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What Stator Current Processing Based Technique 

to Use for Induction Motor Rotor Faults Diagnosis? 
 

Mohamed Benbouzid, Senior Member, IEEE and Gerald B. Kliman, Life Fellow, IEEE 

 

Abstract—In recent years, marked improvement has been 
achieved in the design and manufacture of stator winding. 
However, motors driven by solid-state inverters undergo severe 
voltage stresses due to rapid switch-on and switch-off of 
semiconductor switches. Also, induction motors are required to 
operate in highly corrosive and dusty environments. 
Requirements such as these have spurred the development of 
vastly improved insulation material and treatment processes. But 
cage rotor design has undergone little change. As a result, rotor 
failures now account for a larger percentage of total induction 
motor failures. Broken cage bars and bearing deterioration are 
now the main cause of rotor failures. Moreover, with advances in 
digital technology over the last years, adequate data processing 
capability is now available on cost-effective hardware platforms, 
to monitor motors for a variety of abnormalities on a real time 
basis in addition to the normal motor protection functions. Such 
multifunction monitors are now starting to displace the 
multiplicity of electromechanical devices commonly applied for 
many years. For such reasons, this paper is devoted to a 
comparison of signal processing based techniques for the 
detection of broken bars and bearing deterioration in induction 
motors. Features of these techniques which are relevant to fault 
detection are presented. These features are then analyzed and 
compared to deduce the most appropriate technique for 
induction motor rotor fault detection. 

 

Index Terms—Induction motor, rotor fault diagnosis, stator 
current. 

 

I. INTRODUCTION 
 

It is well known that induction motors dominate the field 

of electromechanical energy conversion. These machines find 

a wide role in most industries in particular in the electric 

utility industry as auxiliary drives in central power plants of 

power systems, as well as restricted role in low MVA power 

supply systems as induction generators, mining industries, 

petrochemical industries, as well as in aerospace and military 

equipment. Therefore, assessments of the running conditions 

and reliability of these drive systems is crucial to avoid 

unexpected and catastrophic failures. Consequently, the issue 

of preventive maintenance and noninvasive diagnosis of the 

condition of these induction motors drives is of great concern, 

and is becoming increasingly important [1-2]. 
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In recent years, marked improvement has been achieved in 

the design and manufacture of stator winding. However, 

motors driven by solid-state inverters undergo severe voltage 

stresses due to rapid switch-on and switch-off of 

semiconductor switches. Also, induction motors are required 

to operate in highly corrosive and dusty environments. 

Requirements such as these have spurred the development of 

vastly improved insulation material and treatment processes. 

But cage rotor design has undergone little change [3]. As a 

result, rotor failures now account for a larger percentage of 

total induction motor failures (Fig. 1) [4]. Broken cage bars 

and bearing deterioration are now the main cause of rotor 

failures (Fig. 2). 

In general, condition-monitoring schemes have 

concentrated on sensing specific failures modes in one of 

three induction motor components: the stator, the rotor, or the 

bearings. Even though thermal and vibration monitoring have 

been utilized for decades, most of the recent research has been 

directed toward electrical monitoring of the motor with 

emphasis on inspecting the stator current of the motor [5]. 

Fault detection based on motor current relies on 

interpretation of the frequency components in the current 

spectrum that are related to rotor or bearing asymmetries. 

However, the current spectrum is influenced by many factors, 

including electric supply, static and dynamic load conditions, 

noise, motor geometry, and fault conditions. These conditions 

may lead to errors in fault detection. 

With advances in digital technology in recent years, 

adequate data processing capability is now available on cost-

effective hardware platforms, to monitor motors for a variety of 

abnormalities on a real time basis in addition to the normal 

motor protection functions. Such multifunction monitors are 

now starting to displace the multiplicity of electromechanical 

devices commonly applied for many years. For such reasons, 

this paper is devoted to a comparison of signal processing based 

techniques for the detection of broken bars and bearing 

deterioration in induction motors. Features of these techniques 

which are relevant to fault detection are presented. These 

features are then analyzed and compared to deduce the most 

appropriate technique for induction motor rotor fault detection. 

 

II. MOTOR CURRENT SPECTRAL COMPONENTS 
 

A. Broken Bars 
 

The broken rotor bar frequencies in the motor current are 

given by [6] 
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Where fs is the electrical supply frequency, k/p = 1, 5, 7, 11, 

13, ... (due to the normal winding configuration), s is the per 

unit slip, and p is the number of pole pairs. 

Even though the predicted frequencies are the same for 

both airgap dynamic eccentricity [5] and broken bars, the 

sideband amplitudes corresponding to a particular harmonic 

number are different allowing the two faults to be 

distinguished. The amplitude of the sideband frequency 

component is roughly proportional to the number of broken 

rotor bars. In fact, the amplitude Ibrb of frequency component 

fs(1 – 2s) can be approximated by [7] 
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Where Is is the stator current fundamental frequency 

component, 
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Rb is the number of broken bars. 

By analyzing the stator current, it is possible to evaluate the 

general condition of the rotor. If there are broken bars in various 

parts of the rotor, the current analysis is not capable of 

providing information on the configuration of noncontiguous 

broken bars. For example, the frequency component fs(1 – 2s) 

does not exist if broken bars are electrically /2 radians away 

from each other. It should be noted that some experimental 

studies have demonstrated that both skewing and noninsulation 

of rotor bars lead to reduce the broken rotor bar harmonic 

components. It has been demonstrated experimentally that when 

the amplitude of these harmonics is over 50 dB smaller than the 

fundamental frequency component amplitude, the rotor may be 

considered healthy [7]. 

 

B. Bearings Fault 
 

Bearing problems are often caused by improperly forcing 

the bearing onto the shaft or into the housing. This produces 

physical damage in the form of brinelling or false brinelling of 

the raceways, which leads to premature failure. Misalignment 

of the bearing, which occurs in the four ways depicted in Fig. 

3, is also a common result of defective bearing installation. 

The relationship of the bearing vibration to the stator 

current spectra can be determined by recalling that any air gap 

eccentricity produces anomalies in the air gap flux density. 

Since ball bearings support the rotor, any bearing defect will 

produce a radial motion between the rotor and stator of the 

machine. The mechanical displacement resulting from 

damaged bearings causes the machine airgap to vary in a 

manner that can be described by a combination of rotating 

eccentricities moving in both directions. As with the airgap 

eccentricity, these variations generate stator currents at 

frequencies given by 

 

o,isbng fmff             (4) 

 

Where m = 1, 2, 3, ... and fi,o is one of the characteristic 

vibration frequencies which are based upon the bearing 

dimensions shown in Fig. 4. 
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Where n is the number of bearing balls, fr is the mechanical 

rotor speed in Hz, bd is the ball diameter, pd is the bearing 

pitch diameter, and  is the contact angle of the balls on the 

races [5]. It should be noted from (5) that specific information 

concerning the bearing construction is required to calculate 

the exact characteristic frequencies. However, these 

characteristic race frequencies can be approximated for most 

bearings with between six and twelve balls [8]. 
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This generalization allows for the definition of frequency 

bands where the bearing race frequencies are likely to show 

up without requiring explicit knowledge of the bearing 

construction. 

 

C. Load Effects 
 

If the load torque does vary with rotor position, the current 

will contain spectral components, which coincide with those 

caused by a fault condition. In an ideal machine where the 

stator flux linkage is purely sinusoidal, any oscillation in the 

load torque at a multiple of the rotational speed mfr will 

produce stator currents at frequencies of [9] 
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Where m = 1, 2, 3, .... Since the same frequencies are given by 

(2) and (3), it is clear that when the induction machine 

operates with a typical time-varying load, the torque 

oscillation results in stator currents that can obscure, and often 

overwhelm, those produced by the fault condition as 

illustrated by Fig. 5 [10]. Therefore, any stator current single-

phase spectrum based fault detection scheme must rely on 

monitoring those spectral components, which are not affected 

by the load torque oscillations [10]. However, broken bars 

detection is still possible since the current typically contains 

higher order harmonics than those induced by the load. 



III. ROTOR FAULT DETECTION TECHNIQUES 
 

A. Fast Fourier Transform (FFT) 
 

For this method, the stator current monitoring system is 

sketched in Fig. 6. Generally, not denying the diagnostic value 

of classical spectral analysis techniques, induction motor 

faults detection, via FFT-based stator current signature 

analysis, could be improved by decreasing the current 

waveform distortions as is illustrated by Figs. 7 and 8 [11]. 

Moreover, it is well known that motor current is a 

nonstationary signal, the properties of which vary with the 

time-varying normal operating conditions of the motor. As a 

result, it is difficult to differentiate fault conditions from the 

normal operating conditions of the motor using Fourier 

analysis. 

 

B. Instantaneous Power FFT 
 

In this case, in place of the stator current, the 

instantaneous power is used as a medium for motor signature 

analysis [12]. It was shown that the amount of information 

carried by the instantaneous power, which is the product of 

the supply voltage and the motor current, is higher than that 

deducible from the current alone. In fact, besides the 

fundamental and the two classical sideband components, the 

instantaneous power spectrum contains an additional 

component directly at the modulation frequency as shown by 

the following equation. 
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Where p is the instantaneous power, M is the modulation 

index, VLL is the rms value of the line-to-line voltage, and IL is 

that of the line current, while  and  denote the supply 

radian frequency and motor load angle, respectively, and osc 

is the radian oscillation frequency. 

As an illustration, Fig. 9 shows clearly the differences with 

Fig. 7b. In fact, all the fault harmonics are translated into the 

frequency band 0–100 Hz. This constitutes a great advantage 

because the fault harmonics domain is well bounded. 

However, the power spectra are still quite noisy. Even adding 

filters has not brought significant improvement. Moreover, 

even though the power spectrum is particularly adapted to 

mechanical abnormality detection (worn or damaged bearing), 

it still has the same principal drawback as the classical motor 

current FFT (nonstationary signal). 

 

C. Bispectrum 
 

Bispectrum, also called third-order spectrum, derives from 

higher order statistics. The bispectrum is defined in terms of 

the two-dimensional Fourier transform of the third-order 

moment sequence of a process [13]. The bispectrum is 

periodic with a period of 2, and preserves both magnitude 

and phase information. It is then capable of revealing both the 

amplitude and phase information of the signals. With these 

additional dimensions, fault detection and diagnostic 

processes can be enriched. 

Very promising results were obtained, as illustrated by 

Fig. 10. In fact, experimental results indicate that the 

bispectrum magnitude of the dominant component, caused by 

the machine rotation, increased with the fault level increase. 

These results clearly indicate that stator current bispectrum is 

capable of providing adequate and essential spectral 

information for induction motors condition monitoring and 

fault detection. However, this technique is more appropriate 

for the detection of electrical based faults, such as stator 

voltage unbalance, because those faults do not have a well-

identified harmonic frequency component [11]. 

 

D. High Resolution Spectral Analysis 
 

A main disadvantage of the classical spectral estimation is 

the impact of side lobe leakage due to the inherent windowing 

of finite data sets. Window weighting allows mitigation of the 

effects of side lobes at the expense of decreasing the spectral 

resolution that can be no better than the inverse of acquisition 

time. In order to improve the statistical stability of the spectral 

estimate, i.e. to minimize the estimate variance, pseudo 

ensemble averaging by segmenting the data was introduced at 

the price of further decreasing the resolution. A class of 

spectral techniques based on an eigenanalysis of the 

autocorrelation matrix has been promoted in the digital signal 

processing research literature [14]. 

As an illustration, two well known eigenanalysis-based 

frequency estimators have been used: MUSIC (Multiple 

Signal Classification) and ROOT-MUSIC for stator voltage 

unbalance underscoring [11]. In this case, one of the principal 

spectral components modified by the electric fault is the 

supply frequency third harmonic (i.e. 150 Hz) whose 

amplitude increases in a significant way whatever the load. 

The two principal spectral components of the stator current 

spectrum are the first and the fifth harmonics (50 Hz - 250 

Hz) for a healthy motor, and the first and third harmonics (50 

Hz - 150 Hz) for a stator voltage unbalance. The MUSIC 

algorithm has been applied for each case and results are given 

in Fig. 11. With regard to these results, MUSIC and ROOT-

MUSIC methods allow keeping only the main frequencies 

without other spectral information. Moreover, stator current 

high-resolution spectral analysis used as a medium for 

induction motors faults detection will be useful for all faults 

modifying main spectral components. 

 

E. Wavelet Analysis 
 

Fourier analysis is very useful for many applications where 

the signals are stationary. The Fourier transform is however 

not appropriate to analyze a signal that has transitory 



characteristics such as drifts, abrupt changes and frequency 

trends. To overcome this problem it has been useful to 

analyze small sections of the signal at various times. This 

technique is known as Short-Time Fourier Transform (STFT) 

or windowing technique. The technique maps a signal into a 

two-dimensional function of time and frequency. The STFT 

represents a sort of compromise between time and frequency 

based views of a signal and it provides some information 

about both. However, we can only obtain this information 

with limited precision, and that precision is determined by the 

size of the window. The fixed size of the window is the main 

drawback of the STFT [15]. 

The wavelet transform was introduced with the idea of 

overcoming the difficulties mentioned above. A windowing 

technique with variable-size region is used to perform the 

signal analysis, which can be the stator current. Wavelet 

analysis allows the use of long time intervals where we want 

more precise low frequency information, and shorter regions 

where we want high frequency information. The ability to 

perform local analysis is one of the most interesting features 

of the wavelet transform. The advantages of using wavelet 

techniques for fault monitoring and diagnosis of induction 

motors is increasing because these techniques allow us to 

perform stator current signal analysis during transients. The 

wavelet technique can be used for a localized analysis in the 

time-frequency or time scale domain. It is then a powerful tool 

for condition monitoring and fault diagnosis. 

As an illustration, Fig. 12 provides the result where STFT 

and the wavelet technique are combined. These results show 

the improvements introduced by the wavelet technique for the 

signal frequency monitoring [16]. 

 

F. The Park’s Vector Approach 
 

A two dimensional representation can be used for 

describing three-phase induction motor phenomena. A 

suitable one being based on the stator current Park’s vector 
[17]. As a function of mains phase variables (ia, ib, ic) the 

current Park’s vector components (id, iq) are 
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Under ideal conditions, three-phase currents lead to a 

Park’s vector with the following components 
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Where iM is the supply phase current maximum value and s is 

the supply frequency. Its representation is a circular pattern 

centered at the origin of the coordinates. This is a very simple 

reference figure that allows the detection of faulty conditions 

by monitoring the deviations of the acquired patterns as 

illustrated by Fig. 13. The healthy pattern differs slightly from 

the expected circular one, because supply voltage is generally 

not exactly sinusoidal. 

Recently, a new implementation of the Park’s vector 
approach has been proposed [18]. Under abnormal conditions, 

for example in the presence of rotor cage faults such as broken 

bars, (9) and (10) are no longer valid, because the induction 

motor supply current will contain sideband components at 

frequencies differing from the fundamental by the double slip 

frequency. These additional components at frequencies of (1 – 

2s)fs and (1 + 2s)fs will also be present in both motor current 

Park’s vector components (id, iq). In these conditions, it can be 

shown that the spectrum of the stator current Park’s vector 
modulus is the sum of a dc level, generated mainly by the 

fundamental component of the induction motor supply current, 

plus two additional terms, at frequencies of 2sfs and 4sfs. In this 

way, the spectrum of the stator current Park’s vector modulus ac 
level is clear from any component at the fundamental supply 

frequency, making it more useful to detect the components 

directly related to the induction motor fault. This new 

implementation of the Park’s vector approach is intended to 
eliminate some of the technical limitations of the conventional 

FFT technique. In fact, Fig. 14a shows that, in the absence of 

faults, the behavior of the induction motor is mostly 

characterized by the absence of any relevant spectral 

component. Moreover, results obtained by the extended Park’s 
vector approach are more discriminating than those obtained by 

the traditional FFT technique (Fig. 14b). 

 

G. Adaptive Statistical Time-Frequency Method 
 

The motor current can be modeled as a nonstationary 

random signal. However, as previously mentioned, Fourier 

transform techniques are not sufficient to represent 

nonstationary signals. Moreover, the uncertainty involved in 

the system requires an adaptive statistical framework to 

address the problem in an efficient way. In recent years, 

advancement of statistical signal processing methods has 

provided efficient and optimal tools to process nonstationary 

signals. In particular, time-frequency and time-scale 

transformations provide an optimal mathematical framework 

for the analysis of time-varying, nonstationary signals [19]. 

Recently, an adaptive statistical time-frequency method to 

detect broken bars and bearing faults has been proposed. The 

key idea in this method is to transform the motor current into 

a time-frequency spectrum to capture the time variation of the 

frequency components and to analyze the spectrum 

statistically to distinguish fault conditions from the normal 

operating conditions of the motor. Since each motor has a 

distinct geometry, a supervised approach is adapted. In this 

approach, the algorithm is trained to recognize the normal 



operating conditions of the motor prior to actual fault 

detection [20]. 

Time localization of nonstationary signals is typically 

achieved by the STFT above discussed. Its mathematical 

description is given as follows for a given signal f 
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Where g is an ideal cut-off function, g(t – nt0) is a translate of 

g, t0 is the length of the cut-off interval, and n is an integer 

associated with the signal portion.  is similar to the Fourier 

frequency. 

The proposed detection method, as shown by Fig. 15, 

consists of four main stages: preprocessing (typical signal 

conditioning procedures), training (current time-frequency 

spectrum is computed and features relevant to fault conditions 

are extracted), testing, and postprocessing (testing is repeated 

to improve final the decision accuracy) [20]. 

For illustration, Fig. 16 shows a typical time-frequency 

spectrum for bearing fault detection [20]. 

 

H. An additional Technique 
 

Recently [21], an interesting technique has been proposed 

for the detection of broken bars in induction motors. This 

technique is based on an open terminal test. In this case, rotor 

currents will then induce voltages in the stator windings. 

These voltages will be processed for the diagnosis of cracked 

or broken rotor bars. 

This is a very interesting technique, since induction motors 

are generally supplied by nonideal sources with time harmonic 

voltages, voltage unbalance, etc. Moreover, the motor may 

operate in the saturation region. These frequent conditions 

will lead to some errors in the fault detection process. It 

appears that these effects will be removed by the open 

terminal test. This technique seems to be interesting for on-

site rotor fault detection (before the motor utilization). 

 

IV. CONCLUDING REMARKS 
 

The paper attempts to briefly present signal (mainly motor 

current) processing techniques for induction motor rotor fault 

detection (mainly broken bars and bearing deterioration). The 

main advantages and drawbacks of the above-presented 

techniques are also briefly discussed. In many cases, the 

conventional steady state techniques may suffice. From these 

discussions, it appears that, for the most difficult cases, time-

frequency and time-scale transformations, such as wavelets, 

provide a more optimal tool for the detection and the 

diagnosis of faulty induction motor rotors. On the one hand 

they remedy the main drawbacks of motor current signal 

processing techniques for fault detection, i.e. nonstationarity. 

On the other hand these techniques exhibit some interesting 

application advantages, such as for coal crushers, where speed 

varies rapidly and for deteriorated bearings where speed and 

signatures may vary in an unpredictable manner. 
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Fig. 1. Induction motor component failing rate versus survey [2] 

 

 
 

Fig. 2.View of a cage induction motor. 

 

  

 
 

Fig. 3. Four types of rolling-element bearing misalignment. 

 

   
 

Fig. 4. Ball bearing dimensions. 

 
 

(a) Current spectrum with an eccentric airgap and a constant load torque. 
 

 
 

(b) Current spectrum with an eccentric airgap and a load torque oscillation. 
 

Fig. 5. Load torque oscillation effect. 
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Fig. 6. Single-phase stator current monitoring scheme. 

 

  
 

(a)         (b) Power spectrum around 50 Hz. 
 

Fig. 7. Stator current power spectra of healthy motor. 



  
 

   (a) Stator voltage unbalance.    (b) Stator open phase. 
 

Fig. 8. Stator current power spectra of faulty motor. 

 

 
 

Fig. 9. Power spectrum of the instantaneous power. 

 

  
 

(a) Healthy motor.   (b) Stator winding faults Condition. 
 

Fig. 10. Bispectrum. 

 

 
 

(a) Healthy motor. 
 

 
 

(b) Stator voltage unbalance. 
 

Fig. 11. MUSIC frequency estimate. 

  
 

(a) STFT.     (b) STFT and wavelet technique. 
 

Fig. 12. Misalignment detection. 
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Fig. 13. Stator current Park’s vector pattern. 
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(a) Healthy induction motor. 
 

Frequency (Hz)

A
m

p
li

tu
d

e 
(A

)

 
 

(b) Four contiguous broken rotor bars. 
 

Fig. 14. Spectrum of the stator current Park’s vector ac level. 
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Fig. 15. Block diagram of the adaptive statistical 

time-frequency fault detection technique. 

 

 
 

(a) Normal mode. 
 

 
 

(b) Faulty bearings. 
 

Fig. 16. Time-frequency spectrum of an induction motor. 
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