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Abstract

If a wearable device can register what the wearer is

currently doing, it can anticipate and adjust its behavior

to avoid redundant interaction with the user. However,

the relevance and properties of the activities that should

be recognized depend on both the application and the

user. This requires an adaptive recognition of the

activities where the user, instead of the designer, can

teach the device what he/she is doing. As a case study we

connected a pair of pants with accelerometers to a

laptop to interpret the raw sensor data. Using a

combination of machine learning techniques such as

Kohonen maps and probabilistic models, we build a

system that is able to learn activities while requiring

minimal user attention. This approach to context

awareness is more universal since it requires no a priori

knowledge about the contexts or the user.

1. Introduction

Making devices aware of the activity of the user fits

into the bigger framework of context awareness, which

also aims at awareness of environment and the state of the

device itself. Existing mobile devices such as mobile

phones and personal digital assistants (PDA’s) already

indicate a growing need for this technology. Since these

are not aware of the current situation, they disturb the

user (and the environment) in every context.

Using an array of hardware sensors to improve

applications is not very new. Changing the intensity of

displays according to the value of a light sensor is already

present in a lot of appliances, for example [15]. A bigger

challenge can be found in fusing the data from multiple

sensors and mapping it to a high level context -description.

Research at Philips [4] and MERL [5] are examples of this

approach.

Some interesting work has also been done specifically

on activity-recognition: Ashbrook [1] looked at the

accelerometer readings from the Twiddler one-handed

keyboard to detect walking, Paradiso and Hu [9] worked

on pressure sensors in a pair of dancing  shoes to control

music synthesizers and graphics in a real-time

performance. The Acceleration Sensing Glove (ASG) [10]

project is another example of activity recognition of hand

gestures based on accelerometer information.

Context is a very broad notion, however, this makes it

hard to define. Researchers have defined the word

‘context’ by example, with respect to their own research.

Dey and Abowd provided a survey of context and

context-aware applications with handheld and ubiquitous

computing requirements in mind: “Context is any

information that can be used to characterize the situation

of an entity. An entity is a person, place, or object that is

considered relevant to the interaction between a user and

an application, including the user and applications

themselves” [2].

A lot of activities and contexts are quite personal and

can be very different from one person to another (“in the

kitchen” or “running very hard”, for instance). To

overcome these constraints, the system’s recognition

must become adaptive, so that the user can teach context

descriptions to a device in his or her own words. The

Technology for Enabling Awareness (TEA) project at

Starlab investigates machine learning algorithms [13] to

make adaptive context awareness possible, and its results

formed the basis for the system used in this paper.

2. General System Overview

In general, to get as much information on a context as

possible, it is necessary to use a large amount of different

sensors. Sensors used in our experiments include

accelerometers (for X-and Y-axis), passive infrared

sensors, a carbon monoxide (CO) sensor, microphones,

pressure sensors, temperature sensors, touch-sensors and

light-sensors (see Figure 1 for a graph depicting the

behavior of various sensors during the contexts: “inside

light off”; “inside light on”, “inside moving”, “outside”
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and “outside moving”). This section will discuss a system

that was designed to attain context awareness in general,
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Figure 1. Sensor timeseries during 5 simple contexts.

while section 3 will describe a specific example using 2

sensors.

2.1. Preprocessing the sensor data: cues

If just the raw sensor values would be used as inputs

for the machine learning algorithms, performance of the

whole system would fall short. However, for some sensors

it is possible and even beneficial to use small pre-

processing routines to enhance the quality of future

clustering. Instead of just looking at the brightness of the

light, it is also possible to look at its frequency, which

results in easier distinguishing of several types of artificial

light. Other sensors like microphones and infrared sensors

have similar mini-transformations from the raw sensor data

to one or more values that are usually called cues or

features in literature (see [11]). In the case of the

accelerometers, we have experimented with simple pre-

processing routines like standard deviation, the

derivatives, and Fast Fourier Transformation (FFT).

One of the conclusions from the introduction was that

adaptivity is indispensable in context awareness. As a

consequence, machine learning algorithms have to be

used. The next sections will discuss the algorithms that

are applied to reach adaptive context awareness.

2.2. Self-Organization

The Kohonen Self-Organizing Map (SOM) [6] has a

principle that is similar to the self-organization of neuronal

functions in the brain: simple units (‘neurons’) are

recruited topologically for tasks depending on the sensory

input. The SOM is also known to handle noisy data

relatively well, which makes it a sensible choice for

clustering the inputs.

At this stage, no explicit teaching or feedback is

required from the user. The KSOM clustering algorithm

orders the inputs by assigning map-units to each kind of

input, and after a while, the resulting map is topologically

ordered, i.e. similar inputs activate neighboring units.  This

“feature map” is often used to visualize high-dimensional

data on a two-dimensional display.

The Kohonen SOM is based on earlier work of

Willshaw and von der Malsburg [14], where basic units

‘compete’ for a particular kind of input (hence the name

competitive network). For every input that is presented to

the map, one unit is selected to be the winner and can

adapt itself a bit more towards this input. The adaptation

is done by adjusting an internal weight vector (or

codebook vector, or prototype vector) w towards the input

vectorx:
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where α is the called the learning rate of the network

and i is the number of the training sample.

The rule to find the winner fairly straightforward. The

(usually Euclidean) distance is calculated between the

input vector and every unit’s weight vector, the unit with

the closest weight vector wins.

Kohonen introduced the topologically related units,

so not only the winning neuron gets to adapt its weight

vector, but the units that are located in the neighborhood

of the winner too. This requires the units to be organized

in a certain structure: usually a two-dimensional grid is

used (see Figure 2), but other unit arrangements or

dimensions (like 3D grids or 2D hexagonal) are possible. 

The update rule thus becomes for every unit (or neuron) in

the map:

)(1 iiii xwww −+=+ αη
with α again the learning rate between 0 and 1, and η a

neighborhood function.

Figure 2. The Kohonen Self-Organizing Map.

After a few iterations, the neurons start to organize

themselves in a structured, topological way: different

sensor inputs activate different neurons.  The activity per

neuron can be monitored and afterwards be plotted into a

landscape (the x and y axes represent the coordinates on

the 2D SOM, and the z axis represents how many times a

particular neuron has won – see Figure 3 for an example).

This visualization might be another advantage for the
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KSOM, since the lack of insight in the behavior is an

often-heard complaint about neural networks. The last

activity could be marked on the landscape, so when a user

Figure 3. Activity landscape plot of the SOM for sensors-

values from five simple contexts.

goes from one context to another, the mark will go from

one hill to another one.

The Kohonen Self-Organizing Map has disadvantages,

however. The traditional algorithm starts out highly

adaptive - with a large learning rate and huge

neighborhood radius - and gradually becomes fixed. After

this stage, it is hardly capable of learning any more, which

poses an obstacle if the system needs to remain adaptive.

If the algorithm stays flexible, overwriting might occur of

previously stored prototypes. This trade-off is known in

the field of machine learning as the Stability-Plasticity

Dilemma or Catastrophic Forgetting [5].

Another problem is the fact that learning slows down

as the number of inputs increases: the curse of

dimensionality. In previous experiments, we used a

hierarchy of Kohonen maps (see Figure 4), but this leads

to more design issues and is still not a solution when

hundreds of inputs are used. See Mitchell [8] for an

explanation of both machine-learning problems.

2.3. Classification and Supervision

The result of the clustering layer is a mere identifier that

is linked to a label provided by the user. Since one of the

system-requirements dictates that user feedback can be

given on an irregular basis, it is possible that this label has

not been given yet. In that case, a distance-weighted K

Nearest Neighbor (KNN) algorithm is responsible for

searching the (topologically ordered) cluster map: A

voting among the K closest labels on the map, multiplied

by their distance to the unlabeled unit, results in the most

probable label.

The system that has been described so far is

completely based on hardware sensors that can give very

noisy signals. That is why a supervision layer is favored.

This layer is primarily intended to supervise transitions

from one (known) context to another. It uses a

probabilistic finite state machine architecture where each

context is represented by a state, and transitions are

represented by edges between states.
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Figure 4. Diagram of the system, starting at the top

(sensor-acquisition), going through pre-processing and

clustering (using one or more self-organizing maps), and

ending at the bottom layer, describing the context by

activity and location.

The symbolic model keeps a probability measure for

each change of contexts, so every time a transition occurs,

the supervision model can check if this really is likely. If a

transition is not really probable, the next state is not

entered yet, but abuffer mechanism is initiated so that it

does become more likely after several tries in a row. More

concrete, the transition is done if

where P(x→y) is the probability that the transition from

state x to state y occurs, k is the size of the buffer and µ is

k

k
yxP
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a counter between 0 and k. Each transition to a state is

thus dependent on the previous state alone, which makes

this model a Markov chain. Every state also keeps track of

how much time was spent in a particular context, which

controls the flexibility of the SOMs: the newer a context,

the more flexible and adaptive the map should be. This

method also prevents spikes in the sensor-signals from

confusing the whole system and giving a faulty output.

The result is that after some time this model generates a

directed graph depicting the behavior of a user with

relation to the contexts visited. When the user tends to go

from context A to context B rather than to context C, then

this will be reflected in the graph’s connection strengths.

A schematic of the entire system (for both activity and

location awareness) is depicted in Figure 4.

3. The Experiment

We chose to implement hardware for capturing

activity-related data for several reasons. It requires first of

all more processing than most location-awareness

implementations, which often rely on well-developed

hardware such as GPS or beacons. We, on the other hand,

tried to minimize the hardware, and focus especially on the

software, sensor positioning and user-interaction issues.

We believe that activity contributes highly to context

awareness and is as important as location, which is also

stressed by others [12]. The combination of

accelerometers and a pair of pants therefore results in a

very attractive experiment.

Figure 5. The hardware: a board with the PIC, and a

small sensor board with the accelerometer.

Accelerometers are sensors that measure both position

and acceleration in one or more directions, depending on

the type. In our case, we used two ADXL05s from Analog

Devices (one for the X-axis, and one for the Y-axis), which

were set to be as sensitive as possible. The values from

these devices are read by a PIC microprocessor (PIC16C71

by Microchip), which digitizes them and sends them to a

laptop via the serial port. Figure 5 depicts the two classes

of hardware boards that we made for the experiment. By

using only two sensors, we can also demonstrate our

sensor fusion techniques in the most basic and effective

way.

In order to ease sensor placement testing, the

accelerometers were fixed on a strap, which could be

placed everywhere around the legs, arms, and even the

waist. After having made a small list of basic activities we

do every day (such as sitting, walking, jumping and

running
1
), we observed the sensor-readings and came to

the conclusion that the outside of the upper-leg, just

above the knee would be the best position for the sensors.

After the optimal position is found, the sensors could also

be integrated in a pair of pants, by doing the connections

with conductive threads. This makes it possible to wash

the pants: Only the two small sensor module boards have

to be detached, while the power -and data wires can be

washed with the pants.

The software on the laptop was running under the

Windows operating system and was written in C++. The

parameters of the system are listed in Table 1.

Table 1. System parameters in the experiment.

Layer Parameters

Cues Layer mean( max(50) + std(50) ) (10),

zero-crossings(50),

mean(std(20)) (100).

Clustering Layer 2-dimensional Kohonen map of

20 by 20 neurons with

decreasing learning rate

(starting from 0.05) and

neighborhood radius (5). 

Classification Layer Distance-weighted K-Nearest

Neighbors search with K=5

Supervision Layer Markov Chain

The raw sensor data was processed and mapped to a

context description in real-time, and was stored in a

datafile as well to enable off-line analysis, comparison and

reproduction of the results afterwards. The choice of the

set of basic activity contexts we wanted to recognize was

based on (1) movement, since it was already established

that we would use accelerometers, and (2) classes of

movement one could do during the day (while wearing the

device). The list we came up with included walking, sitting,

running, jumping, climbing stairs, descending stairs and

riding a bicycle.

The first design choice would be defining the pre-

processing routines on the raw sensor data in the cue

layer. The top plot of Figure 6 shows the data coming

1
Lying down was not chosen as a basic activity, which might

explain the different sensor-placement in the research by Philips

(belt worn) [4].
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from one accelerometer while sitting, standing up, and

walking. The sum of the maximum and the standard

deviation over 50 samples (notation: max(50)+std(50) )

gave a formula to easily distinguish the three activities.

However, to also distinguish other activities, and to keep

the system as flexible as possible, other cues must be

used, and combined. Table 1 contains other cues that

were used.

Since these algorithms are computationally efficient,

implementation on an inexpensive microprocessor (such

as Microchip’s PIC) is feasible. For a lightweight

implementation, simple thresholding could then be

sufficient. This is too limited for a general system, though.
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Figure 6. Example of a cue: Plots depicting the sensor

values (top), and the sum of maximum and standard

deviation (middle) while sitting, standing and walking

(each taking 100 samples). The mean of that (bottom) is

sufficient for distinguishing all 3 activities.

Although our general system uses a hierarchy of

Kohonen maps, we used only one map in this experiment,

since the number of inputs is limited enough. The results

of the experiments are listed in Table 2. The activities were

done five times in a row, with each activity taking about a

minute. Pressing a designated key during the second

repetition began the actual training, and everything was

re-trained in the fourth cycle.

Table 2. Experiment results. Cycles 2 and 4 were used

for training, 3 and 5 for testing. Cycle one was for pre-

ordering the Kohonen SOM.

Recognition per Cycle
Activity

3 5

Sitting 96% 96%

Standing 94% 94%

Walking 75% 75%

Running 74% 78%

Climbing stairs 45% 42%

Descending stairs 48% 64%

Riding bicycle 89% 91%

The graph in Figure 7 shows the resulting activity

landscape plot of the Kohonen Map after the experiment.

The main activity bubbles represent sitting, standing,

bicycling, walking, running, and jumping. The walking

bubble includes also “climbing the stairs” and

“descending the stairs” (and also a bit of “running”). This

can be found back in the results table, where the

recognition of these activities are less successful. Better,

more specific cues will probably be more beneficial in this

case.

Table 2 shows the average results of three experiments.

Results could already be improved by starting from a pre-

prepared Kohonen SOM, instead of one filled with small

random values. This would also be safer to avoid

overwriting (as explained in section 2 with the stability-

plasticity dilemma). However, these results are already

promising, since it takes a second or two before the

system changes to the appropriate activity description.

Figure 7. The resulting activity landscape plot.

Finally, the Markov Chain showed indeed some user-

behavior towards the activities. The link from “sitting” to

“standing”, for instance, became very heavy, while the

other links were weak or even non-existent. The

experimentation period took only several minutes,

however, and was done while following a script. The only

way to truly assess this part of the system is by doing

extended user-testing, which is not very feasible with the

prototype system we have so far.   

This experiment also shows that the user decides what

activities are learned at what time. The interaction is very

minimal: the user has to press a button, which is assigned

to a description of the activity. This description is just a
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string that will be linked to a context identifier, and can be

given and modified by the user. A typical scenario looks

like this:  

• Start walking.

• Press the ‘walking’ button while walking.

• Stop walking.

• Press the ‘standing’ button while standing.

• Sit down.

• Press the ‘sitting’ button while sitting.

• …

Next time the user stands, sits, or starts walking, the

system recognizes the activity. Generally, the longer the

system is trained, the better the recognition works, but in

this simple experiment recognition is already near-100%

after the first training for some contexts (as can be seen in

Table 2). Training new activities afterwards (or retraining

old ones) is possible as well, the user needs just to put in

the description and press the training button.

Figure 8. The experiment in progress with the

accelerometers placed just above the knee.

4. Future Work

It is clear that improving the sensors -hardware would

enhance the entire system. Adding other sensors, like

microphones, makes it possible to increase the number of

activities, while including more accelerometers on different

places, enhances the recognition speed and accuracy. The

experiments in this paper show that combining the data

from two sensors already gives an enhanced level of

context-recognition. Improving the sensors, adding new

ones, and adding redundant sensors on different

positions on the body, is a logical step we are currently

focusing on. We also hope that further research will lead

to an improved adaptive system, dealing better with

obstacles like the curse of dimensionality and the stability-

plasticity dilemma, but remaining on-line and still requiring

little user-attention.  

We would like to take the experiments further and do

some testing over longer periods. Instead of minutes, we

would like to see what happens if the hardware is worn for

whole days, weeks, or even months. A smaller and less-

consuming processing unit would be needed that does the

context mapping, since the laptop is rather bulky to wear

and its batteries don’t last very long. This would be

necessary to implement applications such as an automated

diary that stores and links the activities a user does during

the day. It would also allow a more reliable evaluation on

the performance and behavior of the Markov Chain as a

probabilistic model. We intend to use a PDA instead of a

laptop computer, since the software doesn’t require a lot

of storage or excessive processing power.

5. Conclusions

Context Awareness without an on-line adaptive

behavior is very limited. The user should decide which

contexts are valuable instead of the device’s designer, and

the application should be autonomous enough so that it

does not become an inconvenience for the user. This

paper demonstrates with a few simple sensors that it is

possible to obtain a flexible application, requiring minimal

user-interaction.

Real-time processing, limited user-feedback and

consistent adaptation are harsh constraints for not just

the hardware, but especially for the learning system.

Several issues remain, though: the curse of dimensionality

and the stability-plasticity dilemma are well-known

problems in the machine learning domain, that are (as their

bombastic titles might reveal) not easy. We feel that the

combination of artificial intelligence and wearable

computing is vital for context awareness and hope that

this will eventually lead to a powerful, stable system that

can deal with a massive number of sensors.
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