
What Should Be Minimized in a Decision Tree?

Usama M. Fayyad and Keki B. Irani

Artificial Intelligence Laboratory

Electrical Engineering & Computer Science Department

The University of Michigan

Ann Arbor, MI 48109-2122

umf@zip.eecs.umich.edu

Abstract

In this paper, we address the issue of evaluating
decision trees generated from training examples by
a learning algorithm. We give a set of performance
measures and show how some of them relate to oth-
ers. We derive results suggesting that the number
of leaves in a decision tree is the important mea-
sure to minimize. Minimizing this measure will, in
a probabilistic sense, improve performance along the
other measures. Notably it is expected to produce
trees whose error rates are less likely to exceed some
acceptable limit. The motivation for deriving such
results is two-fold:

1. To better understand what constitutes a good mea-
sure of performance, and

2. To provide guidance when deciding which aspects
of a decision tree generation algorithm should be
changed in order to improve the quality of the
decision trees it generates.

The results presented in this paper can be used as
a basis for a methodology for formally proving that
one decision tree generation algorithm is better than
another. This would provide a more satisfactory al-
ternative to the current empirical evaluation method
for comparing algorithms.

I. Introduction

Knowledge Acquisition is one of the important areas of
application for machine learning techniques [Quin86].
With the advent of rule-based and expert systems, and
their widespread use, came the reality of the knowledge
acquisition bottleneck Feig811. It still remains to be
seen whether machine learning will alleviate the knowl-
edge acquisition bottleneck by endowing machines with
the autonomous ability to construct their own knowledge
bases. However, some steady advances in this direction
have taken place. For example, Michalski conducted
experiments in Soybean disease diagnosis that showed
that his concept learning program attained a higher
level of classification accuracy than a human knowl-
edge acquisition approach conducted as part of the same
experiment[Mich78]. Mozetic was able to reduce the size

Irani@caen.engin.umich.edu

of a ECG database by 97% without loss of information us-
ing the same concept learning techniqueCMoze861. Quin-
lan’s success with a large database of thyroid problem
data is another of the many examples of machine knowl-
edge acquisitionrQuin86, Mich791. For applications in
the domain of semiconductor manufacturing see [Iran90].

An important problem associated with applying induc-

tion programs is the measurement of performance and the
establishment of improvement. So far, different methods
for rule induction have been compared against each other
empirically. A domain is chosen, and examples are col-
lected. Programs are then used to induce classification
rules from a training subset of examples. Performance
is measured by using the induced classification rules on
a separate set of test examples. The problem with this
method of evaluation is that it is time consuming and of-
ten inconclusive. Some programs may do better on one
data set or domain, and worse on another. In this paper,
we attempt to provide a more theoretical basis for es-
tablishing improvement for decision tree generation. By
examining the different performance measures, we show
that some of them that are data dependent (require a test
set of examples) can be probabilistically related to a mea-
sure that does not require test sets, namely the number of
leaves in the induced tree. This may then serve as a ba-
sis for provably establishing that one method for inducing
decision trees is better than another by proving that one
algorithm always produces a tree with a smaller number

of leaves than another algorithm, given the same training
data. In addition to giving a possible tool for proving
that one program is better than another, the results pro-
vide some guidance to ways of improving decision tree
learning algorithms.

2. Inducing Decision Trees From Examples

Programs that learn from examples are presented with
examples of different concepts (classes). The program
is provided with the class to which each example be-
longs. The goal of the program is to construct an ef-
fective method (classifier, or set of rules) for classify-
ing examples in their proper classes. The important per-
formance criteria regarding the produced classifier are:
size/complexity and error rate. Since programs that learn

FAYYADANDIRANI zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA749

From: AAAI-90 Proceedings. Copyright ©1990, AAAI (www.aaai.org). All rights reserved.

from examples perform induction, it is not reasonable to
require that they produce classifiers that are completely
correct. The error rate of a classifier (see definition 1)
is strongly dependent on the choice of training set pre-
sented to the learning algorithm. On the other hand,
finding a classifier with minimal size/complexity for a
given data set can easily be shown to be an NP-hard
probleml. Most systems in the literature, therefore, resort
to heuristic approaches that attempt to produce compact

classifiers. A particularly efficient and popular approach
to inducing classifiers is via the generation of decision
trees[Brei84, Quin86, Quin87, Chen88].

In this paper, we show that a compact classilier is in-

deed a good target to strive for. We demonstrate that, in a
certain probabilistic sense, the compactness of a classifier
is related to its expected error rate. Results to this effect
for general learning algorithms have appeared before in
[Blum87]. In this paper we show how those results ap-
ply to decision trees in particular, and how they can be
used in deciding which performance measure is most crit-
ical. Consequently the results point out what to focus on
when attempting to modify and “improve” a particular
algorithm for inducing decision trees.

First we briefly describe what a decision tree is. For
a more detailed discussion, see [Quin86]. A training set
consists of examples expressed as attribute-value pairs.
Each example belongs to a single class. A decision tree
is a tree in which nodes represent subsets of examples
and the outgoing branches from a single node constitute
conditions which involve a single attribute. The condi-
tions are mutually exclusive and collectively exhaustive,

thus they induce a partition on the set of examples at
the node. The subset of examples represented by any
node in the decision tree consists of all examples in the
training set that satisfy the conjunction of the conditions
appearing on the branches on the path from the root to
that node. Typically, the leaf nodes have examples that
belong to exactly one class. That class is referred to as
the outcome predicted by the leaf. In some cases it may
not be possible or desirable to produce a tree that classi-
fies the training set perfectly (i.e. one outcome per leaf,
c.f. [Span89]). However, we restrict our attention to the
case where perfect classitication is possible.

Assumptions

In this paper, it is assumed that the learning algorithm
generates a decision tree that classifies all examples in
the training set correctly. Another assumption we make
is that the sets of training and test examples are noise free

and are not ambiguous 2. Furthermore, we assume that the
examples in the training and test sets are drawn indepen-
dently and at random according to some fixed (unknown)
probability distribution. Finally, the training examples are

‘It is essentially the multiple-valued logic minimization

problem, also see [Hyaf76].

2A data set is ambiguous when there are at least two exam-

ples that agree on the values of all the attributes but belong to

different classes.

expressed in terms of attribute-value pairs (see section 4)
and the conditions on the outgoing branches of a node
are mutually exclusive and collectively exhaustive tests
on the values of a single attribute. These assumptions ad-
mit most decision tree algorithms in the literature such as
CART[Brei84], ID3 [Quin86], GID3 [Chen88], and others.

3. Performance Evaluation Criteria

There are several dimensions along which the complex-
ity and correctness of a decision tree can be measured or
estimated. Quinlan [Quin87] used the number of nodes

in the tree as a measure of its optimality. He also used
the percentage error rate when the tree is used to classify

examples not in the training set. A decision tree may also
be translated into a set of rules that perform an equivalent
classification. Some performance measures may be de-
fined on this set of classification rules as well. Below, we
list measures of performance that we used in a previous
paper[Chen88]. The (I) and (1) symbols indicate that it
is desirable (intuitively) for the corresponding measure to
be maximized or minimized respectively.

MI: Percentage errors on classifying unseen examples

(l)*

M2: Number of rules in the rule-base (leaves in tree) (1).

M3: Number of nodes in the tree (1).

M4: Total number of preconditions in the rule-base (I).
This measures the generality of the entire set of rules.
It is a more accurate measure of generality than the
average number of preconditions per rule (M6), since
the latter is not very indicative if the number of rules
is relatively large when compared against the number
of training examples.

M5: Average example support per rule (per leaf) (I).
This is the average number of examples in the test set

on which a rule is applicable and correctly predicts the
class. It is a measure of the applicability (generality or
utility) of the produced rules. 3

M6: Average number of tests per example in the test set
(1). This is a data-dependent measure of the efficiency
of the generated classification tree (the weighted aver-
age depth of the tree).

Note that measures Ml, M4, MS, and M6 are essentially
estimated by using the set of rules to classify several test
sets of examples whose classification is known. Perfor-
mance measure M4 can be directly related to measure
M2. The relation between M3 and M2 is typically direct
but can only be quantified when the algorithm is fixed
(i.e. it depends on the form of trees generated by the
algorithm).

The percentage of errors (measure Ml) serves as an
estimate of the true error rate of the set of rules (see
definition I). It is considered by most researchers in the

3This measure should be normalized by the total number

of examples in the test set for which a prediction, correct or

erroneous, was made.

750 MACHINE LEARNING

field to be the key measure. Afterall, a minimal set of
rules which has a high error rate is not beneficial. On
the other hand, a lower error rate is desirable even at the
expense of a slightly less efficient or a larger set of rules.
However, obtaining a good estimate of the error rate of
a decision tree is not easy and it necessitates the use of
separate large test sets of examples. A major theme of
this paper is to show that by minimizing the number of
leaves (measure M2), one may, in a probabilistic sense,

expect a reduction in error rate to result. Measure M5
will also be shown to be directly related to measures Ml
and M2. Measure M6 is not as easy to analyze. We shall
delay discussing it until section 5.

The above discussion indicates that it is important to
try to minimize the number of leaves in the tree. By re-
ducing the number of leaves we should in general expect
an improvement in performance along the other measures
listed above. We justify this claim in the next section.
This claim is not intuitively obvious. Generally speak-
ing, it is not clear which performance measure is most
critical. Although it is highly desirable to have a low er-
ror rate, the error rate of a generated tree is not something
that can be controlled directly by the learning algorithm.
On the other hand, the number of leaves or the depth of
the generated tree may be more easily changed by mod-
ifying the algorithm. In this sense, it is useful to derive
relations between the error rate of a tree and more ac-
cessible measures such as the number of leaves in the
tree.

4. The Fewer the Leaves, the Better the

First we establish the easy result that shows that measure
M5 is directly related to measures M2 and Ml. Let n be

the number of leaves in a decision tree. Given a test set
of t, examples, measure M5 is defined as4
Average example support per rule =

number of test examples correctly classified

number of leaves

In general, given an error rate E (measure Ml), we expect
(1 - Q) . t, test examples to be classified correctly by the
tree. Thus

Average example support per rule =
(l-+t,

n

Thus reducing the number of leaves n improves perfor-
mance along measure M5. Furthermore, reducing the er-
ror rate c will also improve the average example support
per rule. An objection that may arise here is that de-
creasing the number of leaves may result in a tree which
has a higher error rate. However, our result below shows
that, probabilistically, reducing the number of leaves is
expected to result in lowering the error rate. This cor-
relation serves to strengthen our statement regarding the
relation between the average support per rule (M5) and
the number of leaves (M2).

4As mentioned before, we are ignoring

factor since it &es not affect the analysis.

the normalization

We now proceed to establish the result regarding the
error rate and its relation to the number of leaves in a tree.
We first need to establish a few definitions and facts.

Let E be a training set of examples expressed in terms

of Ic attributes from the set A = {Al,. . . , Ah}, and j
classes from the set C = (Cl, . . . , Cj}. Thus each ex-
ample e E E is a X: + 1-tuple

e = (VI,. . . , Vk; Cj),

where Vi E Range(Ad) is a value in the range of the
attribute Ag E A and Cj E C. Let KU be the total

number of attribute-value pairs in the training set5, that

is K, = cf=, IRange(A

From this point on, the reader should assume that there
is a fixed (unknown) probability distribution according to
which training and test examples are draw. Any reference
to error rates is implicitly to be interpreted as error rate

with respect to the fixed probability distribution.

Definition 1: A decision tree T has error rate E, 0 2 E <

1, if the probability that T will misclassify a randomly
drawn test example (according to our fixed distribution) is
E. Equivalently, if T classifies m randomly drawn exam-

ples then for very large m, (m -6) examples are expected
to be misclassified by T.

Lemma 1 For every decision tree T with n leaves, there

exists a binary decision tree T’ with n leaves that is logi-

cally equivalent to it.

The proof is given by an algorithm that transforms an
r-ary decision tree to an equivalent binary one with the
same number of leaves. We do not include the proof in
this paper. The only requirement is that the conditions on
the outgoing branches of a node be mutually exclusive
and collectively exhaustive. Clearly two decision trees
that are logically equivalent have exactly the same error
rate when used to classify a set of examples. This lemma
allows us to concentrate our analysis on binary trees only.
This simplifies the analysis but does not change the final
results.

efinition 2: Let DT(n) denote the set of logically non-
equivalent binary decision trees having n leaves.

‘Iwo binary decision trees are logically equivalent if the

two DNF expressions obtained by taking the disjunction
of the conditions on the leaves of each tree are equivalent.

Proposition 1 There are at most DTu (n) and at least

DTl(n) binary decision trees in DT(n) (logically non-

equivalent binary decision trees with n leaves), where

5This holds for discrete attributes. For a continuous attribute

Ai, IRange(is at most II31 - 1.

FAYYAD AND IRANI 751

The proof consists of counting binary tree topologies and
then counting the possible labellings of the internal nodes
with the interpretation that the left branch out of an inter-
nal node is labelled TRUE and the right branch is labelled
FALSE. Note that the upper and lower bounds are fairly

tight. For K, >, n > 2 they differ by at most (%)!.

Definition 3: Let B(n, c) C DT(n) denote the set of
binary trees with n leaves that have an error rate greater
than~,O<~<l.

We are now ready to derive our main result. The re-
sult follows almost directly from a theorem that relates the
number of examples needed to probabilistically guarantee
a certain error rate. The theorem is by Blumer, Ehren-
feucht, Haussler, and Warmuth and appears in [Blum87].
For completeness, we include the modified proof for trees.

Theorem 1 Let T be a binary tree having n leaves that

classifies a set of m randomly chosen training examples

correctly. Then 1 B(n, E) 1. (1 - c)~ is an upper bound on

the probability that T has an error rate greater than E,

O<E<l.

Proof: By proposition 1 there are IDT(n) 1 possible bi-
rxxzees with exactly n leaves. Let B(n, E) C DT(n),

B(n, E) = {T E DT(n) 1 T has error rate > E}

is the set defined in definition 3. We want to bound
the probability that our tree T is a member of B (n, E).

For any T E B(n, c), and any randomly chosen example

e E E,
Prob({ T misclassifies e)) > E.
Hence, Prob({ T correctly classifies e)) < (1 - E).
Assuming the m training examples were chosen inde-
pendently at random according to some fixed probability
distribution,

Prob({T is consistent with the training set}) < (1 - c)”

We want to bound the probability of any tree in B(n, E)

being consistent with m examples, namely

Prob

(

u {T is consistent with m examples}
j

TEB(%f)

By the subadditivity property, this probability is

< IB(n,E)l -Prob({T,is consistent with m examples})

= IB(n,E)I . (1 - c)”

0

Note that IB(,)I n E is not easy to quantify. To get a looser
quantitative bound, one may use the fact that B(n, E) <

I DT(n) I by definition, and proposition 1 to show that the
probability that the obtained tree has error greater that E
is

mnna2Forany~dc,O<c<I,andanyn~>

nl > 2 the following property holds:

IB(n2,4

I%1 Y 4 I

> 2h-“1)

The proof is by induction on the fact that for any n 2 2

1% + WI > 2

IBh 4 I

The proof of this fact is omitted. 0

Corollary 1 Let Tl and T2 be two decision trees consis-

tent with a fixed training set of m examples. Let n1 and

n2 be the number of leaves in TI and T2 respectively. For

a fixed e, 0 < E =C 1, let bl and b2 be the bounds derived

in Theorem I for Tl and T2 respectively.

If n2 > nl 2 2 then bI -C b2. Furthermore

b2 - > 2(““--7q

h
Proof: 121 < 122, 0 < (l- E) < 1, and Theorem 1 give
bl < b2. b2 being larger than bl exponentially in the dif-
ference (n2 - nl) follows from Theorem 1 and Lemma
2 regarding growth of I B(n, 6) I with n. Cl

Thus for a fixed training set, given two decision
trees TI and T2 with nl and n2 leaves respectively,
let PI = Prob({ T&s error rate > E}) and P2 =

Prob((T2has error rate > E)). Notethatif n1 < n2 it fol-
lows from Theorem 1: PI < bI and P2 < b2. Corollary

1 states that bl is smaller than b2 by a factor of 2(n2-“1).
However, Corollary 1 does not imply that PI < P2. Prov-
ing this would be desirable but is not possible because the
trees TI and T2 were derived by an induction process that
examined the same finite subset of the set of all possible
examples. The corollary does state that the upper bound

on the probability that TI has an error rate that exceeds
c is always lower than the corresponding upper bound
for T2. Note that the upper bounds grow exponentially
tighter with the number of training examples available to
the learning program. Finally, even with very tight upper
bounds (i.e. very large training sets) bl is always smaller
than b2 by a factor that grows exponentially in the differ-

ence (722 - nl). Thus improvement in the upper bound
on the probability of error is very sensitive to a decrease
in the number of leaves of the generated tree for a fixed
training set.

We shall denote the probability that a tree T has error
greater than c by P(T, E), i.e.

P(T, 6) = Prob ({T has error rate > E}) .

Definition 4: We say that a tree Tl is likely to have a

lower error rate than a tree T2 if, for a fixed E, 0 < E < 1,

< IDT(n)I . (1 - E)~ 1

@-12(2(,7_;‘)) . (1 - E)”
px-ob ({P(Tl, 6) < P(T2, E))) > -

2
<

However, we do not want to loosen our bound tmneces-

sarily for reasons that should shortly become apparent.

i.e. when it is more likely that P(Tl, E) < P(T2,c) than

otherwise.

752 MACHINE LEARNING

Given two decision trees, we should prefer the one
that is likely to have a lower error rate than the other.
Assume that, for a fixed training set of m examples, we
are given two decision trees Tl and T2 having n1 and
n2 leaves respectively, with n2 > nl. If we have no
special knowledge of the data or the trees, we only have
one more piece of information, namely that for any fixed
E, corollary 1 states that the bound bI on P(Tl, C) is
exponentially smaller than the corresponding bound b2

for P(Tl , E). How may we use this piece of information?
Is there a formally justifiable strategy for preferring Tl

over T2?

Having no further knowledge, it seems reasonable to

assume that P(TI , E) could be any value less than bl.

i.e. that P(Tl, E) is uniformly distributed over the range
[0, bl). Assuming the same for T2, the following corol-
lary will justify our strategy for preferring Tl over T2.

Corollary 2 Given two decision trees Tl and T2 having

n1 and n2 leaves respectively, if nl < n2 then assuming

that P(TI, E) and P(T2,c) are uniformly distributed be-

low there respective bounds bl and b2, then Tl is likely to

have a lower error rate than T2.

Proof: From Theorem 1 and corollary 1 we get that

P(TI, E) < bl, P(T2, E) < b2, and that bl < b2 by a

factor of 2(“2-4.
Now if P(TI , E) and P(T, , E) are uniformly distributed
over the ranges [0, bl) and [0, b2) respectively, we can
show that

Rob ({P(Tl, E) < P(Tz, 4)) >
1 1
yjj * 2(“2-“1) I

which is always greater than 0.75. 0

Corollary 2 justifies the strategy that prescribes prefer-
ring the tree with the smaller number of leaves. Note

that Corollary 2 does not state that a tree with the mini-
mal number .of leaves is the best tree. The key condition
is that the tree must be consistent with the training ex-
amples. For example, the tree consisting of a single-&de
is not consistent with the training set (unless all train-
ing examples are of one class, in which case it would

be the best tree.) Furthermore, the corollary does not
state that P(Tl, E) < P(Tl, E), it just states that, un-
der the uniform distribution assumption, the event that

{P(TL 4 < WI, c)) is a more likely event than its
complement: { P(T2, E) < P(TI, 6)).

The above strategy is motivated by the assumption that
we (i.e. the users/designers of the learning algorithm)
have no special knowledge of the domain. Since the true
error rate is not easy to get, we would like to at least
have a certain confidence that a given tree’s error rate is
“acceptable”, namely it is less than c’. We thus “prefer”
a tree for which a tighter upper bound on the probability
of error being “unacceptable” can be established.

5. Discussion

We have shown that by concentrating on improving a sin-

gle performance measure, namely the number of leaves

in the decision tree, we can achieve, probabilistically, im-
provement along the other performance measures listed
in section 3. The usefulness of this result is in point-
ing out an aspect of decision trees where further research
should be emphasized. We know that the problem of
finding optimal decision trees (with respect to almost any
performance measure) is NP-hard. Thus it is very likely
that there exists no efficient algorithm for producing opti-
mal trees. We therefore have to be satisfied with heuristic
algorithms that generate suboptimal trees. With the grow-
ing usage of these algorithms, we become more familiar
with their problems and limitations, and the need arises
for improving them. The result given in this paper sug-

gests that if the goal is to improve a certain heuristic
algorithm for generating decision trees, then a good ap-
proach to take is to try to modify it in a way that causes
it to generate trees that have fewer leaves. It does not
matter how the tree with fewer leaves is generated since
the results of this paper predict that the tree is expected
to perform better based solely on the fact that it has fewer
leaves?

There remains two issues that need to be addressed.
The first is that the results are probabilistic, and they
cannot be absolute. This is due to the fact that the qual-
ity of the decision tree relies heavily on the choice of
training set. Thus by choosing pathological training sets,
one could force a given algorithm to generate trees that
are arbitrarily “bad”. An absolute statement regarding
improvement in performance would therefore necessarily
be false. The second is that the bounds used are worst
case bounds and may be too restrictive. However, this
does not mean they are not useful. Corollary 2 shows
that it is indeed a “safer” strategy to prefer the tree with
the smaller number of leaves. At this time, we cannot
state whether an average-case analysis would necessarily
lead to a result consistent with the results presented.

Finally, our analysis did not take into account per-
formance measure M6. The relation between the num-
ber of leaves and the average depth of the decision tree
(weighted by relative frequencies of examples in test set)
is not clear. The latter would favour a tree with a very
large branching factor. One extreme of this is if each
example had a unique id number, and if the id number
were used as an attribute to create a branch for each id
number. This creates a tree with depth 1 and a leaf node
for each example in the training set. However, this tree
will fail to classify any example that did not appear in the
training set. On the other hand, measure M6 is a good
measure of the speed of the decision tree in classifying
an example-the average number of tests required before
an example can be classified. If the tests (attributes) are
not very costly, then measure M6 can be ignored. In this
case a deeper tree means that the rules have more pre-
conditions, which means more information is encoded in
each rule, and thus, at least intuitively, one would expect
such rules to be better predictors. Thus it is not at all

6As long as the tree is consistent with the mining set.

FAYYAD AND IRANI 753

clear, at least intuitively, whether this measure should be
minimized.

6. Conclusions

The main motivation for this work is to derive results that
give us a handle on two problems relating to decision tree
generation:

1. If a particular algorithm for inducing decision trees is to
be “improved”, then what should be changed in it? Out
of the various performance measures available, which
is most critical?

2. Suppose one gives a new algorithm for generating de-
cision trees, then how can one go about establishing
that it is indeed an improvement?

To date, the answer to the second problem has been:
Compare the performance of the new algorithm with that
of the old algorithm by running both on many data sets.
This is a slow process that does not necessarily produce
conclusive results. On the other hand, suppose one were
able to prove that given a data set, Algorithm A will al-
ways (or “most of the time”) generate a tree that has fewer
leaves than the tree generated by Algorithm B. Then the
results of this paper can be used to claim that Algorithm A
is “better” than algorithm B. In this case “better” means:
without special knowledge of the data, given a training
set, it is more likely that the tree generated by Algorithm
A will outperform the one generated by Algorithm B on
the performance measures considered.

We have presented some results that seem to indicate
that the number of leaves in a decision tree is the impor-
tant measure to consider when attempting to show that
one tree is better than another if both trees were gener-
ated from the same training se& The results hold when
no special knowledge of the data is available. All that is
required is that the generated tree classify the training set
correctly. We have also identified some of the limitations
of the derived results. The primary motivation behind this
work is to produce the tools needed to make it possible
to formally prove improvement in decision tree genera-
tion algorithms and thus avoid the less than satisfactory
and tedious approach of empirical comparison over large
varieties of training and test example sets.

Acknowledgments

The authors wish to thank Kevin Compton for help on
counting trees, and to thank Sami Bayyuk, Jie Cheng,
and Moncef Maiza for insightful and helpful discussions.
This work was supported in part by a DeVlieg Industrial
Fellowship and in part by a Hughes Unrestricted Grant.

References

[Blum87] Blumer, A., Ehrenfeucht, A., Haussler, D.,
and Warmuth, M. “ Occam’s Razor.” Infor-

mation Processing Letters 24. pp. 377-380.
North-Holland (1987).

754 MACHINE LEARNING

[Brei84]

[Chen88]

[FeigO l]

[HYaf761

[Mich78]

[Mich79]

[Moze86]

[Quin86]

[Q&r87

[Span89

Breiman, L., Friedman, J.H., Olshen, R.A.,
and Stone, C.J. Classification and Regression

Trees. Monterey, CA: Wadsworth & Brooks

(1984).

Cheng, J., Fayyad, U.M., Irani, K.B., and
Qian, Z. “Improved decision trees: A gen-
eralized version of ID3.” Proceedings of

the Fifth International Conference on Ma-

chine Learning. pp. 100-108. Ann Arbor, MI

(1988).

Feigenbaum, E.A. “Expert systems in the
1980s.” In Bond, A. (Ed.), State of The

Art Report on Machine Intelligence. Maid-
enhead: Pergamon-Info&h, (198 1).

Hyafil, L. and Rivest, R. “Constructing op-
timal binary decision trees is NP-complete.”
Information Processing Letters. vol 5, no. 4.

(May 1986).

Irani, K.B., Cheng, J., Fayyad, U.M., and
Qian, Z. “Applications of Machine Learn-
ing Techniques in Semiconductor Manufac-
turing.” Proceedings of The S.P.IE. Confer-

ence on Applications of Artijcial Intelligence

VIII. Orlando, Fl (1990).

Michalski, R.S. and Larson, J.B. “Selection
of most representative training examples and
incremental generation of VLl hypotheses:
The underlying and the description of pro-
grams ESEL and AQI 1.” Report No. 867.
Computer Science Dept., University of Illi-
nois, Urbana, (1978).

Michie, D. (Ed.) Expert Systems in the Micro

Electronic Age. Edinburgh: Edinburgh Uni-
versity Press (1979).

Mozetic, I. “Knowledge extraction through
learning by examples.” In Mitchell, T.M.,
Carbonell, J.G., and Michalski, R.S. Ma-

chine Learning: A Guide to Current Re-

search. pp. 227-23 I. Boston: Kluwer Aca-
demic Publishers, (1986).

Quinlan, J.R. “Induction of decision trees.”
Machine Learning 1, No. 1. pp. 81-106.
Boston: Kluwer Academic Publishers,
(1986).

Quinlan, J.R. “Generating production rules
from decision trees”. IJCAI-87. pp. 304-307.
Milan, Italy (1987).

Spangler, S ., Fayyad, U.M., and Uthu-
rusamy, R. “Induction of decision trees from
inconclusive data.” Proceedings of the Sixth

International W orkshop on Machine Learn-

ing. pp. 146-150. Ithaca, NY (1989).

