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Abstract. The semantic image segmentation task presents a trade-off
between test time accuracy and training-time annotation cost. Detailed
per-pixel annotations enable training accurate models but are very time-
consuming to obtain; image-level class labels are an order of magnitude
cheaper but result in less accurate models. We take a natural step from
image-level annotation towards stronger supervision: we ask annotators
to point to an object if one exists. We incorporate this point supervision
along with a novel objectness potential in the training loss function of a
CNNmodel. Experimental results on the PASCAL VOC 2012 benchmark
reveal that the combined effect of point-level supervision and object-
ness potential yields an improvement of 12.9% mIOU over image-level
supervision. Further, we demonstrate that models trained with point-
level supervision are more accurate than models trained with image-level,
squiggle-level or full supervision given a fixed annotation budget.

Keywords: semantic segmentation, weak supervision, data annotation

1 Introduction

At the forefront of visual recognition is the question of how to effectively teach
computers new concepts. Algorithms trained from carefully annotated data enjoy
better performance than their weakly supervised counterparts (e.g., [1] vs. [2], [3]
vs. [4], [5] vs. [6]), yet obtaining such data is very time-consuming [5, 7].

It is particularly difficult to collect training data for semantic segmentation,
i.e., the task of assigning a class label to every pixel in the image. Strongly
supervised methods require a training set of images with per-pixel annotations [3,
8–12] (Fig. 1). Providing an accurate outline of a single object takes between 54
seconds [13] and 79 seconds [5]. A typical indoor scene contains 23 objects [14],
raising the annotation time to tens of minutes per image. Methods have been
developed to reduce the annotation time through effective interfaces [5, 15–19],
e.g., through requesting human feedback only as necessary [13]. Nevertheless,
accurate per-pixel annotations remain costly and scarce.

To alleviate the need for large-scale detailed annotations, weakly supervised
semantic segmentation techniques have been developed. The most common set-
ting is where only image-level labels for the presence or absence of classes are
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Original image Image-level labels 1 point per class Legend

Fig. 1. Semantic segmentation models trained with our point-level supervision are
much more accurate than models trained with image-level supervision (and even more
accurate than models trained with full pixel-level supervision given the same annotation
budget). The second two columns show test time results.

provided during training [4, 20–25], but other forms of weak supervision have
been explored as well, such as bounding box annotations [4], eye tracks [26],
free-form squiggles [17, 18], or noisy web tags [27]. These methods require signif-
icantly less annotation effort during training, but are not able to segment new
images nearly as accurately as fully supervised techniques.

In this work, we take a natural step towards stronger supervision for semantic
segmentation at negligible additional time, compared to image-level labels. The
most natural way for humans to refer to an object is by pointing: “That cat over
there” (point) or “What is that over there?” (point). Psychology research has
indicated that humans point to objects in a consistent and predictable way [3, 28].
The fields of robotics [10, 29] and human-computer interaction [9] have long used
pointing as the effective means of communication. However, point annotation is
largely unexplored in semantic segmentation.

Our primary contribution is a novel supervision regime for semantic seg-
mentation based on humans pointing to objects. We extend a state-of-the-art
convolutional neural network (CNN) framework for semantic segmentation [5,
23] to incorporate point supervision in its training loss function. With just one
annotated point per object class, we considerably improve semantic segmenta-
tion accuracy. We ran an extensive human study to collect these points on the
PASCAL VOC 2012 dataset and evaluate the annotation times. We also make
the user interface and the annotations available to the community. 4

One lingering concern with supervision at the point level is that it is difficult
to infer the full extent of the object. Our secondary contribution is incorpo-
rating an generic objectness prior [30] directly in the loss to guide the training of
a CNN. This prior helps separate objects (e.g., car, sheep, bird) from background
(e.g., grass, sky, water), by providing a probability that a pixel belongs to an
object. Such priors have been used in segmentation literature for proposing a
set of candidate segments [31], selecting image regions to segment [32], as unary
potentials in a conditional random field model [20], or during inference [25].
However, to the best of our knowledge, we are the first to employ this directly
in the loss to guide the training of a CNN.

The combined effect of our contributions is a substantial increase of 12.9%
mean intersection over union (mIOU) on the PASCAL VOC 2012 dataset [33]

4 Please refer to the project page: http://vision.stanford.edu/whats_the_point
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compared to training with image-level labels (Fig. 1). Further, we demonstrate
that models trained with point-level supervision outperform models trained with
image-level, squiggle-level, and full supervision by 2.7−20.8% mIOU given a fixed
annotation budget.

2 Related Work

Types of Supervision for Semantic Segmentation. To reduce the up-front
annotation time for semantic segmentation, recent works have focused on train-
ing models in a weakly- or semi-supervised setting. Many forms of supervision
have been explored, such as eye tracks [26], free-form squiggles [17, 18], noisy web
tags [27], size constraints on objects [6] or heterogeneous annotations [34]. Com-
mon settings are image-level labels [4, 23, 25] and bounding boxes [4, 35]. [14,
36, 37] use co-segmentation methods trained from image-level labels to auto-
matically infer the segmentations. [6, 23, 25] train CNNs supervised only with
image-level labels by extending the Multiple-Instance Learning (MIL) frame-
work for semantic segmentation. [4, 35] use an EM procedure, which alternates
between estimating pixel labels from bounding box annotations and optimizing
the parameters of a CNN.

There is a trade-off between annotation time and accuracy: models trained
with higher levels of supervision are more accurate than weakly supervised mod-
els, but they require costly human-annotated datasets. We propose an intermedi-
ate form of supervision, using points, which adds negligible additional annotation
time to image-level labels, yet achieves better accuracy. [19] also uses point su-
pervision, but it trains a patch-level CNN classifier to serve as a unary potential
in a CRF, whereas we use point supervision directly during CNN training.

CNNs for Segmentation. Recent successes in semantic segmentation have
been driven by methods that train CNNs originally built for image classification
to assign semantic labels to each pixel in an image [5, 11, 32, 38]. One extension
of the fully convolutional network (FCN) architecture developed by [5] is to
train a multi-layer deconvolution network end-to-end [39]. More inventive forms
of post-processing have also been developed, such as combining the responses at
the final layer of the network with a fully-connected CRF [38]. We develop our
approach on top of the basic framework common to many of these methods.

Interactive Segmentation. Some semantic segmentation methods are in-
teractive, in that they collect additional annotations at test time to refine the
segmentation. These annotations can be collected as points [2] or free-form squig-
gles [15]. These methods require additional user input at test time; in contrast,
we only collect user points once and only use them at training time.

3 Semantic Segmentation Method

We describe here our approach to using point-level supervision (Fig. 2) for train-
ing semantic segmentation models. In Section 4, we will demonstrate that this
level of supervision is cheap and efficient to obtain. In our setting (in contrast
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Original image FCN [5] Segmentation

Levels of supervision

Full Image-level Point-level Objectness prior

Fig. 2. (Top): Overview of our semantic segmentation training framework. (Bottom):
Different levels of training supervision. For full supervision, the class of every pixel is
provided. For image-level supervision, the class labels are known but their locations are
not. We introduce point-level supervision, where each class is only associated with one
or a few pixels, corresponding to humans pointing to objects of that class. We include
an objectness prior in our training loss function to accurately infer the object extent.

to [2]), supervised points are only provided on training images. The learned
model is then used to segment test images with no additional human input.

Current state-of-the-art semantic segmentation methods [4, 5, 23, 25, 38], both
supervised and unsupervised, employ a unified CNN framework. These networks
take as input an image of size W × H and output a W × H × N score map
where N is the set of classes the CNN was trained to recognize (Fig. 2). At test
time, the score map is converted to per-pixel predictions of size W ×H by either
simply taking the maximally scoring class at each pixel [5, 23] or employing more
complicated post-processing [4, 25, 38].

Training models with different levels of supervision requires defining appro-
priate loss functions in each scenario. We begin by presenting two of the most
commonly used in the literature. We then extend them to incorporate (1) our
proposed point supervision and (2) a novel objectness prior.

Full Supervision. When the class label is available for every pixel during
training, the CNN is commonly trained by optimizing the sum of per-pixel cross-
entropy terms [5, 38]. Let I be the set of pixels in the image. Let sic be the CNN

score for pixel i and class c. Let Sic = exp(sic)/
∑N

k=1 exp(sik) be the softmax
probability of class c at pixel i. Given a ground truth map G indicating that
pixel i belongs to class Gi, the loss on a single training image is:

Lpix(S,G) = −
∑

i∈I

log(SiGi
) (1)

The loss is simply zero for pixels where the ground truth label is not defined
(e.g., in the case of pixels defined as “difficult” on the boundary of objects in
PASCAL VOC [33]).
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Image-Level Supervision. In this case, the only information available dur-
ing training are the sets L ⊆ {1, . . . , N} of classes present in the image and
L′ ⊆ {1, . . . , N} of classes not present in the image. The CNN model can be
trained with a different cross-entropy loss:

Limg(S,L, L
′) = −

1

|L|

∑

c∈L

log(Stcc)−
1

|L′|

∑

c∈L′

log(1− Stcc) (2)

with tc = argmax
i∈I

Sic

The first part of Eqn. (2), corresponding to c ∈ L, is used in [23]. It encourages
each class in L to have a high probability on at least one pixel in the image.
The second part has been added in [6], corresponding to the fact that no pixels
should have high probability for classes that are not present in the image.

Point-Level Supervision.We study the intermediate case where the object
classes are known for a small set of supervised pixels Is, whereas other pixels
are just known to belong to some class in L. We generalize Eqns. (1) and (2) to:

Lpoint(S,G,L, L
′) = Limg(S,L, L

′)−
∑

i∈Is

αi log(SiGi
) (3)

Here, αi determines the relative importance of each supervised pixel. We ex-
periment with several formulations for αi. (1), for each class we ask the user to
either determine that the class is not present in the image or to point to one
object instance. In this case, |Is| = |L| and αi is uniform for every point; (2),
we ask multiple annotators to do the same task as (1), and we set αi to be the
confidence of the accuracy of the annotator that provided the point; (3), we ask
the annotator(s) to point to every instance of the classes in the image, and αi

corresponds to the order of the points: the first point is more likely to correspond
to the largest object instance and thus deserves a higher weight αi.

Objectness Prior. One issue with training models with very few or no su-
pervised pixels is correctly inferring the spatial extent of the objects. In general,
weakly supervised methods are prone to local minima: focusing on only a small
part of the target object, or predicting all pixels as belonging to the background
class [23]. To alleviate this problem, we introduce an additional term in our
training objective based on an objectness prior (Fig. 2). Objectness provides a
probability for whether each pixel belongs to any object class [30] (e.g., bird, car,
sheep), as opposed to background (e.g., sky, water, grass). These probabilities
have been used in the weakly supervised semantic segmentation literature before
as unary potentials in graphical models [20] or during inference following a CNN
segmentation [25]. To the best of our knowledge, we are the first to incorporate
them directly into CNN training.

Let Pi be the probability that pixel i belongs to an object. Let O be the
classes corresponding to objects, with the other classes corresponding to back-
grounds. In PASCAL VOC, O is the 20 object classes, and there is a single
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generic background class. We define a new loss:

Lobj(S, P ) = −
1

|I|

∑

i∈I

Pi log

(

∑

c∈O

Sic

)

+ (1− Pi) log

(

1−
∑

c∈O

Sic

)

(4)

At pixels with high Pi values, this objective encourages placing probability mass
on object classes. Alternatively, when Pi is low, it prefers mass on the background
class. Note that Lobj requires no human supervision (beyond pre-training the
generic objectness detector), and thus can be combined with any loss above.

4 Crowdsourcing Annotation Data

In this section, we describe our method for collecting annotations for the different
levels of supervision. The annotation time required for point-level and squiggle-
level supervision was measured directly during data collection. For other types
of supervision, we rely on the annotation times reported in the literature.

Image-Level Supervision (20.0 sec/img). Collecting image-level labels
takes 1 second per class [26]. Thus, annotating an image with 20 object classes
in PASCAL VOC is expected to take 20 seconds per image.

Full Supervision (239.7 sec/img). There are 1.5 object classes per image
on average in PASCAL VOC 2012 [33]. It takes 1 second to annotate every
object that is not present (to obtain an image-level “no” label), for 18.5 seconds
of labeling time. Additionally, there are 2.8 object instances on average per
image that need to be segmented [33]. The authors of the COCO dataset report
22 worker hours for 1,000 segmentations [16]. This implies a mean labeling time
of 79 seconds per object segmentation, adding 2.8×79 seconds of labeling in our
case. Thus, the total expected annotation time is 239.7 seconds per image.

4.1 Point-Level Supervision (22.1 sec/img)

We used Amazon Mechanical Turk (AMT) to annotate point-level supervision on
20 PASCAL VOC object classes over 12,031 images: all training and validation
images of the PASCAL VOC 2012 segmentation task [33] plus the additional
images of [40]. Fig. 3 (left) shows the annotation inferface and Fig. 3 (center)
shows some collected data. We use two different point-level supervision tasks.
For each image, we obtain either (1) one annotated point per object class, on
the first instance of the class the annotator sees (1Point), and (2) one annotated
point per object instance (AllPoints). We make these collected annotations and
the annotation system publicly available.

Annotation Time. There are 1.5 classes on average per image in PASCAL
VOC 2012. It takes workers a median of 2.4 seconds to click on the first instance
of an object. Thus, the labeling 1Point takes 18.5×1+1.5×2.4 = 22.1 seconds
per image. It takes workers a median of 0.9 seconds to click on every additional
instance of an object class. There are 2.8 instances on average per image, so
labeling AllPoints takes 18.5×1+1.5×2.4+(2.8−1.5)×0.9 = 23.3 seconds per
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Fig. 3. Left. AMT annotation UI for point-level supervision. Center. Example points
collected. Right. Example squiggles collected. Colors correspond to different classes.

image. Point supervision is only 1.1-1.2x more time-consuming than obtaining
image-level labels, and more than 10x cheaper than full supervision.

Quality Control. Quality control for point annotation was done by planting
10 evaluation images in a 50-image task and ensuring that at least 8 are labeled
correctly. We consider a point correct if it falls inside a tight bounding box
around the object. For the AllPoints task, the number of annotated clicks must
be at least the number of known object instances.

Error Rates. Simply determining the presence or absence of an object class
in an image was fairly easy, and workers incorrectly labeled an object class as
absent only 1.0% of the time. On the 1Point task, 7.2% of points were on a
pixel with a different class label (according to the PASCAL ground truth), and
an additional 0.8% were on an unclassified “difficult” pixel. For comparison, [41]
reports much higher 25% average error rates when drawing bounding boxes.
Our collected data is high-quality, confirming that pointing to objects comes
naturally to humans [3, 9].

Annotators had more difficulty with the AllPoints class: 7.9% of ground
truth instances were left unannotated, 14.8% of the clicks were on the wrong
object class, and 1.6% on “difficult” pixels. This task caused some confusion
among workers due to blurry or very small instances; for example, many of these
instances are not annotated in the ground truth but were clicked by workers,
accounting for the high false positive rate.

4.2 Squiggle-Level Supervision (34.9 sec/img)

[17, 18] have experimented with training with free-form squiggles, where a subset
of pixels are labeled. While [17] simulates squiggles by randomly labeling super-
pixels from the ground truth, we follow [18] in collecting squiggle annotations
(and annotation times) from humans for 20 object classes on all PASCAL VOC
2012 trainval images. This allows us to properly compare this supervision setting
to human points. We extend the user interface shown in Fig. 3 (left) by asking
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annotators to draw one squiggle on one instance of the target class. Fig. 3 (right)
shows some collected data.

Annotation Time. As before, it takes 18.5 seconds to annotate the classes
not present in the image. For every class that is present, it takes 10.9 seconds
to draw a free-form squiggle on the target class. Therefore, the labeling time
of 1Squiggle is 18.5 + 1.5 × 10.9 = 34.9 seconds per image. This is 1.6x more
time-consuming than obtaining 1Point point-level supervision and 1.7x more
than image-level labels.

Error Rates. We used similar quality control to point-level superivision.
Only 6.3% of the annotated pixels were on the wrong object class, and an addi-
tional 1.4% were on pixels marked as “difficult” in PASCAL VOC [33].

In Section 5 we compare the accuracy of the models trained with different
levels of supervision.

5 Experiments

We empirically demonstrate the efficiency of our point-level and objectness prior.
We compare these forms of supervision against image-level labels, squiggle-level,
and fully supervised data. We conclude that point-level supervision makes a
much more efficient use of annotator time, and produces much more effective
models under a fixed time budget.

5.1 Setup

Dataset. We train and evaluate on the PASCAL VOC 2012 segmentation
dataset [33] augmented with extra annotations from [40]. There are 10,582 train-
ing images, 1,449 validation images and 1,456 test images. We report the mean
intersection over union (mIOU), averaged over 21 classes.

CNN Architecture.We use the state-of-the-art fully convolutional network
model [5]. Briefly, the architecture is based on the VGG 16-layer net [8], with all
fully connected layers converted to convolutional layers. The last classifier layer
is discarded and replaced with a 1x1 convolution layer with channel dimension
N = 21 equal to the number of object classes. The final modification is the
addition of a deconvolution layer to bilinearly upsample the output to pixel-
level dense predictions.

CNN Training. We train following a procedure similar to [5]. We use
stochastic gradient descent with a fixed learning rate of 10−5, doubling the learn-
ing rate for biases, and with a minibatch of 20 images, momentum of 0.9 and
weight decay 0.0005. The network is initialized with weights pre-trained for a
1000-way classification task of the ILSVRC 2012 dataset [5, 7, 8].5 In the fully
supervised case we zero-initialize the classifier weights [5], and for all the weakly
supervised cases we follow [23] to initialize them with weights learned by the

5 Standard in the literature [1, 4, 5, 23, 25, 38]. We do not consider the cost of collecting
those annotations; including them would not change our overall conclusions.
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original VGG network for classes common to both PASCAL and ILSVRC. We
backpropagate through all layers to fine-tune the network, and train for 50,000
iterations. We build directly on the publicly available implementation of [5, 42].6

Objectness prior. We calculate the per-pixel objectness prior by assigning
each pixel the average objectness score of all windows containing it. These scores
are obtained by using the pre-trained model from the released code of [30]. The
model is trained on 50 images with 291 object instances randomly sampled
from a variety of different datasets (e.g., INRIA Person, Caltech 101) that do
not overlap with PASCAL VOC 2007-2012 [30]. For fairness of comparison, we
include the annotation cost of training the objectness prior. We estimate the
291 bounding boxes took 10.2 seconds each on average to obtain [41], adding up
to a total of 49.5 minutes of annotation. Amortized across the 10,582 PASCAL
training images, using the objectness prior thus costs 0.28 seconds of extra
annotation per image.

5.2 Synergy Between Point-Level Supervision and Objectness Prior

We first establish the baselines of our model and show the benefits of both point-
level supervision and objectness prior. Table 1 (top) summarizes our findings and
Table 2 (top) shows the per-class accuracy breakdown.

Baseline. We train a baseline segmentation model from image-level labels
with no additional information. We base our model on [23], which trains a similar
fully convolutional network and obtains 25.1% mIOU on the PASCAL VOC 2011
validation set. We notice that the absence of a class label in an image is also an
important supervisor signal, along with the presence of a class label, as in [6].
We incorporate this insight into our loss function Limg in Eqn. 2, and see a
substantial 5.4% improvement in mIOU from the baseline, when evaluated on
the PASCAL VOC 2011 validation set.

Effect of Point-Level Supervision. We now run a key experiment to
investigate how having just one annotated point per class per image improves
semantic segmentation accuracy. We use loss Lpoint of Eqn. (3). On average
there are only 1.5 supervised pixels per image (as many as classes per image).
All other pixels are unsupervised and not considered in the loss. We set α = 1/n
where n is the number of supervised pixels on a particular training image. On
the PASCAL VOC 2012 validation set, the accuracy of a model trained using
Limg is 29.8% mIOU. Adding our point supervision improves accuracy by 5.3%
to 35.1% mIOU (row 3 in Table 1).

Effect of Objectness Prior. One issue with training models with very few
or no supervised pixels is the difficulty of inferring the full extent of the object.
With image-level labels, the model tends to learn that objects occupy a much
greater area than they actually do (second column of Fig. 4). We introduce the

6 [5] introduces additional refinement by decreasing the stride of the output layers
from 32 pixels to 8 pixels, which improves their results from 59.7% to 62.7% mIOU
on the PASCAL VOC 2011 validation set. We use the original model with stride of
32 for simplicity.
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Original Image-level Image-level Point-level Full
image supervision + objectness + objectness supervision

Fig. 4. Qualitative results on the PASCAL VOC 2012 validation set. The model trained
with image-level labels usually predicts the correct classes and their general locations,
but it over-extends the segmentations. The objectness prior improves the accuracy of
the image-level model by helping infer the object extent. Point supervision aids in
separating distinct objects (row 2) and classes (row 4) and helps correctly localize the
objects (rows 3 and 4). Best viewed in color.

objectness prior in the loss using Eqn. (4) to aid the model in correctly predicting
the extent of objects (third column on Fig. 4). This improves segmentation
accuracy: when supervised only with image-level labels, the Img model obtained
29.8% mIOU, and the Img + Obj model improves to 32.2% mIOU.

Effect of Combining Point-Level Supervision and Objectness. The
effect of the objectness prior is even more apparent when used together with
point-level supervision. When supervised with 1Point, the Img model achieves
35.1% mIOU, and the Img + Obj model improves to 42.7% mIOU (rows 3 and
4 in Table 1). Conversely, when starting from the Img + Obj image-level model,
the effect of a single point of supervision is stronger. Adding just one point per
class improves accuracy by 10.5% from 32.2% to 42.7%.

Conclusions. We make two conclusions. First, the objectness prior is very
effective for training models with none or very few supervised pixels – and this
comes with no additional human supervision cost on the target dataset. Thus,
for the rest of the experiments in this paper, whenever not all pixels are labeled
(i.e., all but full supervision) we always use Img + Obj together. Second, our
two contributions operate in synergetic ways. The combined effect of both point-
level supervision and objectness prior is a +13% improvement (from 29.8% to
42.7% mIOU).
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Supervision Time (s) Model mIOU (%)

Image-level labels 20.0 Img 29.8
Image-level labels 20.3 Img + Obj 32.2
1Point 22.1 Img 35.1
1Point 22.4 Img + Obj 42.7

AllPoints 23.6 Img + Obj 42.7
AllPoints (weighted) 23.5 Img + Obj 43.4
1Point (3 annotators) 29.6 Img + Obj 43.8
1Point (random annotators) 22.4 Img + Obj 42.8 - 43.8
1Point (random points) 240 Img + Obj 46.1

Full supervision 239.7 Img 58.3
Hybrid approach 24.5 Img + Obj 53.1
1 squiggle per class 35.2 Img + Obj 49.1

Table 1. Results on the PASCAL VOC 2012 validation set, including both annotation
time (second column) and accuracy of the model (last column). Top, middle and bottom
correspond to Sections 5.2, 5.3 and 5.4 respectively.

5.3 Point-Level Supervision Variations

Our goal in this section is to build a deeper understanding of the properties of
point-level supervision that make it an advantageous form of supervision. Table 1
summarizes our findings and Table 2 shows the per-class accuracy breakdown.

Multiple Instances. Using points on all instances (AllPoints) instead of
just one point per class (1Point) remains at 42.7% mIOU: the benefit from extra
supervision is offset by the confusion introduced by some difficult instances that
are annotated. We introduce a weighting factor αi = 1/2r in Eqn. (3) where r
is the ranked order of the point (so the first instance of a class gets weight 1,
the second instance gets weight 1/2, etc.). This AllPoints (weighted) method
improves results by a modest 0.7% to 43.4% mIOU.

Patches. The segmentation model effectively enforces spatial label smooth-
ness, so increasing the area of supervised pixels by a radius of 2, 5 and 25 pixels
around a point has little effect, with 43.0−43.1% mIOU (not shown in Table 1).

Multiple Annotators.We also collected 1Point data from 3 different anno-
tators and used all points during training. This achieved a modest improvement
of 1.1% from 42.7% to 43.8%, which does not seem worth the additional anno-
tation cost (29.3 versus 22.1 seconds per image).

Random Annotators. Using the data from multiple annotators, we also
ran experiments to estimate the effect of human variance on the accuracy of
the model. For each experiment, we randomly selected a different independent
annotator to label each image. Three runs achieved 42.8, 43.4, and 43.8 mIOU
respectively, as compared to our original result of 42.7 mIOU. This suggests
that the variation in the location of the annotators’ points does not significantly
affect our results. This also further confirms that humans are predictable and
consistent in pointing to objects [3, 28].

Random Points. An interesting experiment is supervising with one point
per class, but randomly sampled on the target object class using per-pixel super-
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Model bg aer bic bir boa bot bus car cat cha cow din dog hor mot per pot she sof tra tv avg

Img 60 25 15 23 21 20 48 36 47 9 34 21 37 32 37 18 24 34 21 40 24 30

Img +Obj 79 42 20 39 33 17 34 39 45 10 35 13 42 34 33 23 19 40 15 38 28 32

Img +1Point 56 25 16 22 20 31 53 34 53 8 41 42 43 40 42 46 24 38 29 46 30 35

Img +1Point

+Obj

78 49 23 37 37 37 57 50 51 14 40 41 50 38 51 47 31 48 28 49 45 43

AllPoints 79 49 21 40 38 38 50 45 53 17 43 40 47 44 51 51 22 47 29 52 44 43

AllPoints

(weighted)
77 48 23 38 36 38 57 52 52 13 42 41 50 43 52 46 31 49 28 50 44 43

1Point

(3 annot.)
79 50 23 39 37 39 60 50 54 15 41 42 49 42 52 50 29 49 29 49 44 44

1Point

(random)
80 49 23 39 41 46 60 61 56 18 38 41 54 42 55 57 32 51 26 55 45 46

Table 2. Per-class segmentation accuracy (%) on the PASCAL VOC 2012 validation
set. (Top) Models trained with image-level, point supervision and (optionally) an ob-
jectness prior described in Section 5.2. (Bottom) Models supervised with variations of
point-level supervision described in Section 5.3.

vised ground truth annotations (instead of asking humans to click on the object).
This improved results over the human points by 3.4%, from 42.7% to 46.1%. This
is due to the fact that humans are predictable and consistent in pointing [28, 3],
which reduces the variety in point-level supervision across instances.

5.4 Incorporating Stronger Supervision

Hybrid Approach with Points and Full Supervision. A fully supervised
segmentation model achieves 58.3% mIOU at a cost of 239.7 seconds per im-
age; recall that a point-level supervised model achieves 42.7% at a cost of
22.4 seconds per image. We explore the idea of combining the benefits of the
high accuracy of full supervision with the low cost of point-level supervision.
We train a hybrid segmentation model with a combination of a small number
of fully-supervised images (100 images in this experiment), and a large num-
ber of point-supervised images (the remaining 10,482 images in PASCAL VOC
2012). This model achieves 53.1% mIOU, a significant 10.4% increase in ac-
curacy over the 1Point model, falling only 5.2% behind full supervision. This
suggests that the first few fully-supervised images are very important for learn-
ing the extent of objects, but afterwards, point-level supervision is quite effec-
tive at providing the location of object classes. Importantly, this hybrid model
maintains a low annotation time, at an average of only 24.5 seconds per image:
(100×239.7+10482×22.4)/(100+10482) = 24.5 seconds, which is 9.8x cheaper
than full supervision. We will further explore the tradeoffs between annotation
cost and accuracy in Section 5.5.

Squiggles. Free-form squiggles are a natural extension of points towards
stronger supervision. Squiggle-level supervision annotates a larger number of
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Supervision mIOU (%)

Full (883 imgs) 22.1
Image-level (10,582 imgs) 29.8
Squiggle-level (6,064 imgs) 40.2
Point-level (9,576 imgs) 42.9

Table 3. Accuracy of models on the PAS-
CAL VOC 2012 validation set given a
fixed budget (and number of images an-
notated within that budget). Point-level
supervision provides the best tradeoff be-
tween annotation time and accuracy. De-
tails in Section 5.5.

Fig. 5. Results without resource con-
straints on the PASCAL VOC 2012 test

set. The x-axis is log-scale.

pixels: we collect an average of 502.7 supervised pixels per image with squig-
gles, vs. 1.5 with 1Point. Like points, squiggles provide a nice tradeoff between
accuracy and annotation cost. The squiggle-supervised model achieves 16.9%
higher mIOU than image-level labels and 6.4% higher mIOU than 1Point, at
only 1.6 − 1.7x the cost. However, squiggle-level supervision falls short of the
hybrid approach on both annotation time and accuracy: squiggle-level takes
a longer 35.2 seconds compared to 24.5 seconds for hybrid, and squiggle-level
achieves only 49.1% mIOU compared to the better 53.1% mIOU with hybrid.
This suggests that hybrid supervision combining large-scale point-level annota-
tions with full annotation on a handful of images is a better annotation strategy
than squiggle-level annotation.

5.5 Segmentation Accuracy on a Budget

Fixed Budget. Given a fixed annotation time budget, what is the right strat-
egy to obtain the best semantic segmentation model possible? We investigate the
problem by fixing the total annotation time to be the 10, 582×(20.3) = 60 hours
that it would take to annotate all the 10, 582 training times with image-level la-
bels. For each supervision method, we then compute the number of images N
that it is possible to label in that amount of time, randomly sample N images
from the training set, use them to train a segmentation model, and measure the
resulting accuracy on the validation set. Table 3 reports both the number of im-
ages N and the resulting accuracy of fully supervised (22.1% mIOU), image-level
supervised (29.8% mIOU), squiggle-level supervised (40.2% mIOU) and point-
level supervised (42.9% mIOU) model. Point-level supervision outperforms
the other types of supervision on a fixed budget, providing an optimal
tradeoff between annotation time and resulting segmentation accuracy.

Comparisons to Others. For the rest of this section, we use a model trained
on all 12,031 training+validation images and evaluate on the PASCAL VOC 2012
test set (as opposed to the validation set above) to allow for fair comparison to
prior work. Point-level supervision (Img + 1Point+ Obj) obtains 43.6% mIOU
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on the test set. Fig. 5 shows the tradeoffs between annotation time and accuracy
of different methods, discussed below.

Unlimited Budget (Strongly Supervised). We compare both the anno-
tation time and accuracy of our point-supervised 1Point model with published
techniques with much larger annotation budgets, as a reference for what might
be achieved by our method if given more resources. Long et al. [5] reports 62.2%
mIOU, Hong et al. [34] reports 66.6% mIOU, and Chen et al. [38] reports 71.6%
mIOU, but in the fully supervised setting that requires about 800 hours of an-
notation, an order of magnitude more time-consuming than point supervision.
Future exploration will reveal whether point-level supervision would outperform
a fully supervised algorithm given 800 annotation hours of data.

Small Budget (Weakly Supervised). We also compare to weakly super-
vised published results. Pathak ICLR et al. [23] achieves 25.7% mIOU, Pathak
ICCV et al. [6] achieves 35.6% mIOU, and Papandreou et al. [4] achieves 39.6%
mIOU with only image-level labels requiring approximately 67 hours of annota-
tion on the 12,301 images (Section 4). Pinheiro et al. [25] achieves 40.6% mIOU
but with 400 hours of annotations.7 We improve in accuracy upon all of these
methods and achieve 43.6% with point-level supervision requiring about 79 an-
notation hours. Note that our baseline model is a significantly simplified version
of [23, 4]. Incorporating additional features of their methods is likely to further
increase our accuracy at no additional cost.

Size constraint. Finally, we compare against the recent work of [6] which
trains with image-level labels but incorporates an additional bit of supervision
in the form of object size constraints. They achieve 43.3% mIOU (omitting the
CRF post-processing), on par with 43.6% using point-level supervision. This size
constraint should be fast to obtain although annotation times are not reported.
These two simple bits of supervision (point-level and size) are complementary
and may be used together effectively in the future.

6 Conclusions

We propose a new time-efficient supervision approach for semantic image seg-
mentation based on humans pointing to objects. We show that this method
enables training more accurate segmentation models than other popular forms
of supervision when given the same annotation time budget. In addition, we in-
troduce an objectness prior directly in the loss function of our CNN to help infer
the extent of the object. We demonstrated the effectiveness of our approach by
evaluating on the PASCAL VOC 2012 dataset. We hope that future large-scale
semantic segmentation efforts will consider using the point-level supervision we
have proposed, building upon our released dataset and annotation interfaces.

7 [25] trains with only image-level annotations but adds 700,000 additional positive
ImageNet images and 60,000 background images. We choose not to count the 700,000
freely available images but the additional 60,000 background images they annotated
would take an additional 60, 000 × 20 classes ×1 second = 333 hours. The total
annotation time is thus 333 + 67 = 400 hours.
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