of proteins turned up a surprising interaction 
between two components of the complex, 
which AlphaFold’s models then confirmed.

Kosinski sees the team’s current map of the 
nuclear pore complex as a starting point for 
experiments and simulations that examine 
how the pore complex functions — and how it 
malfunctions in disease.

AlphaFold’s limits
For all the progress made with AlphaFold, 
scientists say that it is important to be clear 
about its limitations — particularly because 
researchers who don’t specialize in predicting 
protein structures use it. 

Attempts to apply AlphaFold to various 
mutations that disrupt a protein’s natural 

structure, including one linked to early breast 
cancer, have confirmed that the software is 
not equipped to predict the consequences of 
new mutations in proteins, since there are no 
evolutionarily-related sequences to examine11.

The AlphaFold team is now thinking about 
how a neural network could be designed to 
deal with new mutations. Jumper expects 
this would require the network to better pre-
dict how a protein goes from its unfolded to 
its folded state. That would probably need 
software that relies only on what it has learnt 
about protein physics to predict structures, 
says Mohammed AlQuraishi, a computational 
biologist at Columbia University in New York 
City. “One thing we are interested in is making 
predictions from single sequences without 
using evolutionary information,” he says. 
“That’s a key problem that does remain open.” 

AlphaFold is also designed to predict a single 
structure, although it has been hacked to spit 

out more than one. But many proteins take on 
multiple conformations, which can be impor-
tant to their function. “AlphaFold can’t really 
deal with proteins that can adopt different 
structures in different conformations,” says 
Schueler-Furman. And the predictions are for 
structures in isolation, whereas many proteins 
function alongside ligands such as DNA and 
RNA, fat molecules and minerals such as iron. 
“We are still missing ligands, we are missing 
everything else about proteins,” says Elofsson.

Developing these next-generation neu-
ral networks will be a huge challenge, says 
AlQuraishi. AlphaFold relied on decades 
of research which generated experimental 
structures of proteins that the network could 
learn from. That volume of data is currently 
not available to capture protein dynamics, or 
the shapes of the trillions of smaller molecules 
that proteins could interact with. The PDB 
includes structures of proteins as they interact 
with other molecules, but this captures just a 
sliver of chemical diversity, Jumper adds. 

Researchers think that it will take time for 
them to determine how best to wield Alpha-
Fold and related AI tools. AlQuraishi sees par-
allels with the early days of television, when 
some programmes consisted of radio broad-
casters simply reading the news. “I think we’re 
going to find new applications of structure 
that we haven’t conceived of yet.”

Where the AlphaFold revolution is ends up is 
anybody’s guess. “Things are just changing so 
fast,” says Baker. “Even in the next year, we’re 
going to see really major breakthroughs made 
using these tools.” Janet Thornton, a compu-
tational biologist at the EMBL-EBI, thinks one 
of AlphaFold’s biggest impacts might be sim-
ply to convince biologists to be more open to 
insights from computational and theoretical 
approaches. “To me, the revolution is the 
mindset change,” she says.

The AlphaFold revolution has inspired Kos-
inski to dream big. He imagines that Alpha-
Fold-inspired tools could be used to model 
not just individual proteins and complexes, 
but entire organelles or even cells down to the 
level of individual protein molecules. “This is 
the dream we will follow for the next decades.”

Ewen Callaway writes for Nature from London.
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Researchers used deep neural networks to invent, or ‘hallucinate’, sequences of amino acids 
that could fold into proteins; in some cases they have synthesized these proteins to compare 
their actual structures with predictions. 

DREAMING UP PROTEINS

‘Hallucinated’ protein
(software prediction)

Actual structure
(experimentally determined)

Superposition of hallucinated (blue)
and actual (grey) structures

“I think we’re going to 
find new applications of 
structure that we haven’t 
conceived of yet.”
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Corrected 25 April 2022

Correction
This article incorrectly described Gerhard 
Hummer as a biochemist. He is a biophys-
icist.
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