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Abstract

This paper studies the challenging problem of identify-

ing unusual instances of known objects in images within an

“open world” setting. That is, we aim to find objects that

are members of a known class, but which are not typical

of that class. Thus the “unusual object” should be distin-

guished from both the “regular object” and the “other ob-

jects”. Such unusual objects may be of interest in many

applications such as surveillance or quality control. We

propose to identify unusual objects by inspecting the dis-

tribution of object detection scores at multiple image re-

gions. The key observation motivating our approach is

that “regular object” images, “unusual object” images and

“other objects” images exhibit different region-level scores

in terms of both the score values and the spatial distribu-

tions. To model these distributions we propose to use Gaus-

sian Processes (GP) to construct two separate generative

models, one for the “regular object” and the other for the

“other objects”. More specifically, we design a new covari-

ance function to simultaneously model the detection score at

a single location and the score dependencies between mul-

tiple regions. We demonstrate that the proposed approach

outperforms comparable methods on a new large dataset

constructed for the purpose.

1. Introduction

Humans have an innate ability to detect an unusual ob-

ject, even when they have no experience of the particular

manner in which it is unusual. Mimicking this ability in

computer vision has a range of applications such as surveil-

lance or quality control. Existing studies towards this goal

are usually conducted on small datasets and controlled sce-

narios i.e., with relatively simple backgrounds [2] or spe-

cific type of unusualness [4, 11]. To address this issue, in

this work we present a large dataset which captures more

∗The first two authors contributed to this work equally. P. Wang’s con-

tribution was made when visiting The University of Adelaide. C. Shen is

the corresponding author (e-mail: chunhua.shen@adelaide.edu.au). This

work was partially supported by the Data 2 Decsions CRC.

A

B C

D

A

B

C

D

A B C

D

A B

C D

A B C D
A

B

C

D

motorbike,  

horse, 

table …

Figure 1. Illustration of the method applied to identifying the un-

usual “bicycle”. By applying a detector trained on “regular bicy-

cles” and “other objects”, we are able to identify the “regular bi-

cycle”, the “unusual bicycle” and the “other object” (a bus in this

case) through analysis of the distribution of the scores of multiple

detectors. The discriminative information lies in both the values

of the detection scores and the spatial dependencies between those

scores, e.g. the score dependency between neighbouring proposals

B and C.

general forms of unusualness, and has more complex back-

grounds. Moreover, we adopt a more realistic “open world”

evaluation protocol. That is, we need to distinguish the un-

usual version of an object-of-interest not only from typical

examples from the same category but also from objects from

other categories.

Humans recognise unusual objects by identifying in-

stances which share the key characteristics of the class, but

not all of the typical incidental characteristics. Images of

unusual objects are thus expected to be more similar to

those of other instances of the same class of objects, than to

those of other objects. Suppose we apply a detector trained

using images of typical examples of a class of object as the

positive data, and images of other objects as the negative

data. The detection scores of the ”unusual object” images

are expected to be less than those of the typical objects of

the same class, but greater than those of objects from other
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classes. Empirically, however, we have seen that the detec-

tion score is insufficient to distinguish unusual objects from

regular ones and other objects. We thus propose here not

only to exploit the detection score values, but also the spa-

tial distributions of the detection scores.

As is illustrated in Fig. 1, positive detection scores

should densely overlap in images of regular object in-

stances, while in unusual-object images the score distribu-

tion will be altered by the existence of unusual parts. To

model these two factors, we propose to use Gaussian Pro-

cesses (GP) [13] to construct two separate generative mod-

els for the detection scores of “regular object” image re-

gions and “other objects” image regions. The mean func-

tion is defined to depict the prior information of the score

values of either “regular object” images or “other objects”

images. A new covariance function is designed to both

non-parametrically model the detection score at a single

region, and capture the inter-dependencies between scores

over multiple regions. Note that unlike the conventional use

of GP in computer vision, our model does not assume that

the region scores of an image are i.i.d. This treatment allows

our method to capture the spatial dependencies between de-

tection scores, which turns out to be crucial for identifying

unusual objects.

By comparing with several alternative solutions on the

proposed dataset, we experimentally demonstrate the effec-

tiveness of the proposed method. To summarize, the main

contributions of this paper are:

• We propose a large dataset and present a more real-

istic “open world” evaluation protocol for the task of

unusual-object identification from images.

• We propose a novel approach for unusual-object detec-

tion by looking into the detection score values as well

as the spatial distributions of the detection scores of the

image regions. We propose to use Gaussian Processes

(GP) to simultaneously model the detection score at a

single region and the score dependencies between mul-

tiple regions.

1.1. Related Work

Irregular Image/Video Detection. There exists a vari-

ety of work focusing on irregular image and/or video de-

tection. While some approaches attempt to detect irregu-

lar image parts or video segments given a regular database

[21, 2, 22, 7], other efforts are dedicated to addressing some

specific types of irregularities [11, 4] such as out-of-context

via building some corresponding models.

Standard approaches for irregularity detection are based

on the idea of evaluating the dissimilarity from regular. The

authors of [22, 7] formulate the problem of unusual activity

detection in video into a clustering problem where unusual

activities are identified as the clusters with low inter-cluster

Figure 2. Examples of irregular images. Left column: aeroplane,

apple, bus. Right column: horse, dining table, road.

similarity. The work [2] detects the irregularities in image

or video by checking whether the image regions or video

segments can be composed using large continuous chunks

of data from the regular database. Despite the good perfor-

mance in irregularity detection, this method severely suffers

from the scalability issue, because it requires to traverse the

database given any new query data. Sparse coding [9] is

employed in [21] for unusual events detection. This work is

based on the assumption that unusual events cannot be well

reconstructed by a set of bases learned from usual events.

Another stream of work focus on addressing specific

types of irregularities. The work of [3, 4] focus on exploit-

ing contextual information for object recognition or out-

of-context detection, like “car floating in the sky”. In [3],

they use a tree model to learn dependencies among object

categories and in [4] they extend it by integrating differ-

ent sources of contextual information into a graph model.

The work [11] focuses on finding abnormal objects in given

scenes. They consider wider range of irregular objects like

those violate co-occurrence with surrounding objects or vi-

olate expected scale. However, the applications of these

methods are very limited since they rely on pre-learned

object detector to accurately localize the object-of-interest.

Recently the work in [14] delves into various types of atyp-

icalities and makes a more comprehensive study.

Gaussian Processes in Computer Vision. Due to the ad-

vantage in nonparametric data fitting, GP has widely been

used in the fields like classification [1], tracking [17], mo-

tion analysis [8] and object detection [19, 20]. The work [8]

uses GP regression to build spatio-temporal flow to model

the motion trajectories for trajectory matching. In [19, 20],

object localization is done via using GP regression to pre-

dict the overlaps between image windows and the ground-

truth objects from the window-level representations.

2. A New Dataset

2.1. Dataset Description

Here we propose a new dataset for the task of irregular

image detection. The data is collected from Google Images
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Table 1. Comparison of the proposed dataset with existing

datasets. The work of [4] addresses the irregular type of out of

context. The work of [11] deals with violations of co-occurrence,

positional relationship and scale.

dataset # images irregular category accurate detector

[11] 150 specific yes

[4] 218 specific yes

ours 20,420 general no

and Bing Images which is composed of 20,420 images be-

longing to 20 classes. We choose the 20 classes referring to

the PASCAL VOC dataset [5] but replace some classes that

are not suitable for the task. The images of each class are

composed of both regular images and irregular images. For

regular images, we try different feasible queries to collect

sufficient data. Taking “apple” for example, we try “fuji ap-

ple”, “pink lady”, “golden delicious”, etc. To collect irreg-

ular images, we use keywords like “irregular”, “unusual”,

“abnormal”, “weird”, “broken”, “decayed”, “rare”, etc. Af-

ter the images are returned, we manually remove the unre-

lated and low-quality data. Also, we perform near-duplicate

detection to remove some duplicate images. In general, the

number of irregular images per class is comparable to the

sum of regular and “other class” images. Fig. 2 shows some

examples of irregular images.

There exist some other datasets [4, 11] for irregular im-

age detection. A comparison between our dataset and the

existing datasets is summarized in Table 1. The main dif-

ference is twofold.

• Our dataset is large-scale comparing to the existing

datasets, increasing the number of images from several

hundred to more than twenty thousand.

• While the existing datasets are proposed for specific

irregular category such as “out-of-context”, “relative

position violation” and “relative scale violation”, our

dataset is for general irregular cases.

Besides the above differences, we adopt a more practical

evaluation protocol compared with [4, 11]. That is, we eval-

uate the irregular object detection with the presence of irrel-

evant objects. This is different from [2] where irregularity

detection is performed in controlled environment with rela-

tively simple background.

2.2. Problem Definition

For a given object category C, we divide it into two dis-

joint subcategories, a regular sub-class Cr and an irregular

sub-class Cu, with C = Cr ∪ Cu and Cr ∩ Cu = ∅. We call

an image I a regular image if I ∈ Cr and an irregular image

if I ∈ Cu. If an image I does not contain the given object,

we label it as belonging to the “other class” set Co. The

task is to determine if a test image I ∈ Cu. Note that for C,
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Figure 3. Histograms of decision scores for regular images, irreg-

ular images and “other class” images in the testing data. The de-

cision scores are obtained by applying the classifiers learned from

global images.

only the regular and “other class” images are available for

training.

3. Key Motivation

Regular object images of the same class are alike; each

irregular object image, however, is irregular in its own way.

Thus, it is somehow impossible to collect a dataset to cover

the space of the irregular images and one common idea to

handle this difficulty is to build a “regular object” model

to identify the “irregular objects” as outliers. While most

traditional methods [21, 2] build this model based on the

visual features extracted from images, our approach takes

an alternative methodology by firstly training a detector

from the “regular object” images and “other objects” im-

ages and then discovering the irregularity based on the de-

tection score patterns. The merit of using detection scores

for irregularity detection are as follows. (1) It is more com-

putationally efficient since the appearance information has

been compressed to a single scalar of detection values. This

enables us to explore complex interaction of multiple re-

gions within an image while maintaining reasonable com-

putational cost. (2) It naturally handles the background and

“other class” distraction since our detector is trained by us-

ing the “regular object” and “other objects”. More specif-

ically, our method is inspired by two intuitive postulates

of how humans recognize an “irregular object”, which are

elaborated as follows.

Postulate I: discrimination in detection score values.

From the perspective of human vision, an irregular ob-

ject is something “looks like an object-of-interest, but is

still different from its common appearance”. If we view

the object detection score as a measure of the likelihood

of an image containing the object, then the above postu-

late could correspond to a relationship in detection scores

f(Io) < f(Iu) < f(Ir), where f(Io), f(Iu) and f(Ir)
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Figure 4. Visualization of spatial distribution of detection scores

for test images of car class. Top-20 scored bounding boxes of an

image are visualized. Positive proposals are visualized in green

box and negative are visualized in yellow. From left to right: reg-

ular car, irregular car and other object (motorbike).

denote the detection score of the “other object”, “irregular

object” and “regular object” respectively. To verify this re-

lationship, we train an image-level object classifier and plot

the accumulated histograms of the scores of regular, irregu-

lar and other-class images of each class in Fig. 3. It can be

seen from this figure that the distribution of the score val-

ues is generally consistent with our assumption. However,

there are still overlaps especially between regular and ir-

regular images, which means that using this criterion alone

cannot perfectly distinguish the irregular images.

Postulate II: discrimination in the spatial dependency of

detection scores. When exposed to part of the regular ob-

ject, human can predict what the neighbouring parts of the

object should look like without any difficulty. But irregular

object may break this smoothness. This suggests that if we

apply an object detector to the object proposals of an im-

age, the region-level detection scores of the three different

types of images may exhibit different dependency patterns.

Fig. 4 shows the top 20 regions of some example images of

car class according to the values of the detection scores. As

seen, for regular car the positive bounding boxes are densely

overlapped and images from other classes such as motor-

bike are supposed to have no positively scored proposals.

Detection scores of irregular images may disobey both of

these two distribution patterns. For example, two strongly

overlapped regions may have opposite detection scores.

4. Proposed Approach

Motivated by the above analysis, we propose a two-step

approach to the task of irregular image detection. We first

apply a Multi-Instance Learning (MIL) approach to learn a

region-level object detector and then design Gaussian Pro-

cesses (GP) based generative models to model the detection

score distributions of the “regular object” and the “other ob-

jects”. Once the model parameters are learned, we can read-

ily determine whether a test image is irregular by evaluating

its fitting possibilities to these two generative models.

4.1. Object Detector Learning

Taking the region proposals of images as instances, we

represent each image as a bag of instances. Since we only

have the image-level label indicating the presence or ab-

sence of the object, the learning of region-level detector is

essentially a weakly supervised object localization problem.

Considering both the localization accuracy and the scalabil-

ity, we follow the MIL method in [10] to learn an object

detector for each class. For a class C, we have a set of reg-

ular images containing the object as positive training data

and a set of images belonging to other classes where the

object concerned do not appear as negative training data.

We use Selective Search [16] to extract a set of object

proposals for each image and from the perspective of MIL,

each proposal is regarded as an instance. Then each image

Ii is represented by a Ni ×D matrix X
i where Ni denotes

the number of proposals and D represents the dimension-

ality of the proposal representations. Inspired by [10], we

optimize the following objective function to learn the detec-

tor,

J =
∑

i

log(1 + e−yi
maxj{w

T
x
i

j+b}), (1)

where w ∈ R
D×1 serves as an object detector, xi

j indicates

the jth instance of the ith image and w
T
x
i
j + b is its de-

tection score. The single image-level score is aggregated

via the max-pooling operator max{·} and it should be con-

sistent with the image-level class label yi ∈ {1,−1}. The

parameters w and b can be learned via back-propagation

using stochastic gradient descent (SGD).

4.2. Gaussian Processes Based Generative Models

In this section, we elaborate how to use GP to model

the distribution of the region-level detection scores. Unlike

traditional GP based regression [20] which takes a single

feature vector as input, we treat multiple proposals within

an image as the input and our model will return a probability

to indicate the fitting likelihood of the proposal set.

GP assumes that any finite number of random variables

drawn from the GP follow a joint Gaussian distribution and

this distribution is fully characterized by a mean function

m(x) and a covariance function k(x, x′) [13]. In our case,

we treat the detection score of each proposal as a random

variable. The mean function depicts the prior information

of the score values, e.g. the value tends to be a positive

scalar for the “regular object” images. The covariance func-

tion plays two roles. (1) As in standard GP regression,

it serves as a non-parametric estimator of the score value.

More specifically, if a proposal is similar (in terms of a de-

fined proposal representation) to a proposal in the training

set, it encourages them to share similar scores. (2) As one of

our contributions, we also add a term in the covariance func-

tion to encourage the overlapped object proposals within the
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same test image to share similar detection scores. In the fol-

lowing subsections, we introduce the details of the design of

the mean function and covariance function.

4.2.1 GP Construction

For each class C, we will construct two GP based generative

models for regular images and “other objects” images sep-

arately. Without losing generality, we will focus on regular

images in the following part.

Suppose that we have NC positive training images for

class C. For each image Ii (i ∈ {1, 2, · · · , NC}), we use the

top-n scored proposals sij (j ∈ {1, 2, · · · , n}) only in order

to reduce the distraction impact of the background. Their

associated detection scores can be obtained via the function

f(sij). In our model we assume that f is distributed as a GP

with a mean function m(·) and a covariance function k(·, ·)

f ∼ GP(m, k). (2)

Mean function: We define the mean function m(s) = µ,

where µ is a scalar constant learned through parameter es-

timation. It can be intuitively understood as the bias of the

detection score in the regular object or other object cases.

For example, it tends to be a positive (negative) value for

the “regular (other) object” case.

Covariance function: As aforementioned analysis, the co-

variance function is decomposed into two parts, an inter-

image part and an inner-image part. While the inter-image

part is employed to regress the proposal-level detection

score in the light of the proposals in the training set, the

inner-image part is used to model the dependencies of the

scores within one test image. To define the inter-image co-

variance function for a proposal pair belonging to different

images, it needs to design a representation for each proposal

so that their similarity can be readily measured. We lever-

age the spatial relationship between a proposal and the pro-

posal with the maximum detection score within the same

image as this representation. More specifically, assuming

the maximum-scored proposal in an image Ii is simax, the

representation of a proposal s in Ii is defined as,

φ(s) = [IoU(s, simax), c(s, s
i
max)], (3)

where IoU(s, simax) denotes the intersection-over-union be-

tween s and simax and c(s, simax) denotes the normalized

distances between the centers of s and simax. Note that these

two measurements reflect a proposal’s overlapping degree,

distance to the maximum-scored proposal and indirectly the

size of the proposal. Intuitively, these factors could be used

to predict the detection score value of a proposal.

With this representation, we can define the inter-image

covariance function kinter(s, s
′) of s and s′ as,

exp

(

−
1

2

(

φ(s)− φ(s′)
)T

diag(γ)
(

φ(s)− φ(s′)
)

)

, (4)

where diag(γ) is a diagonal weighting matrix to be learned.

The inner-image covariance function serves as one of the

key contributions of this work, which poses a smoothness

constraint over the scores of the overlapped object propos-

als in an image. For a pair of inner-image proposals s and

s′, we define the inner-image covariance function as fol-

lows (if two proposals s and s′ are from different images,

kinner(s, s
′) = 0),

kinner(s, s
′) =

2S(s ∩ s′)

S(s ∩ s′) + S(s ∪ s′)
, (5)

where S stands for the area. Note that the formula is vari-

ant to standard intersection-over-union [5] commonly used

as detection metric. The reason why we define it like this

is because it is exactly χ2 kernel and can guarantee the co-

variance matrix to be positive definite [18].

With both the inter-image and inner-image covariance

function, we can obtain the overall covariance function of

any proposal pair s and s′ as,

k(s, s′) = a · kinner(s, s
′) + b · kinter(s, s

′), (6)

where a, b are hyper-parameters regulating the weights of

these two kernel functions.

4.2.2 Hyper-parameter Estimation

In this part, we introduce the hyper-parameter learning for

the GPs. Still, we use regular images for description. In

the definition of the mean and covariance functions of the

GP, we introduce the hyper-parameters θ = {µ, γ, a, b}.

We estimate the hyper-parameters by minimizing the nega-

tive logarithm of the marginal likelihood of all the detection

scores of the training proposals given the hyper-parameters,

−L = −log p(f(S)|S, θ), (7)

where S denotes the training proposals and f(S) denotes

their detection scores. We use the toolbox introduced in

[12] for hyper-parameter optimization.

4.2.3 Test Image Evaluation

For class C, let sr be a set of proposals of regular training

images and fr be their detection scores. We can establish the

covariance matrix K for the training data. Given a target set

of proposals st from a test image and their detection scores

ft, the joint distribution of fr, ft can be written as,

[

fr

ft

]

∼ N

(

[

µ

µ

]

,

[

K k(sr, st)
k(sr, st)

T k(st, st)

]

)

, (8)

where µ is the mean vector, k(sr, st) calculates the inter-

image covariance matrix between training set and testing
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set and k(st, st) calculates the inner-image covariance of

the test data. The fitting likelihood of the testing set to the

generative model of the regular images can be expressed as,

ft|fr ∼ N

(

µ+ k(sr, st)
TK−1(fr − µ),

k(st, st)− k(sr, st)
TK−1k(sr, st)

)

.

(9)

Similarly, we can obtain the likelihood of the testing set

given the “other class” training set. After obtaining the like-

lihood of the testing set given both regular training data and

“other class” training data, we can compute the logarithm

of the overall fitting likelihood of ft as

max
(

log p(ft|fr), log p(ft|fo)
)

, (10)

where fo represents the scores of “other class” training set.

For either regular or “other class” test images, they could

fit one of the generative models better than the irregular im-

ages. In other words, irregular images are supposed to ob-

tain lower values in Eq. (10). Since the score obtained from

Eq. (10) is negative (logarithm of a probability), we use the

negative value of the score as the irregularity measurement.

5. Experiments

5.1. Experimental Settings

In this paper, we use the pre-trained CNN model [15] as

feature extractors for object detector learning. Specifically,

we use the activations of both the second fully-connected

layer and the last convolutional layer as the representation

of the object proposal or the whole image. Feeding an im-

age into the CNN model, the activations of a convolutional

layer are n×m× d (e.g., 14× 14× 512 for the last convo-

lutional layer) with n,m corresponding to different spatial

locations and d the number of feature maps. Given a pro-

posal, we aggregate the convolutional features covered by it

via max pooling to obtain the proposal-level convolutional

features. We perform L2 normalization to these two types

of features separately and concatenate them as the final rep-

resentation. The dimensionality of the features is 4,608.

For each class, we construct GP based generative models

for regular images and “other class” images separately. For

regular images, we initialize the value of the mean function

as 3 and for “other class” images we set the initial value

to be −3. The hyper-parameters a, b in Eq. (6) are both

initialized to be 0.5 and γ is initialized randomly. We use

the top-20 scored proposals of each image for both genera-

tive model construction and test image evaluation. The test

data of each class is divided into three parts including regu-

lar images, irregular images and images belonging to other

classes. We label irregular images as 1 and label regular

and “other class” images as −1. Mean Average Precision

(mAP) is employed to evaluate the performances of the ap-

proaches.

5.2. Experimental Results

5.2.1 Alternative Solutions

We compare our method to the following methods.

Positive-negative Ratio If we apply an object detector to

the image regions, considerable portion of the regions of

a regular image should be positively scored. While on

the contrary, images of other classes are supposed to have

negatively-scored proposals only. Based on this intuitive

assumption, we use the ratio of positive proposal number

to the number of negative proposals within one image as its

representation to construct two Gaussian models for regu-

lar images and “other class” images separately. Given a test

image, we determine whether it is irregular via evaluating

its fitting degree to these two Gaussians.

Global SVM According to the analysis in Postulate I in

Section 3, the classification score of an image reflects the

degree of containing the regular object-of-interest and the

scores of the three types of images (regular, irregular, other

class) should form the relationship of f(Io) < f(Iu) <

f(Ir). For this method, we train a classifier for each class

based on the global features of the images using linear

SVM [6] where regular images are used as positive data and

“other class” images are treated as negative data. Assuming

the mean of the decision scores of irregular images is 0, we

use negative absolute value of the decision score −|f(It)|
as the irregularity measurement for a test image It.

MIL + Max The global representation of an image is a

mixture of the patterns of both the object-of-interest and

the background. To avoid the distraction influence of the

background, for the second solution we use the maximum

proposal-level score fmax(I
t) as the decision score of each

image based on the object detector learned from MIL. Sim-

ilarly we use −|fmax(I
t)| as the irregularity measurement.

MIL + Max + Gaussian Different from above MIL + Max

strategy, we take into consideration the uncertainty of the

distribution of the maximum detection scores via modelling

the maximum scores of regular images Ir and “other class”

images Io using two Gaussian distributions separately. We

use maximum likelihood to estimate the parameters of these

two Gaussians (means and variances). Given a test image

It, we can calculate the likelihood of the image belong-

ing to regular images as p(It|Ir) and similarly the pos-

sibility of belonging to other classes as p(It|Iu). Since

an irregular image is expected to be able to fit neither of

these two models, we set the final score of a test image as

−max(p(It|Ir), p(It|Iu)).
MIL + Top k Instead of using the maximum score only, for

this method, we obtain the image-level score ftopk(I
t) of a

test image It by averaging the top k scores of its proposals.

And the final score for an image is −|ftopk(I
t)|.
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Table 2. Experimental results. Average precision for each class and mAP are reported.
Methods aeroplane apple bicycle boat building bus car chair cow dinging table

Positive-negative Ratio 58.0 26.6 50.4 52.4 60.0 37.8 55.4 48.7 31.6 28.8

Global SVM 88.8 70.8 81.3 82.9 85.5 76.4 87.6 69.7 61.7 79.8

MIL + Max 86.9 70.0 85.0 78.8 81.7 77.6 87.8 70.5 63.9 76.4

MIL + Max + Gaussian 86.0 72.1 83.1 78.5 74.5 76.3 83.2 59.3 56.7 68.4

MIL + Top 20 86.7 78.3 86.6 86.9 79.6 75.2 86.5 64.0 63.8 56.8

Sparse coding (200) 86.9 48.6 80.6 81.0 82.8 57.4 82.8 71.7 56.1 72.2

Sparse coding (4,000) 93.6 74.5 89.8 86.7 94.5 86.1 92.8 78.7 76.8 86.0

Ours 95.4 82.2 91.2 93.0 94.6 92.8 95.1 92.8 92.0 74.8

Methods horse house motorbike road shoes sofa street table lamp train tree mAP

Positive-negative Ratio 23.9 47.4 30.9 48.2 56.4 39.7 42.7 16.9 28.6 44.7 41.4

Global SVM 73.3 82.0 75.6 81.3 88.2 77.7 73.8 66.5 69.2 73.9 77.3

MIL + Max 70.3 80.0 74.8 78.1 87.7 76.4 69.1 65.1 67.3 77.0 76.3

MIL + Max + Gaussian 63.1 74.6 65.9 66.1 85.8 69.7 55.5 60.5 64.1 69.8 70.7

MIL + Top 20 63.7 76.4 76.9 73.6 90.3 69.7 63.7 52.3 67.2 75.2 73.7

Sparse coding (200) 61.5 71.3 61.0 80.1 82.3 80.2 84.1 52.3 65.5 57.6 70.8

Sparse coding (4,000) 80.0 89.3 75.5 89.9 87.2 87.7 91.1 67.9 81.9 78.9 84.4

Ours 85.4 94.4 85.0 90.8 95.3 88.9 94.8 78.3 91.3 85.0 89.7

Sparse coding Similar to [21], we use sparse coding based

reconstruction error as the criterion for irregular image de-

tection. The assumption is that both regular images and

“other class” images can be well reconstructed by their cor-

responding dictionaries. For each class, we learn dictionar-

ies for regular images and “other class” images separately.

We try dictionary size 200, 4,000 and 5,000. Given a test

image It, we infer the coding vectors of its proposals and

calculate the reconstruction residues of the proposals. Let

rtr be the mean residue for this image calculated based on

the dictionary learned from regular images and rto be the

mean residue based on the dictionary learned from “other

class” images. For an irregular image, the errors of both

models will be large. Thus the irregularity measurement

can be calculated as min(rtr, r
t
o).

5.2.2 Quantitative Results

Table 2 shows the quantitative results. As can be seen,

our method outperforms other compared methods. Also we

show the ROC performances of our method and two most

competitive methods on some example categories in Fig. 5.

Both these two measurements demonstrate the effectiveness

of the proposed method.

The proposal ratio based method performs worst among

these methods which indicates that the irregularity detection

cannot be achieved by simply counting the number of posi-

tive and/or negative proposals. There are two reasons. The

first is that the number of proposals varies between differ-

ent images and the second reason is that for some irregular

object images e.g., images of severely damaged cars, there

may be no positively scored proposals detected.

The next four methods are classification-based meth-

ods. While the first three use single score per image from

either the global image or the region with maximum de-

tection score, MIL+Top k utilizes multiple region scores

but treat them as i.i.d. Global SVM achieves a mAP of

77.3% (when using fully-connected features only, we obtain

75.4%) which to some extent justifies Postulate I. How-

ever, as illustrated in Fig. 3, this strategy fails to distin-

guish some irregular images that obtain extreme high or

low decision scores. A drawback of using image-level rep-

resentation is that the background can influence the deci-

sion score especially when the background dominates the

image. Multi-instance learning is supposed to be a rem-

edy because it makes it possible to focus on the object-of-

interest via considering the proposal with maximum detec-

tion score. But using maximum detection score alone may

risk missing the irregular part of the object. From Table 2,

we can see MIL+Max obtains comparable results to Global

SVM. To take into consideration the uncertainty of the de-

tection scores, rather than directly using the maximum de-

tection scores, we construct Guassian models for the max-

imum scores of regular images and “other class” images

separately and determine whether an image is irregular via

evaluating its fitting likelihood to these two Gaussian mod-

els. However, the performance degrades to 70.7%. The rea-

son may be that the distribution of the maximum detection

scores is not strictly Gaussian. Instead of using the maxi-

mum detection score of each image, in MIL+Top20, we ag-

gregate the top 20 scores of each image via average pooling.

Benefiting from this strategy, the performances on some

classes like apple, boat are obviously boosted. However,

on some other classes such as horse, table lamp it shows in-

ferior performance to Global SVM and MIL+Max. As can

be seen, our method significantly outperforms this strategy

on all the classes. This big gap may to a large extent result

from our capabilities of modelling the inter-dependencies of

the proposal-level scores within one image.

For sparse coding, we first test the performance using
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Figure 5. ROC curve for Sparse coding, Global SVM and our method on three categories. From left to right: boat, motorbike, shoes.

GC SC GP GC GPSC GPSCGC

GC SC GP GPSCGC GC SC GP

GC GPSC GPSCGC GC SC GP

GC GPSC GPSCGC GC SC GP

Figure 6. Qualitative performance comparison between our method (GP) and two alternative solutions, Global SVM (GC) and Sparse

coding (SC). Left column displays the false negative examples when fixing the false positive rate to be 0.2 where cross mark indicates

false negative and check mark indicates true positive. Right column displays the false positive examples when fixing the true positive rate

to be 0.9 where cross mark denotes false positive and check mark denotes true negative. Three categories are boat, shoes and motorbike.

dictionaries of size 200 as [21] and the result is unsatisfac-

tory which means 200 bases are not sufficient to cover the

feature spaces of regular images or “other class” images.

When the dictionary size is increased to 4,000, the perfor-

mance is significantly improved. But after that continuing

to increase the dictionary size (we test 5,000) can lead to

no improvement any more. Our method outperforms sparse

coding by 5.3%. Apart from effectiveness, our method is

also more efficient than sparse coding. Given a test image,

while sparse coding needs to infer the coding vector for the

high-dimensional appearance features our method works on

quite low-dimensional space as defined in Eq. (3).

5.2.3 Qualitative Results

Fig. 6 demonstrates the qualitative comparison between our

method and two compared methods Global SVM (GC) and

Sparse coding (SC) on three object categories that are boat,

motorbike and shoes. Comparing to our method, GC suffers

from two drawbacks: 1) it subjects to the distraction influ-

ence of the background, and 2) it may ignore the fine de-

tails of the objects. Due to the influence of the background,

GC may mistakenly classify the regular object within com-

plex background into irregular object like the “shoes” on

the right side of Fig. 6. Also, only looking at the global

appearance makes it hard for GC to identify some irregular

objects with fine irregularities such as the “broken boat” and

“broken shoes” in Fig. 6. SC has similar deficiency that is it

can be distracted or even dominated by the background. For

example, the “capsized boat” is identified as “regular boat”

while “regular motorbike” within complex background is

regarded as “irregular motorbike”. Comparing to these two

methods our method is more robust. While using detection

scores enables us to getting rid of the distraction influence

of the background, modelling the inter-dependencies of the

detection scores at multiple regions can help us to effec-

tively discover the finer irregularities.

6. Conclusions

We have proposed a novel approach for the task of ir-

regular object identification in an “open world” setting via

inspecting the detection score patterns of an image. We pro-

pose to use Gaussian Processes to model the values as well

the spatial distribution of the detection scores. It shows su-

perior performance to some compared methods on a large

dataset presented in this work.
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