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ABSTRACT 

We address the question of when a network can be expected to 
generalize from m random training examples chosen from some ar
bitrary probability distribution, assuming that future test examples 

are drawn from the same distribution. Among our results are the 
following bounds on appropriate sample vs. network size. Assume 

o < £ $ 1/8. We show that if m > O( ~log~) random exam
ples can be loaded on a feedforward network of linear threshold 

functions with N nodes and W weights, so that at least a fraction 

1 - t of the examples are correctly classified, then one has confi

dence approaching certainty that the network will correctly classify 

a fraction 1 - £ of future test examples drawn from the same dis
tribution. Conversely, for fully-connected feedforward nets with 

one hidden layer, any learning algorithm using fewer than O( '!') 
random training examples will, for some distributions of examples 
consistent with an appropriate weight choice, fail at least some 
fixed fraction of the time to find a weight choice that will correctly 
classify more than a 1 - £ fraction of the future test examples. 

INTRODUCTION 

In the last few years, many diverse real-world problems have been attacked by back 
propagation. For example "expert systems" have been produced for mapping text 
to phonemes [sr87], for determining the secondary structure of proteins [qs88], and 

for playing backgammon [ts88]. 

In such problems, one starts with a training database, chooses (by making an ed
ucated guess) a network, and then uses back propagation to load as many of the 
training examples as possible onto the network. The hope is that the network so de

signed will generalize to predict correctly on future examples of the same problem. 

This hope is not always realized. 

* This paper will appear in the January 1989 issue of Neural Computation. For 

completeness, we reprint this full version here, with the kind permission of MIT 

Press. © 1989, MIT Press 
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We address the question of when valid generalization can be expected. Given a 
training database of m examples, what size net should we attempt to load these 

on? We will assume that the examples are drawn from some fixed but arbitrary 

probability distribution, that the learner is given some accuracy parameter E, and 

that his goal is to produce with high probability a feedforward neural network that 

predicts correctly at least a fraction 1 - E of future examples drawn from the same 
distribution. These reasonable assumptions are suggested by the protocol proposed 

by Valiant for learning from examples [val84]. However, here we do not assume the 
existence of any "target function"; indeed the underlying process generating the 

examples may classify them in a stochastic manner, as in e.g. [dh73]. 

Our treatment of the problem of valid generalization will be quite general in that 
the results we give will hold for arbitrary learning algorithms and not just for 
back propagation. The results are based on the notion of capacity introduced by 

Cover [cov65] and developed by Vapnik and Chervonenkis [vc7l], [vap82]. Recent 

overviews of this theory are given in [dev88], [behw87b] and [poI84], from the various 
perspectives of pattern recognition, Valiant's computational learning theory, and 
pure probability theory, respectively. This theory generalizes the simpler counting 
arguments based on cardinality and entropy used in [behw87a] and [dswshhj87], in 
the latter case specifically to study the question of generalization in feedforward 

nets (see [vap82] or [behw87b]). 

The particular measures of capacity we use here are the maximum number of di
chotomies that can be induced on m inputs, and the Vapnik-CheMlonenki. (Ve) 

Dimen.ion, defined below. We give upper and lower bounds on these measures for 
classes of networks obtained by varying the weights in a fixed feedforward architec
ture. These results show that the VC dimension is closely related to the number of 
weights in the architecture, in analogy with the number of coefficients or "degrees 
of freedom" in regression models. One particular result, of some interest indepen
dent of its implications for learning, is a construction of a near minimal size net 

architecture capable of implementing all dichotomies on a randomly chosen set of 
points on the n-hypercube with high probability. 

Applying these results, we address the question of when a network can be expected 
to generalize from m random training examples chosen from some arbitrary prob
ability distribution, assuming that future test examples are drawn from the same 

distribution. Assume 0 < E < 1/8. We show that ifm ~ O(~log.r:) random ex
amples can be loaded on a feedforward network of linear threshold functions with 

N nodes and W weights, so that at least a fraction 1 - j of the examples are cor
rectly classified, then one has confidence approaching certainty that the network 
will correctly classify a fraction 1 - E of future test examples drawn from the same 

distribution. Conversely, for fully-connected feedforward nets with one hidden layer, 

any learning algorithm using fewer than O( ~) random training examples will, for 
some distributions of examples consistent with an appropriate weight choice, fail 

at least some fixed fraction of the time to find a weight choice that will correctly 
classify more than a 1 - E fraction of the future test examples. 



What Size Net Gives Valid Generalization? 83 

Ignoring the constant and logarithmic factors, these results suggest that the appro
priate number of training examples is approximately the number of weights times 

the inversel of the accuracy parameter E. Thus, for example, if we desire an accu

racy level of 90%, corresponding to E = 0.1, we might guess that we would need 
about 10 times as many training examples as we have weights in the network. This 

is in fact the rule of thumb suggested by Widrow [wid87], and appears to work fairly 
well in practice. At the end of Section 3, we briefly discuss why learning algorithms 

that try to minimize the number of non-zero weights in the network [rum87] [hin87] 

may need fewer training examples. 

DEFINITIONS 

We use In to denote the natural logarithm and log to denote the logarithm base 
2. We define an ezample as a pair (i, a), i E ~n, a E {-I, +1}. We define a 
random sample as a sequence of examples drawn independently at random from 
some distribution D on ~n X {-1, +1}. Let I be a function from ~n into {-1, +1}. 

We define the error of I, with respect to D, as the probability a;/; I(i) for (i,a) 
a random example. 

Let F be a class of {-1, +l}-valued functions on ~n and let S be a set of m points 

in ~n . A dichotomy of S induced by I E F is a partition of S into two disjoint 

subsets S+ and S- such that I(i) = +1 for i E S+ and I(i) = -1 for i E S-. 

By .6.F (S) we denote the number of distinct dichotomies of S induced by functions 

I E F, and by .6.F(m) we denote the maximum of .6.F(S) over all S C ~n of 
cardinality m. We say S is shattered by F if .6.F(S) = 2151 , i.e. all dichotomies of 
S can be induced by functions in F. The Vapnik-CheMlonenkis (VC) dimension of 
F, denoted VCdim(F), is the cardinality of the largest S C ~n that is shattered 

by F, i.e. the largest m such that .6.F ( m) = 2m • 

A feedforward net with input from ~n is a directed acyclic graph G with an ordered 

sequence ofn source nodes (called inputs) and one sink (called the output). Nodes 
of G that are not source nodes are called computation nodes, nodes that are neither 
source nor sink nodes are called hidden nodes. With each computation node n. 

there is associated a function" : ~inde't'ee(n,) ~ {-I, +1}, where indeg7'ee(n.) is 

the number of incoming edges for node n,. With the net itself there is associated 
a function I : ~n ~ {-I, +1} defined by composing the I,'s in the obvious way, 
assuming that component i of the input i is placed at the it" input node. 

A Jeedlorward architecture is a class of feedforward nets all of which share the 
same underlying graph. Given a graph G we define a feedforward architecture by 
associating to each computation node n, a class of functions F, from ~'nde't'ee(n,) 

1 It should be noted that our bounds differ significantly from those given in [dev88] in 

that the latter exhibit a dependence on the inverse of e2• This is because we derive 
our results from Vapnik's theorem on the uniform relative deviation of frequencies 

from their probabilities ([vap82], see Appendix A3 of [behw87b]), giving sharper 
bounds as E approaches o. 
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to {-I, +1}. The resulting architecture consists of all feedforward nets obtained by 
choosing a particular function" from F, for each computation node ft,. We will 
identify an architecture with the class offunctions computed by the individual nets 

within the architecture when no confusion will arise. 

CONDITIONS SUFFICIENT FOR VALID 
GENERALIZATION 

Theorem 1: Let F be a feedforward architecture generated by an underlying 

graph G with N > 2 computation nodes and F, be the class of functions associated 

with computation node ft, of G, 1 < i < N. Let d = E~l VCdim(Fl). Then 

AF(m) < n~lAF,(m)::; (Nem/d)d for m > d, where e is the base of the natural 
logarithm. 

Proof: Assume G has n input nodes and that the computation nodes of G are 

ordered so that node n, receives inputs only from input nodes and from computation 

nodes nj, 1 < j ::; i-I. Let S be a set of m points in ~n. The dichotomy 

induced on S by the function in node nl can be chosen in at most AFI (m) ways. 

This choice determines the input to node nz for each of the m points in S. The 
dichotomy induced on these m inputs by the function in node nz can be chosen 
in at most AF:a(m) ways, etc. Any dichotomy of S induced by the whole network 
can be obtained by choosing dichotomies for each of the ni's in this manner, hence 

AF(m) < nf:l AF,(m). 

By a theorem of Sauer [sau72], whenever VCdim(F) = Ie < 00, AF(m) < (em/Ie)l 

for all m > Ie (see also [behw87b]). Let ~ = VCdim(Fi), 1 < i < N. Thus 

d = Ef:l~. Then n~l AF,(m) < n~l(em/~)'" for m > d. Using the fact that 

E~l -ailogai < logN whenever a. > 0, 1 < i < N, and E~l ai = I, and setting 

ai = ~/d, it is easily verified that n~l ~d. > (d/N)d. Hence n~l(em/di)d. < 
(Nem/d)d. 

Corollary 2: Let F be the class of all functions computed by feedforward nets 
defined on a fixed underlying graph G with E edges and N > 2 computation 
nodes, each of which computes a linear threshold function. Let W = E + N (the 
total number of weights in the network, including one weight per edge and one 

threshold per computation node). Then AF(m) < (Nem/W)W for all m > Wand 

VCdim(F) < 2Wlog(eN). 

Proof: The first inequality follows from directly from Theorem 1 using the fact that 
VCdim(F) = Ie + 1 when F is the class of all linear threshold functions on ~l (see 

e.g. [wd81]). For the second inequality, it is easily verified that for N > 2 and 

m = 2Wlog(eN), (N em/W)W < 2m. Hence this is an upper bound on VCdim(F). 

Using VC dimension bounds given in [wd81], related corollaries can be obtained for 

nets that use spherical and other types of polynomial threshold functions. These 

bounds can be used in the following. 
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Theorem 3 [vapS2} (see [behw87b), Theorem A3.3): Let F be a class offunctions2 

on ~n, 0 < l' < 1,0 < £,6 < 1. Let S be a random sequence of m examples drawn 
independently according to the distribution D. The probability that there exists a 

function in F that disagrees with at most a fraction (1 - 1')£ of the examples in S 
and yet has error greater than £ (w.r.t. D) is less than 

From Corollary 2 and Theorem 3, we get: 

Corollary 4: Given a fixed graph G with E edges and N linear threshold units 

(i.e. W = E + N weights), fixed 0 < £ < 1/2, and m random training examples, 
where 

32W 1 32N 
m>-n-, 

- £ € 

if one can find a choice of weights so that at least a fraction 1-£/2 of the m training 
examples are correctly loaded, then one has confidence at least 1 - Se- 1•5W that 

the net will correctly classify all but a fraction € of future examples drawn from the 
same distribution. For 

64W I 64N 
m > --;- n--;-, 

the confidence is at least 1 - Se-em/S2. 

Proof: Let l' = 1/2 and apply Theorem 3, using the bound on aF(m) given in 

Corollary 2. This shows that the probability that there exists a choice of the weights 

that defines a function with error greater than £ that is consistent with at least a 

fraction 1 - £/2 of the training examples is at most 

When m = !ll!.ln!!K this is S(2e E In!!K)W which is less than Se-1. 5W for N > 
e e' 3fN' E ' -

2 and £ < 1/2. When m > 84EW In 8~N, (2N em/W) W < eEm/S2 , so S(2N em/W) W 

e- Em/16 < Se-em/S2. 

The constant 32 is undoubtably an overestimate. No serious attempt has been made 

to minimize it. Further, we do not know if the log term is unavoidable. Nevertheless, 

even without these terms, for nets with many weights this may represent a consid

erable number of examples. Such nets are common in cases where the complexity 
of the rule being learned is not known in advance, so a large architecture is chosen 

2 We assume some measurability conditions on the class F. See [poI84], [behwS7b1 for 

details. 
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in order to increase the chances that the rule can be represented. To counteract the 
concomitant increase in the size of the training sample needed, one method that 

has been explored is the use of learning algorithms that try to use as little of the 

architecture as possible to load the examples, e.g. by setting as many weights to 

zero as possible, and by removing as many nodes as possible (a node can be removed 

if all its incoming weights are zero.) [rumS7] [hin87]. The following shows that the 
VC dimension of such a "reduced" architecture is not much larger than what one 

would get if one knew a priori what nodes and edges could be deleted. 

Corollary 5: Let F be the class of all functions computed by linear threshold 

feedforward nets defined on a fixed underlying graph G with N' > 2 computation 
nodes and E' ~ N' edges, such that at most E > 2 edges have non-zero weights 

and at most N ~ 2 nodes have at least one incoming edge with a non-zero weight. 

Let W = E + N. Then the conclusion of Corollary 4 holds for sample size 

32W l 32NE' 
m>-n---

- f f 

Prool sketch: We can bound dF( m) by considering the number of ways the N nodes 

and E edges that remain can be chosen from among those in the initial network. A 

crude upper bound is (N')N (E')E. Applying Corollary 2 to the remaining network 

gives dF(m) ~ (N')N(E')E(Nem/W)w. This is at most (N E'em/W)w. The rest 

of the analysis is similar to that in Corollary 4. 

This iridicates that minimizing non-zero weights may be a fruitful approach. Similar 

approaches in other learning contexts are discussed in [hauSS] and [litSS]. 

CONDITIONS NECESSARY FOR 
VALID GENERALIZATION 

The following general theorem gives a lower bound on the number of examples 

needed for distribution-free learning, regardless of the algorithm used. 

Theorem 6 [ehkvS7] (see also [behw87b]): Let F be a class of {-I, +1}-valued 

functions on ~n. with VCdim(F) > 2. Let A be any learning algorithm that takes 

as input a sequence of {-I, +1}-labeled examples over ~n. and produces as output 

a function from ~n. into {-I, +1}. Then for any 0 < f ~ l/S, 0 < 0 ~ l~ and 

[1- fl 1 VCdim(F) -1] 
m < maz - n7' 3 ' e v 2e 

there exists (1) a function I E F and (2) a distribution D on ~n X {-I, +1} for 
which Prob((E, a) : a f. I(E)) = 0, such that given a random sample of size m 

chosen according to D, with probability at least 0, A produces a function with error 

greater than e. 



What Size Net Gives Valid Generalization? 87 

This theorem can be used to obtain a lower bound on the number of examples 

needed to train a net, assuming that the examples are drawn from the worst-case 

distribution that is consistent with some function realizable on that net. We need 

only obtain lower bounds on the VC dimension of the associated architecture. In 

this section we will specialize by considering only fully-connected networks of linear 

threshold units that have only one hidden layer. Thus each hidden node will have an 

incoming edge from each input node and an outgoing edge to the output node, and 

no other edges will be present. In [b88] a slicing construction is given that shows 

that a one hidden layer net of threshold units with n inputs and 2j hidden units 

can shatter an arbitrary set of 2jn vectors in general position in ~". A corollary of 

this result is: 

Theorem 7: The class of one hidden layer linear threshold nets taking input from 

~" with k hidden units has VC dimension at least 2L~Jn. 

Note that for large k and n, 2 L ~ J n is approximately equal to the total number W 

of weights in the network. 

A special case of considerable interest occurs when the domain is restricted to 

the hypercube: {+1,-1}". Lemma 6 of [lit88] shows that the class of Boolean· 

functions on {+1, _I}" represented by disjunctive normal form expressions with k 

terms, k < 0(2,,/2/Vn) , where each term is the conjunction of n/2 literals, has 

VC dimension at least kn/4. Since these functions can be represented on a linear 

threshold net with one hidden layer of k units, this provides a lower bound on the 

VC dimension of this architecture. We also can use the slicing construction of [b88] 

to give a lower bound approaching kn/2. The actual result is somewhat stronger in 

that it shows that for large n a randomly chosen set of approximately kn/2 vectors 

is shattered with high probability. 

Theorem 8: With probability approaching 1 exponentially in n, a set S of m < 2,,/3 

vectors chosen randomly and uniformly from {+1, _I}" can be shattered by the 

one hidden layer architecture with 2rm/l(n(1 - 1~0,,))J1linear threshold units in 

its hidden layer. 

Prool,ketch: With probability approaching 1 exponentially in n no pair of vectors 

in S are negations of each other. Assume n > eto. Let l' = In(l- I~O,,)J. Divide 

S at random into r m/1' 1 disjoint subsets S1I ... , Srm/t'l each containing no more 
than l' vectors. We will describe a set T of ±1 vectors as Iliceable if the vectors 

in T are linearly independent and the subspace they span over the reals does not 
contain any ±l vector other than the vectors in T and their negations. In [od188] 

it is shown, for large n, that any random set of l' vectors has probability P = 
4(;)(~)" +0(( 110)") of not being sliceable. Thus the probability that some S. is not 

sliceable is 0(mn2(~)"), which is exponentially small for m < 2,,/3. Hence with 

probability approaching 1 exponentially in n, each S, is sliceable, 1 ~ i $ r m/ 1'1. 

Consider any Boolean function I on S and let S: = {i E S, : f(i) = +1}, 
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1 < i < r m/7' 1. If Si is sliceable and no pair of vectors in S are negations of each 
other then we may pass a plane through the points in st that doesn't contain any 
other points in S. Shifting this plane parallel to itself slightly we can construct two 

half spaces whose intersection forms a slice of~" containing st and no other points 

in S. Using threshold units at the hidden layer recognizing these two half spaces, 

with weights to the output unit +1 and -1 appropriately, the output unit receives 
input +2 for any point in the slice and 0 for any point not in the slice. Doing this 

for each S: and thresholding at 1 implements the function f. 

We can now apply Theorem 6 to show that any neural net learning algorithm using 

too few examples will be fooled by some reasonable distributions. 

Corollary 9: For any learning algorithm training Ii net with k linear threshold 

functions in its hidden layer, and 0 < l ~ 1/8, if the algorithm uses (a) fewer 

than 2llc/;'f,,-1 examples to learn a function from ~" to {-I, +1}, or (b) fewer 

than l"lll/2J(mQ,:I:(1/!~~-10/(ln n»)J-1 examples to learn a function from {-I, +1}" 

to {-I, +1}, for k ~ O(2n / 3 ), then there exist distributions D for which (i) there 

exists a choice of weights such that the network exactly classifies its inputs according 

to D, but (ii) the learning algorithm will have probability at least .01 of finding a 

choice of weights which in fact has error greater than E. 

CONCLUSION 

We have given theoretical lower and upper bounds on the sample size vs. net 
size needed such that valid generalization can be expected. The exact constants we 
have given in these formulae are still quite crudej it may be expected that the actual 

values are closer to 1. The logarithmic factor in Corollary 4 may also not be needed, 

at least for the types of distributions and architectures seen in practice. Widrow's 

experience supports this conjecture [wid87]. However, closing the theoretical gap 

between the O( ': log ~) upper bound and the (2 ( 1f) lower bound on the worst case 
sample size for architectures with one hidden layer of threshold units remains an 
interesting open problem. Also, apart from our upper bound, the case of multiple 
hidden layers is largely open. Finally, our bounds are obtained under the assumption 
that the node functions are linear threshold functions (or at least Boolean valued). 

We conjecture that similar bounds also hold for classes of real valued functions such 
as sigmoid functions, and hope shortly to establish this. 
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