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WHAT SHAPE IS YOUR CONJUGATE?

A SURVEY OF COMPUTATIONAL CONVEX ANALYSIS AND ITS APPLICATIONS

YVES LUCET

Abstract. Computational Convex Analysis algorithms have been rediscovered several times in the past by
researchers from different fields. To further communications between practitioners, we review the field of Com-
putational Convex Analysis, which focuses on the numerical computation of fundamental transforms arising
from convex analysis. Current models use symbolic, numeric, and hybrid symbolic-numeric algorithms. Our
objective is to disseminate widely the most efficient numerical algorithms useful for applications in image pro-
cessing (computing the distance transform, the generalized distance transform, and mathematical morphology
operators), partial differential equations (solving Hamilton-Jacobi equations, and using differential equations
numerical schemes to compute the convex envelope), max-plus algebra (computing the equivalent of the Fast
Fourier Transform), multi-fractal analysis, etc. The fields of applications include, among others, computer
vision, robot navigation, thermodynamics, electrical networks, medical imaging, and network communication.

Introduction

The objective of the present paper is twofold. First, we summarize the state of the art in Computational
Convex Analysis for researchers interested in computer-aided convex analysis to build their intuition, or gen-
erate nontrivial examples through a combination of convex transforms. Current algorithms allow symbolic,
numerical, and hybrid symbolic-numeric computations, and have already been instrumental in discovering
and illustrating several new results in Convex Analysis.

Then we present several applications benefiting from such efficient algorithms. Here we want to show
Convex Analysis researchers the rich and varied set of applications they can contribute to. In addition,
we want to connect the various specialized researchers with one another, by pointing out that they all
use techniques related to Convex Analysis, often unknowingly, and encouraging them to consider the most
recent algorithms in Computational Convex Analysis. We hope that the resulting awareness will result in
new advances for all the fields involved.

While the impact of Convex Analysis in optimization is well-known, its applications to discrete problems
are less understood. For example, the fact that Convex Analysis can be seen as operating on the max-plus
algebra (instead of our usual plus-times algebra) in which the Fenchel conjugate plays a similar role as the
FFT, is not widely known [83, p. 43]. Although they have a very wide range of applications, the most efficient
numerical algorithms for computing convex transforms are still only familiar to Convex Analysis researchers,
e.g. the Fast Legendre Transform is still widely used instead of the faster and simpler Linear-time Legendre
Transform algorithm.

The present article is concerned with the numerical computation of transforms like the Moreau envelope.
However, contrary to [106] we do not consider computing its value at one point but instead we tackle the
problem of computing the Moreau envelope on a grid. In other words, we are interested in computing the
shape (or graph) of the Moreau envelope and other transforms. Figure 1 illustrates typical shapes: the
graph of the operator is plotted for several values of a parameter.

The connection between Convex Analysis, image processing, differential calculus, and dynamical systems
was noted by Maragos who named the resulting area differential morphology [168, 169]. Image Processing
has long been using operators closely connected to Convex Analysis: the distance transform (a special case of
the Moreau envelope [162, 164]), generalized distance transforms [82, 83] (regularization with nonquadratic
kernels), and morphology operators like the dilation (resp. erosion) which corresponds to the inf-convolution
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(a) Moreau envelope of | · | for λ ∈ {0, 0.5, 1}.
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(b) Same as 1(a) for λ taking 512 values.
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(c) Pasch-Hausdorff envelope of | · | for λ ∈
{0, 0.5, 1}.
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(d) Same as 1(c) for λ taking 512 values.
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(e) Proximal Average of | · | and g(x) := 0 for
λ ∈ {0, 0.5, 1}.
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(f) Same as 1(e) for λ taking 512 values.

Figure 1. Shapes of some operators of Convex Analysis applied to the function f(x) = |x|
with 0 ≤ λ ≤ 1. When 0 < λ < 1, the Moreau envelope and the proximal average are smooth
while the Pasch-Hausdorff envelope is only Lipschitz.

(resp. deconvolution) operator of Convex Analysis [168, 169]. Partial Differential Equations (PDE) have also
found applications in Image Processing e.g. the image segmentation with the Fast Marching and Level Set
methods [234, 235]. The Lax and Hopf functions [122, 123, 231], which express the solution of a Hamilton-
Jacobi PDE using Convex Analysis operators, are an example of the link between Convex Analysis and
PDE. The computation of the convex envelope, motivated by the study of phase transition [109, 217, 180]
and of the analysis of the distribution of chemical compounds [147, 148], is another example of how closely
related these two fields are. Another well-known relation is the parallel between the Fourier transform
and the Legendre conjugate [4, 48, 146, 157, 17, 101, 102, 60, 5]. In fact, the later plays the same role
in a different algebra: the max-plus algebra. That framework has seen increased interest motivated by
applications in network communication, neural networks, and discrete event systems. Classical linear and
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convex theory have been ported to the max-plus algebra [58, 60, 59] generating new results fundamentally
related to Convex Analysis.

The applications presented in the present paper give a partial and personal overview of the wide range of
fields benefiting from Computational Convex Analysis algorithms. In many instances, the same algorithm
has been found independently by several authors working in different disciplines. One goal of the present
paper is to point out the various connections so that future work can build on the present state-of-the-art
instead of re-inventing existing algorithms.

The paper is organized as follow: Section 1 introduces the transforms: the Fenchel conjugate, inf-
convolution and deconvolution operators, the Moreau envelope, the proximal average, and other related
operators. Section 2 presents efficient algorithms to compute them: symbolic algorithms, numerical algo-
rithms similar to the Fast Fourier Transform, and hybrid symbolic-numeric algorithms founded on piecewise
linear-quadratic functions. Section 3 lists several applications in a wide variety of fields: Finite convex
integration, network flow, phase transition, electrical networks, and robot navigation. Section 4 presents ap-
plications in image processing, computer vision, and differential morphology. Section 5 shows the link with
Partial Differential Equations (PDE), while Section 6 puts the convex operators in the general framework of
extremal algebra focusing on multifractal analysis, network communication, and discrete event systems. Sec-
tion 7 lists additional fields that can benefit from Computational Convex Analysis, mentioning in particular
medical imaging and morphology neural networks. Finally, Section 8 concludes the paper.

1. Fundamental Convex Transforms

We first recall the most fundamental operators in Convex Analysis.

1.1. The Fenchel Conjugate. The Fenchel conjugate (also named Legendre-Fenchel transform, Young-
Fenchel transform, the maximum transform [30, 31, 33], or Legendre-Fenchel conjugate)

(1) f∗(s) = sup
x∈Rn

[〈s, x〉 − f(x)]

has long been studied in a wide range of fields for its duality properties.
Consider the following (Primal) optimization problem

p = inf
x∈Rn

{f(x) + g(Ax)},

where A ∈ R
mn, f (resp. g) is convex and lower semi-continuous on R

n (resp. on R
m). Problem p is

naturally associated, through Fenchel conjugation, to the dual problem

d = sup
z∈Rm

{−f∗(AT z) − g∗(−z)},

where AT is the transpose of A. The Fenchel duality Theorem links both problems (see [41, Theorem 3.3.5],
[228, Theorem 31.1], [26], [230, Example 11.41]).

Theorem (Fenchel’s Duality Theorem). Assume x ∈ R
n, z ∈ R

m with f , g and A as above. Then the
following hold:

(1) Weak duality: p ≥ d.
(2) Strong duality: If A(Dom f) ∩ intDom g 6= ∅, then p = d and the supremum defining d is attained.
(3) Primal solutions: If z is a solution to the dual, then the solutions to the primal are equal to the

(possibly empty) set

A−1∂g∗(z) ∩ ∂f∗(AT z),

where ∂f(x) = {s ∈ R
m : ∀y ∈ R

n, f(y) ≥ f(x) + 〈s, y − x〉} is the convex subdifferential.

Formulas to compute the conjugate for the main operations of Convex Analysis like addition, inf-convolu-
tion, maximum under a linear mapping, scalar multiplication, etc. have been investigated giving a complete
conjugate calculus for Convex Analysis. Smoothness results linking strict convexity to differentiability are
also known, making the conjugate an invaluable tool in Convex Analysis. We refer to [228, 117] for general
references on Convex Analysis (and to [230] for its generalization to variational analysis), the study of the
Fenchel conjugate, and different formulations of the Fenchel Duality Theorem.
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Remark 1. The name Legendre-Fenchel transform for the Fenchel conjugate above comes from the fact it
is a generalization of the Legendre transform

f∗(s) = 〈s,∇−1f(s)〉 − f(∇−1f(s))

when the gradient of f is invertible. When it is not, the Fenchel conjugate or its generalization: the slope
transform (see references in Section 3.5), are used.

The parallel between the Fenchel conjugate and the Fourier transform has long been known [48] (see
Section 6.3 for more references).

1.2. Inf-convolution and Deconvolution. The inf-convolution [197, 201, 240, 241] (also called epi-
addition) of two functions f and g is defined by

(f ⊕ g)(x) := inf
y

[f(y) + g(x − y)].

It provides a very general transform giving rise to several regularization operators. Geometrically, it cor-
responds to the Minkowski addition of the epigraphs of the two functions. Under appropriate assumptions
(the functions f and g are convex lower semi-continuity (lsc) proper and riDom f∗∩ riDom g∗ 6= ∅, where ri
denotes the relative interior [117, Corollary X.2.1.3 and Theorems X.2.3.1, X.2.3.2]), the infimal convolution
reduces to several Fenchel conjugacy computations

(2) (f ⊕ g) = (f∗ + g∗)∗.

The inverse of the inf-convolution operator is called the deconvolution [178, 116] of f by g and is defined
by

(f ⊖ g)(x) := sup
y

[f(x − y) − g(y)].

Under appropriate assumptions (either assume f and g are proper lsc convex functions with Dom g∗ = R
n

and use [76, Proposition 2.1]; or allow unproper functions by extending the usual subtraction law and
invoke [177, Proposition I.11]), the deconvolution of two convex functions reduces to computing several
conjugates: (f ⊖ g) = (f∗ − g∗)∗. Mathematical Morphology has long been using erosion and dilation
operators, which amounts to deconvolution and inf-convolution respectively (see Section 4.3 for details).

The Pasch-Hausdorff envelope [230, Chapter 9], also called Lipschitz regularization, is a special case of
inf-convolution with the norm function

(f ⊕ c‖ · ‖)(x) = inf
y

[f(y) + c‖x − y‖].

It has been studied for its Lipschitz regularization and Lipschitz extension properties [114, 115].

1.3. Moreau Envelope. The Moreau envelope of an extended real-valued function f : R
d → R ∪ {∞},

(also called the Moreau–Yosida approximate, Yosida Approximate [14] or Moreau–Yosida regularization)
corresponds to the inf-convolution with half the norm square

(3) Mλ(f)(x) := (f ⊕
‖ · ‖2

2λ
)(x) = inf

u∈Rd
[f(u) +

‖x − u‖2

2λ
].

(We will denote it Mλ when there is no ambiguity on the function f under consideration.) It has been studied
extensively both theoretically and algorithmically for its regularization properties. Its origin goes back to
the work of Yosida [258] on maximal monotone operators (it is also related to Tikhonov regularization [246]),
and its behavior is well known in the field of convex analysis [198, 199, 200, 228] and variational analysis [230,
Chapter 12]. Under general conditions (f is prox-regular and prox-bounded [230, Proposition 13.37 p. 617]),
Mλ is C1 with Lipschitz continuous gradient, and critical points of f are fixed points of the proximal mapping

(4) Pλ(x) := Argmin
u∈Rd

[f(u) +
‖x − u‖2

2λ
].

When f is convex lower semi-continuous and proper, the proximal mapping is a maximal monotone operator
and its fixed points are the minimum of f . More precise smoothness of Mλ is known under various hypotheses
on f [57, 105, 183, 187, 182, 216]. More recent developments have focused on extending the results to
nonconvex functions through the notion of prox-regularity [21, 35, 34, 36, 213, 212, 181].
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Considering that Mλ(f)(x) converges to f(x) when λ decreases to 0, and shares the same critical points of
f , the Moreau envelope is an attractive regularization transform. On the practical side, the proximal point
algorithm exploits the fixed point property of the proximal mapping to converge to a minimum of f [229].
Its convergence properties are well known [149, 100], and variants have been introduced to speed up its
convergence (see [49] and references therein). Extensions to non-quadratic kernels like entropy methods and
Bregman distances have also been studied [74, 124, 244, 210, 42]. Bundle methods are intrinsically linked
to the Moreau envelope (see [186], and [117, Chapter XV]). Recent developments in that direction focus on
VU-decomposition [152, 154, 153, 151, 150, 188, 189, 190, 191, 192, 193, 194, 195] to take advantage of both
Newtonian and bundle algorithms.

We note that the computation of the Moreau envelope is equivalent to the computation of the Legendre–
Fenchel conjugate as the following formulas shows [162]

Mλ(f)(x) =
‖x‖2

2λ
−

1

λ

(

‖ · ‖2

2
+ λf

)∗

(x),(5)

f∗(s) =
‖s‖2

2
− λMλ

(

1

λ
f −

‖ · ‖2

2λ

)

(s),(6)

where f : R
n → R ∪ {+∞}, and λ > 0. So algorithms for computing one transform are trivially extended

to compute the other.

1.4. Other transforms. The Lasry-Lions double envelope [144, 13] hµ,λ is defined as several Moreau
envelopes

hµ,λ(f)(x) = −Mµ(−Mλ(f))(x).

It is a smooth function [230, Proposition 12.62 p. 566]. Similarly the proximal hull (the proximal hull is
different from the proximal mapping) can be written

gλ(f)(x) = hλ,λ(f)(x) = −Mλ(−Mλ(f))(x),

and so is also reducible to Moreau envelope computations.
More recently, the proximal average [25, 23, 24, 22, 165] of n functions f1, . . . , fn is defined with combi-

nations of Moreau envelopes

pµ(f ,λ) = −Mµ(−(λ1Mµf1 + · · · + λnMµfn)),

where f = (f1, . . . , fn), f∗ = (f∗
1 , . . . , f∗

n), and λ = (λ1, . . . , λn). It can also be computed as a combination
of several Fenchel conjugates

pµ(f ,λ) =
(

λ1(f1 + µ−1
q)∗ + · · · + λn(fn + µ−1

q)∗
)∗

− µ−1
q,

where q = 1
2‖ · ‖2. Its key properties include been an homotopy between convex functions, and inher-

iting smoothness. It has been used to build counter-examples [25], and compute primal-dual symmetric
antiderivative methods [24] (see also Section 3.1). The proximal average has also been generalized to a ker-
nel average [27] with current research focusing on generalization to a Bregman average based on Bregman
distances.

Another key property of the proximal average is its behaviour with respect to Fenchel conjugacy: the
conjugate of the proximal average is the proximal average of the conjugate. Other transforms that satisfy
such compatibility with conjugacy include Ghoussoub’s anti-selfdual Lagrangians [91, 92, 93], and Atteia’s
square root of a convex function [12].

Generalization of the Fenchel conjugate such as the c-conjugate [178] can also be considered within our
framework. In the theory of optimal transport problems, c-convexity is linked to cyclical monotonicity and
allows the formulation of Kantorovich duality [254, Chapter 5].

Other generalizations involve considering different distances instead of the norm for the Pasch-Hausdorff
envelope, or half the norm square for the Moreau envelope. For example, Bregman distances [43] D(x, y) =
f(x) − f(y) − (∇f(x), x − y) associated with some functions f , and divergence measures e.g. based on the
Shannon entropy could be considered. Generalizations to quasi-convex or γ-convex functions fit also our
framework.
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2. Computer-Aided Convex Analysis

Introduction. While optimization algorithms avoid explicitly computing the conjugate, motivated by the
study of some Hamilton-Jacobi partial differential equations, computational algorithms have been developed
to compute it on grids. A log-linear algorithm named the Fast Legendre Transform (FLT for short, by
analogy with the Fast Fourier Transform) was first introduced [45, 62, 160, 206, 236] to be subsequently
improved by a linear-time algorithm: The Linear-time Legendre transform (LLT) [161]. Another linear-
time algorithm, motivated by applications in image processing, was obtained by computing the Moreau
envelope [70, 69, 81].

While fast algorithms have been the main strategy to compute convex transforms, different frameworks
have also been investigated. A parametric framework was introduced in [118] and further expanded in [165].
It relies on the parametrization of the Fenchel conjugate to recover its graph up to affine parts. However,
its restrictions led to the introduction of hybrid symbolic-numeric algorithms by considering the class of
piecewise linear-quadratic (PLQ) functions [165]. (PLQ functions are lower-semicontinuous (lsc) proper
extended-valued functions with piecewise linear domain for which the function is either linear or quadratic
on each piece of its domain; See Section 2.3.)

Lately, a new strategy using graph-matrix calculus to compute only the graph of the transforms was
introduced in [96] and further developed in [22]. For example, one can recover the graph of Mλ by quadrature
from

gph∇Mλf =

[

I λI
0 I

]

gph∂f = {(x + λy, y) : (x, y) ∈ gph ∂f},

where I is the n×n identity matrix, gph∇Mλf = {(x,∇Mλf(x)) : x ∈ R
n}, gph ∂f = {(x, y) : y ∈ ∂f(x)},

and

∂f(x) = {y ∈ R
n : ∀x′ ∈ R

n, f(x′) ≥ f(x) + 〈y, x′ − x〉}

is the subdifferential of Convex Analysis. Whether graph-matrix calculus will provide efficient and competing
algorithm is the subject of ongoing research.

We now recall what we consider the three main approaches to compute convex transforms: symbolic
computation, fast algorithms, and PLQ-based algorithms.

2.1. Symbolic Computation. The natural strategy to compute the Fenchel conjugate is to differentiate
the function under the supremum to obtain an equation satisfied by all the critical points. The difficulty
resides in solving such an equation, which amounts to inverting the gradient of the function. For commonly
used functions, symbolic computation software allows to perform some computation. Maple implementations
were presented in [26] for the one-dimensional case, and in [40] for the multi-dimensional case. Large classes
of functions can now be considered and some explicit formulas for the conjugate have been found using
these packages. The packages offer a very efficient method to build some intuition, and to check one’s
computation.

However, the symbolic computation approach suffers from an intrinsic limitation: there may not be
any closed form solution for the conjugate. Indeed, consider computing the conjugate of an even degree
polynomial. If the degree is greater or equal to six, computing the conjugate involves finding the zeros of a
polynomial of degree at least five, which may not admit a closed form. Moreover, in some cases, the explicit
formula for the original function is not available e.g. the function is only available through a black box. So
when the symbolic packages fail or are not applicable, ones turns to numerical computation, which is the
subject of the next two subsections.

2.2. Fast Algorithms. The idea of a fast algorithm to compute the Fenchel conjugate was first formulated
in [45], and independently in [236]. It was then investigated in [62, 206, 160] under the name Fast Legendre
Transform. Its log-linear worst-case time complexity O(n log n) was later improved in [161] to a linear time
complexity O(n). All subsequently developed algorithms focus on either computing the conjugate or the
Moreau envelope. As we mentioned, both computations are equivalent.

The first step in any fast algorithm is to reduce computations to functions of one variable by noting that

(7) Mλ(s1, . . . , sd) = inf
x1

[
|s1 − x1|

2

2λ
+ · · · + inf

xd

[
|sd − xd|

2

2λ
+ f(x)] . . . ].
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A similar formula holds for the conjugate. Hence, all computations for functions in R
d can be reduced to

computing transforms in R several times.
The above “factorization” formula has been extended as a generalized distributive law to encompass

various transforms beyond convex analysis [3]. In fact, by considering semi-rings instead of the usual
(R,+, .) algebra, a common framework exists that encompasses the Fast Fourier Transform on any finite
Abelian group, the fast Hadamard transform, Viterbi’s algorithm, and Belief propagation algorithms [2, 139].
Among the many applications of such transforms, factor graphs have been applied to protein function [155]
and, using the sum-product algorithm, to wireless communication [53].

2.2.1. The Linear-time Legendre Transform (LLT) Algorithm. The main idea behind the LLT algorithm is
to note that computing the Fenchel conjugate is equivalent to computing the convex envelope (the convex
envelope of a function f is the largest convex function that lies below f). While it is well-known that, for
proper lsc convex functions, computing the conjugate of the conjugate gives the closed convex envelope, the
LLT reverses the order: It first computes the convex envelope as a pre-processing step, and then computes
the conjugate. More precisely, we first consider a discrete version of the transform

f∗
X(s) = max

xi∈X
[sjxi − f(xi)],

where the maximum is taken over X = {x1, . . . , xn}, and f∗
X is to be computed at all the slopes sj ∈ S =

{s1, . . . , sm}. The goal of the algorithm is to reduce the brute force computation of O(nm) to O(n + m).
Since in practice we take m = n to obtain a good numerical precision, the goal is to reduce the complexity
from quadratic to linear.

Computing the lower convex envelope of the set of points (xi, f(xi)) in the plane can be achieved in linear
time using the Beneath-Beyond algorithm [75, 214], since the sequence xi can be assumed sorted without
any loss of generality: xi < xi+1. Now any point which is not a vertex of the convex hull, can be safely
discarded since the maximum can never be attained at a point strictly in the interior of the epigraph, and
vertices allow us to recover all points on the boundary of the epigraph. So it is sufficient to focus on vertices
of the convex hull.

After precomputation, we can assume the points (xi, f(xi)) are vertices of the convex hull. Hence the

finite difference slopes ci := f(xi+1)−f(xi)
xi+1−xi

form an increasing sequence. Now computing the Fenchel conjugate

amounts to merging the finite difference slopes ci with the slopes sj since ci−1 < sj < ci implies that the
maximum in the definition of the conjugate is attained at xi. More details on the LLT algorithm, including
its proof of correctness, can be found in [161].

Note that no convexity assumption is made on the input data. (If the data is convex, the precomputation
step can be skipped.) Convexity is explicitly introduced to speed up the computation, but the algorithm
applies to nonconvex data.

2.2.2. The Parabolic Envelope (PE) Algorithm. The PE algorithm was introduced in [70] and later inde-
pendently in [81]. It focuses on computing the discrete Moreau envelope

Mλ,X(sj) = min
xi∈X

[f(xi) +
‖xi − sj‖

2

2λ
],

where as above i = 1, . . . n and j = 1, . . . m. Assume m = n. The goal is again to reduce the quadratic
brute force computation to linear. The PE algorithm shares the same efficiency as the LLT algorithm, and
is an alternative algorithm to compute the Moreau envelope or the Fenchel conjugate.

The key step is to note that the computation amounts to finding the lower envelope of the family of

parabola s 7→ f(xi) + ‖xi−s‖2

2λ
. Such envelope can be computed in linear time by adding parabola one at a

time, since computing the intersection between two parabola can be done in constant time. See [163] for
more details, comparison with other algorithms, and a Scilab [233] implementation.

2.3. Piecewise Linear-Quadratic (PLQ) algorithms. As mentioned above, PLQ functions are defined
as the set of lower-semicontinuous (lsc) proper extended-valued functions with piecewise linear domain for
which the function is either linear or quadratic on each piece of its domain. Convex PLQ functions are known
in Convex Analysis for being closed under the Moreau envelope and the conjugate transformations [230,
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11.14 p. 484]. The class of PLQ functions of one variable corresponds to lsc proper extended-valued piecewise
quadratic functions. In that setting, PLQ algorithms refer to algorithms to compute fundamental convex
transforms applied to the class of PLQ functions. Such algorithms run in linear time [165]

The PLQ algorithms were introduced specifically to compute composition of convex transforms such as the
proximal average [165]. Such computation becomes very technical using fast transform algorithms since one
has to keep track of the dual domain explicitly. Moreover, to obtain a reasonable numerical approximation
of the result, one needs considerable knowledge of the dual domain of any intermediate transform. Such
requirements make the fast algorithms cumbersome beyond a few compositions.

The key idea of PLQ algorithms is to explicitly represent convex functions. Fast algorithms manipulate
points, so the underlying model is either a sample function, or a piecewise linear approximation. One
reason the class of piecewise linear functions is not rich enough for our purpose, is the Moreau envelope of a
piecewise linear function is no longer piecewise linear even for simple functions like the indicator of a single
point. On the contrary, the class of piecewise linear-quadratic functions (functions whose domain can be
expressed as the union of finitely many convex polyhedra, relative to each of which the function is at most
quadratic) is closed under all major convex operations: addition, scalar multiplication, Fenchel conjugacy,
and Moreau envelope. Hence, the computation of such transforms, or of compositions of such transforms,
can be done symbolically. Moreover, there is no need to track the dual (or primal) domain of the function.

The PLQ algorithm to compute the conjugate amounts to matching each primal domain part with its
dual counterpart, then computation is done symbolically. (See [165] for more details.) The price to pay for
such simplicity is that we can no longer use the factorization formula, so computations beyond functions of
one variable are the subject of active research.

2.4. Nonconvex Extensions. Several previously mentioned algorithms can handle nonconvex functions.
The LLT and PE fast algorithms can be used to compute the conjugate and the Moreau envelope of
nonconvex functions. In fact, considering that the conjugate is always a convex function that depends only
on the convex envelope and using Formula (5), algorithms restricted to convex functions can be readily
extended to nonconvex functions by first convexifying the function, then computing its conjugate (this is
the principle of the LLT algorithm), and if needed its Moreau envelope. Hence, the PLQ algorithms can be
extended to nonconvex functions as soon as one can compute the convex envelope of a PLQ function (which
is a PLQ function) [248].

Finally we note that a completely different approach was taken in [44] to compute the inf-convolution of
nonconvex data in subquadratic time. While breaking the quadratic barrier, this algorithm is of course not
optimal when the data is convex.

We now consider application areas benefiting from the previous framework.

3. Antiderivatives, Network Flow, Phase Transition, Electrical Networks, and Robot

Navigation

3.1. Finite Convex Integration. Consider the following problem: given a finite set x∗
i of subgradients at

points xi, find a convex function f such that x∗
i ∈ ∂f(xi). The problem has been tackled in [143] under the

name finite convex integration with links to linear programming. It can also be interpreted as a feasibility
problem induced by a system of difference constraints [1, Section 4.5], which can be solved using shortest
path algorithms.

Tools from monotone operator theory and the mid-point proximal average operator allowed to build a
method that gives the same solution for (xi, x

∗
i ) in the primal space as for (x∗

i , xi) in the dual space: it
is symmetric with respect to convex duality [24]. This “compatibility” with convex duality, which was a
key requirement of the original problem, is naturally obtained using the proximal average. We summarize
the results below to emphasize the role played by the PLQ algorithms in the numerical examples. (The
availability of efficient algorithms also played a critical role in conjecturing the results.)

Assume xi, x∗
i are given for i = 1, . . . , n. We say a function f is an antiderivative if x∗

i ∈ ∂f(xi) for
i = 1, . . . n. The derivative is said intrinsic if in addition the function f does not depend on the order of the
points xi. A method m, which given a set A = {(xi, x

∗
i )} produces an intrinsic antiderivative mA is said to

be primal-dual symmetric if m applied to the set A−1 = {(x∗
i , xi)} gives the conjugate of m applied to the
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set A:

(8) mA−1 = m∗
A.

The key idea behind primal-dual symmetric anti-derivative is that the input data is symmetric with
respect to convex duality i.e. any antiderivative f satisfies x∗

i ∈ ∂f(xi) and xi ∈ ∂f∗(x∗
i ). We would like the

method to preserve that symmetry, which is the meaning of Formula (8).
While there are many antiderivatives, there is a priori no reason for primal-dual symmetric antiderivative

methods to exist. However, it turns out that using the midpoint proximal average operator of two functions
f0 and f1

P(f0, f1) :=
(

1
2

(

f0 + 1
2‖ · ‖

2
)∗

+ 1
2

(

f1 + 1
2‖ · ‖

2
)∗

)∗
− 1

2‖ · ‖
2,

one creates primal-dual symmetric antiderivatives from any antiderivative using the fact that the midpoint
proximal average of two antiderivatives is also an antiderivative. Given a method m producing intrinsic
antiderivatives mA for the set A, define the new method m by

mA = P
(

mA,m∗
A−1

)

.

Then m produces primal-dual symmetric antiderivatives [24].
The numerical computation of primal-dual symmetric antiderivative amounts to computing proximal av-

erages. The PLQ algorithms are ideally suited for that task: they achieve the optimal linear time worst-case
complexity as well as provide robust numerical results when applied several times to compute compositions
of convex transforms as is needed to calculate the proximal average.

3.2. Network Flow. Computing Linear Cost Network Flow on Series-Parallel Networks is another problem
related to graph theory [250]. (We refer to references in [250] for its importance in combinatorial optimiza-
tion.) Assume G is a strongly connected directed graph with vertex set V, and edge set E . Each edge
(i, j) ∈ E is associated with a flow xi,j, which is lower- and upper-bounded −∞ < li,j ≤ xi,j ≤ ui,j < +∞,
and a flow cost per unit ci,j. The linear cost network flow problem is to minimize the total cost of the arc
flows, subject to capacity and conservation constraints, in other words to solve

minimize
∑

(i,j)∈E ci,jxi,j

subject to ∀i ∈ V
P

{j|(i,j)∈E}xj,i =
P

{j|(i,j)∈E}xi,j, (Conservation condition)

∀(i, j) ∈ E li,j ≤ xi,j ≤ ui,j, (Capacity condition).

To solve the problem efficiently, nested sums and nested infimal convolutions are computed [250]. Series-
parallel networks give naturally rise to such nested operators since the network can be decomposed as a
sequence of serial (resp. parallel) joins corresponding to sum (resp. inf-convolution) operations. The solution
to the above problem can be expressed as computing a function f = C(f1, . . . , fm) with fi convex piecewise
linear functions, and C(f1, . . . , fm) = C(f1, . . . , fk)⊙ C(fk+1, . . . , fm) where ⊙ is either the addition or the
inf-convolution operator: ⊙ ∈ {+,⊕}.

The key idea to obtain an efficient algorithm is to sort grid nodes to compute the sum, and to sort the
slopes to compute the inf-convolution. (A similar sorting strategy was used for the LLT algorithm except
instead of inserting slopes in a sorted list, two sorted lists were merged; see Section 2.2.1.) The algorithm
amounts to computing nested inf-convolutions and sums of convex piecewise-linear functions, and is an
alternative approach to the Fast Algorithms of Section 2.2. The resulting worst-case computation cost is
O(m log2 m) where m is the number of arcs in the graph.

3.3. Thermodynamics: Phase Transition. In numerical simulation of multiphasic flows [109], we con-
sider two phases of a same pure body. The second principle of thermodynamics states that the system will
evolve until the entropy reaches a maximum. Let S (resp. S1, S2) denote the entropy of the mixture (resp.
of the first phase, the second phase), and let W = (M,V,E) (resp. W1, W2) be the vector of mass, volume,
and energy for the mixture (resp. the first and second phase). If the two phases are perfectly immiscible
we have M1 + M2 = M (conservation of mass), E1 + E2 = E (conservation of energy), and V1 + V2 ≤ V
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(immiscible phases). Moreover, if the pressures of the two fluids are always positive, the volume constraint
is saturated: V1 + V2 = V . Therefore, the optimization problem becomes a sup-convolution

S(W ) = max
W1+W2=W

S1(W1) + S2(W2).

Assuming the entropies of the two phases are known, the mixture entropy can be computed numerically
using either a fast algorithm or the PLQ algorithms through Formula (2) since the functions S1, and S2 are
concave. As mentioned in [109], such numerical computation is especially useful in the absence of closed
form solutions.

Thermodynamics links to Convex Analysis run deeper than the above instance. The study of thermody-
namic equilibrium is closely linked to the operation of convexification [217]. Consider the phase equilibrium
problem at a point d (phase vector) at constant volume. It corresponds to

min{

q
∑

i=1

λiE(di) :

q
∑

i=1

λid
i = d,

q
∑

i=1

λi = 1, λi > 0}

where E is a function associated with the Helmholtz free energy, d = m/V , m is the mole vector: mi > 0 is
the number of moles of the ith fluid, and V is the volume. To recover the physical phases from the phase
vector d, use mi = Vid

i, and Vi = λiV . The solution to the optimization problem is the convex envelope of E.
(The convex envelope is the largest convex function upper bounded by E.) When the function E is smooth
(at least C1), at a point d, the optimal solution satisfies ∇E(di) = ∇E(dj) for all i and j, which represents
the equality of the chemical potentials, and E(di) − 〈∇E(di), di〉 = E(dj) − 〈∇E(dj), dj〉, which expresses
the equality of pressure in each phase. The phase equilibrium at constant pressure problem consists in
minimizing the Gibbs free energy instead of the Helmholtz free energy. Since the former is obtained as the
Legendre transform of the later, Computational Convex Analysis algorithms allow to compute it efficiently
as soon as the convex envelope E is calculated. Global minimization of the Gibbs free energy to solve the
chemical and phase transition problem was studied in [180].

Another application explored the analysis of the distribution of chemical compounds in the atmosphere.
In [147], a measure of roughness is defined, and is further applied in [148]. It consists in smoothing noisy data
by rolling a parabola from above, then rolling another parabola from below, and considering the area between
the parabolas as the measure of roughness. The efficient computation of the measure is performed with the
LLT algorithm. Intuitively, smoothing with a parabola corresponds to computing a Moreau envelope, which
is equivalent to computing the Legendre conjugate by Formulas (5)–(6).

3.4. Electrical Networks. The study of a mechanical system consisting of two springs in series can be
performed by computing the total potential energy of the system, which is the inf-convolution of the potential
energy of each spring. Such systems with series and/or parallel strings are similar to electrical networks. In
fact, the study of electrical circuits motivated the definition of the parallel addition and parallel subtraction
operators, which corresponds to the inf-convolution and deconvolution of quadratic functions. Anderson [6,
7, 8] defined the parallel addition operator, and Mazure [174, 177, 175, 178, 176, 119] studied its properties
from a Convex Analysis perspective (some of her results also apply to nonconvex functions). Consider [117,
Example IV.2.3.8 p. 165]: an electrical circuit is made up of two generalized resistors A1 and A2 connected
in parallel, and we want to find the equivalent resistor. By Maxwell’s variational principle, a given current-
vector i ∈ R

n is distributed among the two branches such that the dissipated power 〈A1i1, i1〉+ 〈A2i2, i2〉 is
minimal. So the real current distribution i = ī1 + ī2 satisfies

〈A1 ī1, ī1〉 + 〈A2 ī2, ī2〉 = inf
i1+i2=i

{〈A1i1, i1〉 + 〈A1i2, i2〉}.

When the matrices A1 and A2 are positive definite, the solution corresponds to the inf-convolution of two
quadratic forms fj(x) = 〈Ajx, x〉/2 for j = 1, 2. The result (f1 ⊕ f2) is the quadratic form associated with

A1,2 := (A−1
1 + A−1

2 )−1. All such inf-convolutions can be evaluated numerically efficiently using Compu-
tational Convex Analysis algorithms. Similarly, the parallel subtraction, which corresponds to replacing a
resistor with an equivalent circuit using two resistors in parallel, can be computed using for example PLQ
algorithms.
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While a short history of parallel sum related to electrical networks is provided in the introduction to [10],
applications to network connections are explored in [9, 196]. Parallel sum have also found applications in
quantum effects [90]. Extensions of the parallel sum have also been considered e.g. the quasi-projection
operator [72] defined as !(A,B) = 2A(A + B)+B, where + denotes the Moore-Penrose inverse, reduces
to the harmonic mean !(A,B) = 2(A−1 + B−1)−1 when A and B are invertible. The parallel addition
was also defined as the limit of the sequence (x−1 + b−1

n )−1 when bn → b in [18], and of the sequence
((A + εI)−1 + (B + εI)−1)−1 when ε ↓ 0 in [140]. A generalization to connections through an axiomatic
approach is given in [141] (including an interpretation of series-parallel networks). The relation between the
Moore-Penrose generalized inverse of the sum of two matrices and their parallel sum can be found in [85].
The variational characterization using the inf-convolution was investigated in [203] while the parallel sum of
k matrices was studies in [245]. (See also [209] for further studies of the parallel sum.) A new regularization
process based on parallel addition was studied in [211]. See also [222] for a generalization to monotone
operators, and [77, 78] for another generalization. All such generalizations fit into the general framework of
Computational Convex Analysis, and as such can benefit from its fast algorithms.

3.5. Robot Navigation. Building from related work on the slope transform [71, 107, 108], the Legendre-
Fenchel transform has been investigated to navigate a robot in a 2D space [137]. The LLT algorithm was
adapted to handle discrete convex, concave, and nonconvex functions. It was then extended to polygons by
splitting a function in several such pieces, and computing its conjugate on each piece. In that context, the
key property of the Legendre-Fenchel transform is its ability to detect contact between bodies using slopes.
Another important property used in [137] is Formula (2) to reduce inf-convolution of convex functions to
Legendre-Fenchel transforms.

While the framework of [137] focuses on piecewise linear functions and polygons and as such relies on
results first established for the LLT algorithm, it could be extended to PLQ functions, which would make
the addition operator trivial instead of explicitly generating the domain of the conjugate of the sum as
the union of the domain of each conjugate. Such extension requires generalizing the PLQ framework to
nonconvex functions [248], and considering piecewise quadratic approximation of objects instead of polygon
approximations.

Robot navigation has long been performed using distance transforms whose computation is a special case
of computing the Moreau envelope (see Section 4.1 below). We refer to [243] for a fast distance transform
based heuristic path planning algorithm, and to [110, 111] for robot manipulator path planning. Both build
from the work in [129] further developed in [126, 127]. See also the Jarvis’ previous work on collision free
path planning [128, 125].

Extensions of the original robot navigation problem include covert robotic [172] (move a robot while es-
caping sentinels’ notice), real-time detection and navigation [257], outdoor robot navigation using vision [56],
robot exploration with industrial applications [260, 261, 262], and multidimensional alignment [138]. Since
all such extensions rely on the computing the distance transform, they can be performed using the Compu-
tational Convex Analysis algorithms.

An interesting link between distance transform and Hamilton-Jacobi equations is illustrated in [242],
in which the robot path planning problem is solved by considering an Hamilton-Jacobi-Bellman equation
instead of computing distance transforms. It is another example of the links between Section 4 and Section 5.

We now turn our attention to applications arising from image science.

4. Image Processing, Computer Vision, and Mathematical Morphology

4.1. Image Processing: Distance Transforms. In image processing, distance transforms have been
investigated for decades [232, 65] due to their diverse applications (see for example [39, 64, 247, 215] and
references therein). For a binary image B defined as an application from {1, . . . , n} × {1, . . . ,m} to {0, 1},
the distance transform is the mapping that associates B with an {1, . . . , n}×{1, . . . ,m} array D defined as
follow. Assume B has at least one pixel p with B[p] = 0. For each pixel p in B, D[p] contains the Euclidean
distance to the closest pixel in B containing the value 0. In practice, to restrict computation to integer
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arithmetic the distance transform D2 is computed, for example for

B =













1 1 1 1 1
1 0 1 1 1
1 1 1 1 1
1 1 1 0 1
1 1 1 1 1













, D2 =













2 1 2 5 8
1 0 1 4 5
2 1 2 1 2
5 4 1 0 1
8 5 2 1 2













.

Several algorithms [39, 46, 54, 64, 173, 238, 112] were introduced to compute the Euclidean Distance
Transform (EDT), and the performance of some of them were recently compared [79]. Recent research
focuses on simplifying the algorithms while still achieving linear-time complexity. For example, the fact that
the Euclidean distance transform computation is equivalent to computing the lower envelope of quadratic
functions was exploited in [70, 69, 81] to achieve a simple linear-time algorithm. Other algorithms based on
monotonicity or neighborhood properties also managed to achieve linear complexity [89, 238].

The relationship between the Moreau envelope and the Legendre conjugate was exploited in [162] to
reduce the core of the distance transform computation to the LLT algorithm as follow. The squared distance
transform is the application D2 from {1, . . . , n} × {1, . . . ,m} to the set of non-negative integers defined by

D2(p) = min
q∈O

‖p − q‖2,

where O = {q;B(q) = 0} is the set of pixels with value 0 in B. Using the indicator function I(p) = 0 if
B(p) = 0 and +∞ otherwise, we find that the square distance transform is the Moreau envelope of I:

D2(p) = min
q

[‖p − q‖2 + I(q)].

Hence, distance transform algorithms are particular cases of discrete Moreau envelope algorithms.
Examples of applications based on distance transforms include the morphometry of nerve cross-sections,

the registration of Magnetic Resonance images, camera path-planning in virtual endoscopy, and tissue
classification in Magnetic Resonance images; see [64].

4.2. Image Processing: Generalized Distance Transforms. We detail two contributions in computer
vision and object recognition that rely on efficient algorithms for the generalized distance transform.

4.2.1. Efficient Belief Propagation for Early Vision [83]. Early vision problems such as stereo and image
restoration have been solved using Markov Random Field (MRF) models. Since the resulting problems
are NP hard, approximation techniques based on graph cuts and belief propagation have been used with
high accuracy results in practice. However, both approaches are still computationally expensive especially
compared with local methods that are faster but produce poorer results.

A general framework consists of finding a labeling function f : p 7→ fp from the set of pixels P to the set
of labels L (labels may correspond to disparities or intensities) by minimizing an energy function

E(f) =
∑

p∈P

Dp(fp) +
∑

(p,q)∈N

V (fp − fq),

where N is the set of edges in the four-connected image grid graph, Dp(fp) is the cost of assigning label fp

to pixel p (data cost), and V (fp − fq) measures the cost of assigning labels fp and fq to two neighboring
pixels (discontinuity cost).

The max-product belief propagation (BP) algorithm can be used to find a labeling. It is an iterative
algorithm that works by passing messages in parallel around the graph. Denoting mt

p→q the message that
node p sends to a neighboring node q at iteration t, it can be summarized as follow:

(1) Initialize m0
p→q to 0.

(2) At each iteration t (t = 1 to T ) compute

mt
p→q(fq) = min

fp



V (fp − fq) + Dp(fp) +
∑

s∈N (p)\q

mt−1
s→p(fp)



 .
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(3) After T iterations, compute the belief vector

bq(fq) = Dq(fq) +
∑

p∈N (q)

mT
p→q(fq).

(4) Finally compute

f∗
q = Argmin

fq

bq(fq).

The key step in the algorithm for our purposes is Step (2). It can be rewritten as

mt
p→q(fq) = min

fp

(F (fp) + V (fp − fq)) ,

with F (fp) gathering all the data for the label fp. As such, we are required to compute a min convolution at
each iteration. Using a fast algorithm, the quadratic computation cost is reduced to linear thereby reducing
the BP algorithm cost of O(nk2T ) to O(nkT ), where n = |P| is the number of pixels in the image, k = |L|
is the number of possible labels for each pixel, and T is the number of iterations.

The above improvement is only valid for specific functions V corresponding to different models. The
Potts model consists of a piecewise constant function V (x) = 0 when x = 0 and d otherwise. A direct
approach leads to a linear time algorithm. For the linear model V (x) = c|x|, and the truncated linear
model V (x) = min(c|x|, d), the computation is similar to computing a distance transform since it amounts
to computing the min convolution with a linear cost. In that case, the min convolution corresponds to
the computation of a Pasch-Hausdorff regularization (see Section 1.2). Finally a quadratic model and a
truncated quadratic model are equivalent to the computation of Moreau envelope (or Euclidean distance
transform) and so be computed in linear time.

More general distances could be used while still keeping a linear cost, e.g., any function V for which
the intersection between two translations of its graph can be computed in constant time results in a linear
time algorithm without making any convexity assumption. When convexity is present Formula (2) gives a
linear-time algorithm.

4.2.2. Pictorial Structures for Object Recognition [82]. To recognize generic objects in an image, and to
learn from example images, an energy function is minimized. It measures the match cost for each part of a
pictorial model, and a deformation cost for each pair of connected parts. More precisely, a pictorial model is
considered as an undirected graph G = (V,E) with n parts V = {v1, . . . , vn} defining the vertices, and the
links between connected parts defining the edges E. A configuration L = (l1, . . . , ln), where each li specifies
the location of vi, defines an instance of the object. The optimal match is obtained by solving

L∗ = Argmin
L





n
∑

i=1

mi(li) +
∑

(vi,vj)∈E

dij(li, lj)





where the function mi(li) measures the degree of mismatch when part vi is placed at location li in the image,
and di,j(li, lj) measures the degree of deformation of the model when part vi is placed at location li and
part vj is placed at location lj .

While the minimization for arbitrary graphs G = (V,E) and arbitrary functions mi, dij is NP-hard,
special cases can be solved efficiently. In particular, when the graph is a chain, a dynamic programming
solution runs in O(h2n), where n is the number of parts of the model and h the number of possible locations
of each part. This complexity can be improved when the dij are restricted to the Mahalanobis distance
between transformed locations

dij(li, lj) = (Tij(li) − Tji(lj))
T M−1

ij Tij(li) − Tji(lj)).

Then a minimization algorithm can be obtained that runs in O(h′n), where h′ is the number of grid locations
in a discretization of the space of transformed locations given by Tij and Tji.

More precisely for an acyclic graph G = (V,E), pick vr an arbitrary node as the root of a tree. Denote
by di the depth level of node vi (the depth level of vr is 0). For any vertex vj 6= vr, the best location given
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a location for its parent vi is

Bj(li) = min
lj



mj(lj) + dij(li, lj) +
∑

vc∈Cj

Bc(lj)



 ,

where Cj is the set of children of node vj . Consequently a dynamic programming approach (computing Bj

from the bottom up and then tracing the solution to get the argmin) gives a O(nh2) algorithm. However,
using generalized distance transforms from Computational Convex Analysis [81, 162, 164], the computation
is reduced to a O(nh) cost. That improvement makes the difference between an algorithm too costly in
practice and one fast enough for applications. (See also [63] for the application of fast algorithms in that
context, and [52, 61] for a Convex Analysis point of view.)

4.3. Differential Morphology. Image processing has long been using morphological operators to compute
various transformations. The core operators are the dilation and the erosion operators

(f ⊕ g)(x) = supy∈B [f(y) + g(x − y)],

(f ⊖ g)(x) = infy∈B [f(y) − g(x − y)],

which correspond to the inf-convolution and deconvolution operators of convex analysis. See for instance [251]
on the Minkowski addition operators for sets. Composition of these give smoothing filters like the opening
f 7→ ((f ⊖ g)⊕ g) and the closing f 7→ ((f ⊕ g)⊖ g) operators. From dilation, one can define the morpholog-
ical gradient, which is important in edge detection for image segmentation. The link between mathematical
morphology in image processing, and Convex Analysis was noticed by Maragos in [168] who also noted the
connection with partial differential equations like the Hamilton-Jacobi and the Eikonal equation. Moreover,
Maragos made the connection with the Legendre-Fenchel transform through the slope transform [167, 107].
He further investigated the relation with PDEs and made the link between distance transforms and PDEs
using level set methods [170, 171]; while Lucet [162, 164] took the reverse view of using fast algorithms from
Section 2.2 to compute distance transforms. The connection to Hamilton-Jacobi equations was also made
in [11, 239], and to the Eikonal equation in [130].

More traditional algorithms to compute dilation and erosion were presented in [255] for binary images,
and in [256] in a broader context. Other efficient algorithms for morphological operators were presented
in [94] (see also [73, 204]). A technique to compute the erosion using the FFT was presented in [251].
More connection between morphology and Convex Analysis were used in [38] with an explanation of the
relationship using the max-plus algebra in [48]. In our context, Computational Convex Analysis provides a
common framework for mathematical morphology algorithms.

5. Partial Differential Equations

While links between Convex Analysis and Partial Differential Equations (PDE) are well-known, recent
work focused on using efficient numerical methods in one field to solve a problem in the other. In this section,
we first explain how Convex Analysis helps finding solution to an Hamilton-Jacobi PDE. Conversely, we then
explain how efficient PDE solvers help computing a fundamental Convex Analysis transform: the convex
envelope.

5.1. Lax-Hopf Formula. The Lax and the Hopf functions are explicit solutions of
{

∂u
∂t

+ H(Du) = 0 in R
n × (0,∞),

u(·, 0) = g(·) in R
n,

when either H or g is convex (where Du stands for the derivative of u with respect to the space variable x).
They are defined as follow.

uLax(x, t) = inf
y∈Rn

sup
q∈Rn

[g(x − y) + 〈y, q〉 − tH(q)] = (g ⊕ (tH)∗)(x),

uHopf(x, t) = sup
q∈Rn

inf
y∈Rn

[g(x − y) + 〈y, q〉 − tH(q)] = (g∗ + tH)∗(x).
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The study of their properties using tools from Convex Analysis was performed in [122] (see also [123]). The
formulas were extended further in [231]. The extension to quasiconvex functions was performed in [20] while
Bardi et al. [19] considered the nonconvex nonconcave case. The use of fast algorithms to compute the
solutions numerically was investigated in [62]. Considering there are numerous results on Hamilton-Jacobi-
Bellman equations, we refer to [122] for an introduction from the point of view of Convex Analysis.

While the Hopf function can be computed in linear time as several conjugates, none of the current
algorithms allows the computation of the inf-convolution in linear time. (We cannot use Formula (2) since
the function u0 is not assumed convex.) A nonlinear-time algorithm was proposed in [62] but it does not scale
well with the dimension. Another better than brute force (subquadratic) general inf-convolution algorithm
was investigated in [44].

The FLT and the faster LLT algorithms have also been used in efficient numerical simulations of the
Burgers equation. For example, in [252] an adhesion model is investigated and numerical simulations (using
the FLT) are performed to compare theories on mass distribution in the universe. The tools used are the
Fenchel conjugate, the convex envelope, and other Convex Analysis arguments. The same algorithm is key
to numerous numerical simulations for the Burgers’ equation [15, 28, 87, 88, 103, 104, 205].

5.2. Convexification. For a locally bounded function u0 : R
N → R, the system

{

∂u
∂t

=
√

1 + ‖Du‖2F (Du,D2u) for (t, x) ∈ (0,∞) × R
N ,

u(0, x) = u0(x) for x ∈ R
N ,

models the motion of the graph of the solution u(t, ·) in the normal direction at each point, with speed
F (Du,D2u). Using F (Du,D2u) = min(0, λmin(D2u)), where λmin denotes the smallest eigenvalue of D2u,
and assuming that u0 defined on the closure of a convex open bounded set Ω is lsc on the closure of Ω and
continuous on the boundary of Ω, the (unique viscosity) solution u(t, ·) converges to the convex envelope
of u0 when t → ∞ (see [253]). While finite difference methods were used to compute the convex hull, the
reverse could also be done: using computational geometry algorithms to compute the solution to the partial
differential equation above.

More recently, the convex envelope was found to be the solution of a nonlinear obstacle problem. The
convex envelope u of the function g : R

n → R is a viscosity solution of

max(u(x) − g(x),−λ1[u](x)) = 0,

where λ1[u](x) is the smallest eigenvalue of the Hessian D2u(x) [208]. That formulation was further studied
in [207] to obtain a PDE-based numerical algorithm to compute the convex envelope. The above equation
offers the following advantage over a direct computation of the convex envelope: it provides a local charac-
terization in contrast to the global nature of the convex envelope, it can provide a certificate that a given
function is the convex envelope, and it allows the definition of approximate solutions.

The convex envelope of f is also the solution of

min

∫

[a,b]

√

1 + u̇2(s)ds

under the constraints u ∈ W 1,1[a, b] (the Sobolev space), u ≤ f on [a, b], u(a) = f(a), and u(b) = f(b).
(Minimizing that equation is the same as minimizing the curve length (length of the epigraph boundary) of
u.) The problem can then be discretized and, assuming the initial function u is upper semicontinuous (usc)
on [a, b], its solution converges uniformly to the convex envelope [131].

In [47], the convex envelope of a function ϕ is computed as the solution to the problem

ϕ∗∗(α) = inf
v∈W

1,∞
0 (Ω)

1

|Ω|

∫

Ω
ϕ(α + ∇v(x))dx,

while the convex envelope of a function f is approximated in [113] as the solution of

min
1

2

∫

Ω
(u − f)2
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with the constraints u ∈ BV 2(Ω), u = f̂ on ∂Ω, and u ≤ f on Ω. (BV 2 is the space of bounded second

variation, and f̂ is the set of Dirichlet data on ∂Ω, which is assumed known a priori.)
Other recent work on computing the convex envelope has focused on polynomials for which the com-

putation of the convex envelope can be transformed into a minimization problem on a set of probability
measures [184]. The later can be reduced to a semidefinite programming problem corresponding to the
Hamiltonian of a convex formulation of the problem. See also [185] for another application of the method
of moments and its relation with the convex envelope.

PDE have also been used for global optimization through a smoothing method linked with the convex
envelope. More precisely, a cost function f of an unconstrained global optimization problem is smoothed
with a function u : [0, T ) × R

n → R satisfying

∂u

∂t
(t, x) = ∆u(t, x) − max(0,∆u(t, x)),

with 0 < t < T and u(0, ·) = f (∆u denotes the Laplacian of u with respect to x). It can be shown that
the convex envelope of a solution u(t, ·) is the convex envelope of f . Using the fact that global minima of
the convex envelope are the same as the original function, an algorithm is devised to compute the global
minimum [145].

Finally, we mention an area where Convex Analysis techniques have benefited PDEs. N. Ghoussoub
recently introduced the theory of anti-selfdual Lagrangians to prove new variational principles of dynamical
systems [91, 92, 93]. The foundation of anti-selfdual Lagrangian is Convex Analysis: Fenchel conjugate,
Fenchel inequality, and the convex subdifferential. It will be interesting to see if Computational Convex
Analysis algorithms contribute to solving numerically these dynamical systems.

5.3. Interface Propagation. The search for numerical methods to solve Hamilton-Jacobi equations has
given rise to very efficient numerical schemes to compute curve evolutions and interface propagations. The
Fast Marching method, the Level Set method, and the Fast Sweeping method are examples of such methods
with a wide range of applications [235] (see also [249] for the application of level set methods to image
science). In our context, these methods have been considered to compute distance transforms in image
processing, which are a particular case of Moreau envelope. They could also be used to compute the convex
envelope. Note that the main advantage of such methods is not the speed of computation, since they
are outperformed by computational geometry and fast algorithms, but their potential ability to build a
nonuniform grid on which the convex envelope is approximated.

Moreover, recent investigation into the fast sweeping methods for static Hamilton-Jacobi equations require
the computation of the Legendre transform [132], which is performed symbolically or numerically using the
fast transform algorithms. The Fenchel conjugate allows the transformation of the evolutive Hamilton-
Jacobi equation of the first order into a Bellman equation with a finite horizon control problem [80]. The
Hamiltonian can then be computed using the fast algorithms. Both articles refer to the original Fast
Legendre Transform algorithm, which has since been superceded by the Linear-time Legendre Transform
algorithm.

6. Multifractal Analysis, Network Communication, and Extremal Algebra

6.1. Multifractal Analysis. Fractal processes have allowed significant advances in a variety of fields,
e.g. turbulence theory [237], stock market modeling, image processing, medical data, geophysics, network
modelings [37, 225] (and in particular TCP traffic [156]), computer worms in network [55], analysis of
paleoclimatic records [133], Blast furnace [121], etc. (see also references in [223]). Multifractal analysis
describes the singularities (points where the function is nonsmooth) of a signal locally via the Hölder
exponent, and globally via the large deviation multifractal spectrum f(a) which estimates the exponential
speed of decay of the probability to encounter a singularity equal to a at resolution n, when n tends to
infinity.

To provide a global analysis of a univariate function Y (t), called a fractal process, we use the concept of
box-dimension (see [223] for details). Introduce

h
(n)
k := −

1

n
log2 sup{|Y (s) − Y (t)| : (k − 1)2−n ≤ s ≤ t ≤ (k + 2)2−n}
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to define the grain multifractal spectrum as

f(a) := lim
ǫ→0

lim sup
n→∞

log N (n)(a, ǫ)

n log 2
, where N (n)(a, ǫ) = #{k : |h

(n)
k − a| < ǫ}.

Using Large Deviation Principles, we can interpret the coarse spectrum f by studying the partition function

τh(q) := lim inf
n→∞

log S
(n)
n (q)

−n log 2
where S(n)

n (q) :=
2n−1
∑

k=0

2−nqh
(n)
k ,

defined for all q ∈ R. Under the appropriate assumptions, one can prove that τh is the (concave) Legendre-
Fenchel transform of f :

τh(q) = f∗(q) := inf
a

(qa − f(a)).

(Properties of the Legendre conjugate of interest to multifractal analysis are introduced in [224].)
In practice, to compute f it is simpler to evaluate τh and then compute its conjugate using one of

the Computational Convex Analysis algorithms. To facilitate such computation, a fast Legendre-Fenchel
transform algorithm is included in the multifractal analysis toolbox FracLab [86].

Using multifractal analysis, the detection of artificial objects within natural environments was studied
by noting that artificial objects have a wider Legendre spectrum than natural ones. Hence, a given image
is subdivided into several subareas for which the Legendre spectrum is computed. The results are then
compared to locate any artificial object [50]. (While fast algorithms can be used to compute the Legendre
spectrum, the authors of [50] used a combination of numerical summations and limits coupled with the
explicit Legendre conjugate formula for the function considered.)

6.2. Network Communication. The single output function y(k) of a simple communication network with
a single input function x(k) is computed as the infimal convolution y = (h⊕x) of the input with the response
characteristic function h, which is network and protocol dependent [120]. The goal is to recover the response
characteristic by deconvolution: h = (y⊖x). Since the functions may not be convex, the Legendre transform
is extended to handle nonconvex/nonconcave data as the set-valued slope transform

L[x(u∗)](s) = {x(u∗) − su∗ | s =
dx

du
(u∗)},

Then specialized computations are performed to evaluate the deconvolution operation associated with the
slope transform. Note that the formulation of the extended Legendre transform is close to the parametric
Legendre transform algorithm introduced and studied in [118]. Moreover, the recently extended PLQ algo-
rithms allow computing with nonconvex functions [248] thereby opening the door to the efficient numerical
computation of the Legendre transform. Another possibility is to use a general inf-convolution algorithm
for nonconvex functions [44].

In a more general setting, the TCP protocol is covered by a theory of deterministic queuing systems found
in computer networks called Network calculus [16]. It is the equivalent of system theory for which the usual
(R,+.·) algebra has been replaced with the commutative dioid (R ∪ {+∞},min,+). The usual convolution
operation now becomes the inf-convolution (called min-plus convolution), its dual the deconvolution (called
min-plus deconvolution), while the equivalent of the Fourier transform is the Fenchel conjugate [146]. While
some authors have noted the connection between Network calculus and Convex Analysis, it does not appear
that the full power of Convex Analysis, e.g. support functions and subadditive functions [117], has been
fully exploited yet.

The foundation of network calculus are the min-plus convolution (inf-convolution) and the min-plus
deconvolution [84]

(f ⊕ g)(t) = inf
u

f(t − u) + g(u), (f ⊖ g)(t) = sup
u

f(t + u) − g(u), with t ≥ u ≥ 0, t ≥ 0, u ≥ 0.

Then relevant network entities e.g. arrival curves α(t), and service curves β(t) can be computed. For
example, the service curve β(t) of the concatenation of n service elements with service curves βi(t) is
β(t) = ⊕n

i=1βi(t); a service element β(t) with input bounded by α(t) admits a bound on its output α′(t)
given by α′ = (α ⊖ β). Of course, all the numerical computation of the inf-convolution, and deconvolution
can be achieved with Computational Convex Analysis algorithms.
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Diving deeper in min-plus algebra, one finds that eigenfunctions with respect to min-plus deconvolution are
the affine functions admitting the Fenchel conjugate as eigenvalue. In fact, the Fenchel conjugate transforms
inf-convolutions in additions and deconvolutions in subtractions. As such it becomes very advantageous to
work in the Legendre domain. In addition, Fenchel’s duality Theorem gives upper bounds on network
entities [84].

6.3. Max-Plus, Tropical, Idempotent, and Extremal Algebras. A further generalization of Net-
work Calculus is provided by replacing the usual arithmetic operations with new operations satisfying
the idempotent property. Important semi-rings are the max-plus Rmax := (R ∪ {−∞},max,+), and the
min-plus Rmin := (R ∪ {+∞},min,+) algebras, although many other semi-rings have been studied, which
have strong relation to convex operators e.g. (C,⊕,⊙) where C is the set of all convex compact subsets
of R

d equiped with the Minkowski operations: A ⊕ B = co(A ∪ B) is the convex hull of the union, and
A ⊙ B = {x : x = a + b, where a ∈ A, b ∈ B}. The new addition ⊕ is idempotent: for all x, x ⊕ x = x.
Note that the terminology varies: idempotent semi-rings are sometimes called tropical semi-rings, idempo-
tent semi-fields, minimax algebras, or extremal algebras.

The max-plus and min-plus idempotent semi-rings can be seen as the limit of the usual algebra under
various transforms, e.g. u⊕h v = h ln(exp(u/h)+exp(v/h)) gives u⊕h v → max(u, v) as h → 0. The passage
from R to Rmax (or min) is sometimes called the Maslov dequantization or Cole-Hopf transformation [157].
In the max-plus (and min-plus) algebra, the role of the Fourier transform and the convolution operators are
played by the Legendre-Fenchel transform and the inf-convolution operator.

More result on idempotent calculus, in particular with links to Hamilton-Jacobi equations, can be found
in [68, 67]. We refer to the recent survey [157] for more information and further references, and to [17]
(especially Section 9.4) for an introduction in the context of discrete event systems (see also the introduction
to a nonlinear theory for discrete event systems based on Max-plus algebra in [101, 102]).

The area of application of idempotent semi-rings is wide ranging: discrete mathematics, computer science,
computer languages, linguistic problems, finite automata, optimization problems on graphs, discrete event
systems and Petri nets, stochastic systems, evaluation of computer performance, computational problems,
mathematical economics, etc. See references in [157]. Specific research has also focused on car-traffic
laws [158, 159].

Many equivalent results from the usual algebra have been obtained, sometimes simplified due to the
idempotent property. Numerous concepts have been investigated: the equivalent of the Riemann sum allows
one to define a corresponding measure theory, while abstract convex sets have given rise to global algorithms
for Lipschitz functions by extending the cutting plane algorithm [29]. A strong motivation to study such
semi-rings comes from the fact that some nonlinear equations in the regular algebra become linear in the
idempotent semi-ring, e.g. the Hamilton-Jacobi equation is linear over Rmax. An abstract linear algebra
theory has been studied within which the properties of the Legendre-Fenchel transform allow to hugely reduce
the cost of computation for Hamilton-Jacobi equations [179]. More recent work has focused on geometry
properties like convexity [60]. Algorithms also have their counterpart, and generic implementations over
abstract semi-rings have been studied, while generalized linear algebra methods like the Jacobi Gauss-
Seidel, and Gauss-Jordan method correspond to path-finding problems [51]. More details on semi-rings can
be found in the monographs [95, 97, 98] while [99] gives an historical perspective with precise naming of the
various semi-rings.

In the context of Computational Convex Analysis, the fact that the counterpart to the Fourier transform
is the Legendre-Fenchel transform strongly highlights the importance of the fast algorithms of Section 2.2,
especially the LLT which can be seen as a counterpart to the FFT. The huge importance of the Fourier
transform in signal analysis is directly translated into the critical importance of the Legendre-Fenchel trans-
form in Convex Analysis and Optimization. The link between the Fourier, Legendre, and Cramer transform
was studied in [48] making a connection between linear and morphological system theory, the later been
seen as linear system theory in the max-plus algebra. Connection between the Fourier Transform and the
Fenchel conjugate were also made in [166].

One original motivation to introduce the maximum transform was to transform inf-convolution into
addition [31] with a view toward applications in resource allocation [134]. It was later applied to nonlinear
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knapsack problems for which Formula (2) mitigated the curse of dimensionality [202]. Computational Convex
Analysis provides the algorithmic framework to compute efficiently in these algebras.

7. Additional Applications

While additional applications can be found in the literature [241], let us emphasize a few more fields.
Economics has long been using convex analysis tools. Consider the following simple economic example:
a person buys quantities of a product from two manufacturers, with prices depending on the quantities
bought. Minimizing the total cost amounts to computing the inf-convolution of the costs. The general
dynamic programming (DP) model for linear transition benefits from conjugate duality, which reduces
the curse of dimensionality by reformulating the problem as a recursive sequence of inf-convolutions, and
computing its dual in which inf-convolutions are reduced to additions [135]. Similarly a general discrete
resource allocation problem reduces to a sequence of inf-convolutions, which in the dual becomes a sequence
of additions [136]. Note that the reduction of inf-convolution to addition was already noted in [32].

7.1. Morphology Neural Networks. Morphology Neural Networks is another field benefiting from non-
standard algebra. In a classical neural net, each node combines information by multiplying output values xi

and corresponding weights λi, and summing: y =
∑

i λixi. However, in a morphology neural net, values and
corresponding weights are added, and then the maximum value is taken: y = maxi λi+xi. The result can be
computed using inf-convolution algorithms. Morphology neural networks arose from applications in image
processing, which is not surprising considering the relation between classical dilation and erosion operators
in image processing and the Rmax algebra. Of course, erosion and dilation corresponds to deconvolution and
infconvolution in convex analysis, see Section 4.3.

We refer to [66] for an introduction to morphology neural networks with some initial applications, and
to [227] for another introduction with a computation of the capabilities of such neural network. While
Computational Convex Analysis algorithms provide efficient numerical tools to accelerate calculations at
each node of the neural network, their systematic application in that context has not been studied yet.

7.2. Medical imaging. Many image reconstruction methods rely on the Radon transform to reconstruct
an image. Then the problem of detecting singularities (discontinuities between adjacent pixels e.g. an edge
in a picture) in the image becomes important since those correspond to a crack in a solid e.g. an aircraft
wing or an engine, or a rupture in a tissue in medical diagnosis. It turns out that the singularities of the
radon transform of a function f are related to the singularities of the function f through the Legendre
transform [219]: if a curve S is the graph of a smooth function y = g(x), then the dual curve S∗ in the
appropriate coordinates (β, q) is the graph of the function q = h(β), where h = L(g) is the Legendre
transform of g, whichis defined when the gradient is invertible by

L(f)(s) := 〈s,∇−1f(s)〉 − f(∇−1f(s)).

It coincides with the Legendre-Fenchel transform when in addition the function f is convex. When the gra-
dient is not invertible, the Legendre transform may be multi-valued, and it has been generalized accordingly
(see [219, Definition 1], the slope transform [71, 108, 167] and references therein).

While the computation of the Legendre transform may be ill-posed, this is not the case for the Legendre-
Fenchel transform, see [219, Section 4.3] which also lists various methods to compute the Legendre transform
numerically (at a single point contrary to the fast algorithms of Section 2.2). The stable computation of the
generalized Legendre transform is investigated in [218] (see also [220, 259] for further results on that topic).

The computational convex analysis algorithms allow the visualization of the Legendre transform. More
work is needed to compare their efficiency with current approaches in medical imaging. Especially relevant is
the extension of PLQ algorithms to two variable functions, which would allow the fast detection of singular
points.

The problem is generalized in [221], which considers the X-ray transform of a function f as the function
which associates to each straight line l in R

3, the integral of f over l with respect to the Lebesgue measure
on l. The Radon transform uses planes in R

3 instead of straight lines. The general case involves considering
linear subspaces of arbitrary dimensions. As already mentioned, the main application of such investigation
is computerized tomography when one looks for boundary of bones, or for holes in solids.
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8. Conclusion

We presented core convex transforms, Computational Convex Analysis algorithms to compute them, and
a wide range of application areas using them. We note the following directions for future research.

New Convex Analysis transforms, like the kernel average [27], have been recently introduced that require
the extension of current algorithms. While some transforms like the Moreau envelope and the Fenchel
conjugate can be computed efficiently for convex and nonconvex functions, the efficient computation for
others is limited to convex functions e.g. the inf-convolution. There are also important applications that
require the computation of the closest closed convex function of a nonconvex function i.e. to project on the
cone of closed convex functions [142], which is closely linked to the problem of shape-preserving interpolation
and approximation.

From the application perspective, researchers should use the most efficient algorithms e.g. the LLT
algorithm instead of the FLT algorithm, and use the power of the Convex Analysis machinery. Rifkin and
Lippert’s contribution to Machine Learning [226] is one such example. It finds new results by using Fenchel
duality coupled with Tikhonov regularization, instead of the classical Lagrangian duality.
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[51] B. A. Carré, An algebra for network routing problems, J. Inst. Math. Appl., 7 (1971), pp. 273–294.
[52] C. Chaux, P. L. Combettes, J.-C. Pesquet, and V. R. Wajs, A forward-backward algorithm for image restoration

with sparse representations, in Signal Processing with Adaptative Sparse Structured Representations (SPARS’05), Nov.
2005, pp. 49–52.

[53] J.-C. Chen, Y.-C. Wang, and J.-T. Chen, A novel broadcast scheduling strategy using factor graphs and the sum-product
algorithm, Wireless Communications, IEEE Transactions on, 5 (2006), pp. 1241–1249.

[54] L. Chen and H. Y. H. Chuang, A fast algorithm for Euclidean distance maps of a 2-d binary image, Inf. Process. Lett.,
51 (1994), pp. 25–29.

[55] Y. Chen, Y. Dong, D. Lu, and Y. Pan, Intelligence and Security Informatics, vol. 3495 of Lecture Notes in Computer
Science, Springer Berlin / Heidelberg, 2005, ch. The Multi-fractal Nature of Worm and Normal Traffic at Individual
Source Level, pp. 505–510.

[56] Y. T. Chin, H. Wang, L. P. Tay, H. Wang, and W. Y. C. Soh, Vision guided agv using distance transform, in
Proceedings of the 32nd ISR (International Symposium on Robotics) 19-21 April 2001, 2001.

[57] F. H. Clarke, R. J. Stern, and P. R. Wolenski, Proximal smoothness and the lower-C2 property, J. Convex Anal.,
2 (1995), pp. 117–144.

[58] G. Cohen, S. Gaubert, and J.-P. Quadrat, Duality and separation theorems in idempotent semimodules, Linear
Algebra Appl., 379 (2004), pp. 395–422. Tenth Conference of the International Linear Algebra Society.

[59] , Projection and aggregation in maxplus algebra, in Current trends in nonlinear systems and control, Systems Control
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[148] B. Legras, I. Pisso, G. Berthet, and F. Lefèvre, Variability of the Lagrangian turbulent diffusion in the lower

stratosphere, Atmospheric Chemistry and Physics, 5 (2005), pp. 1605–1622.
[149] B. Lemaire, The proximal algorithm, in New methods in Optimization and their industrial uses (Pau/Paris, 1987), vol. 87

of Internat. Schriftenreihe Numer. Math., Birkhäuser, Basel, 1989, pp. 73–87.
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