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Abstract

If we hope to automatically detect and diagnose fail-
ures in large-scale computer systems, we must study real
deployed systems and the data they generate. Progress
has been hampered by the inaccessibility of empirical data.
This paper addresses that dearth by examining system logs
from five supercomputers, with the aim of providing use-
ful insight and direction for future research into the use of
such logs. We present details about the systems, methods
of log collection, and how alerts were identified; propose
a simpler and more effective filtering algorithm; and de-
fine operational context to encompass the crucial informa-
tion that we found to be currently missing from most logs.
The machines we consider (and the number of processors)
are: Blue Gene/L (131072), Red Storm (10880), Thunder-
bird (9024), Spirit (1028), and Liberty (512). This is the first
study of raw system logs from multiple supercomputers.

1 Introduction

The reliability and performance challenges of supercom-
puting systems cannot be adequately addressed until the be-
havior of the machines is better understood. In this paper,
we study system logs from five of the world’s most pow-
erful supercomputers: Blue Gene/L (BG/L), Thunderbird,
Red Storm, Spirit, and Liberty. The analysis encompasses
more than 111.67 GB of data containing 178,081,459 alert
messages in 77 categories. The system logs are the first
place system administrators go when they are alerted to a
problem, and are one of the few mechanisms available to
them for gaining visibility into the behavior of the machine.
Particularly as systems grow in size and complexity, there
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is a pressing need for better techniques for processing, un-
derstanding, and applying these data.

We define an alert to be a message in the system logs
that merits the attention of the system administrator, either
because immediate action must be taken or because there is
an indication of an underlying problem. Many alerts may be
symptomatic of the same failure. Failures may be anything
from a major filesystem malfunction to a transient connec-
tion loss that kills a job.

Using results from the analysis, we give recommenda-
tions for future research in this area. Most importantly, we
discuss the following issues:

• Logs do not currently contain sufficient information to
do automatic detection of failures, nor root cause di-
agnosis, with acceptable confidence. Although iden-
tifying candidate alerts is tractable, disambiguation in
many cases requires external context that is not avail-
able. The most salient missing data is operational con-
text, which captures the system’s expected behavior.

• There is a chaotic effect in these systems, where
small events or changes can dramatically impact the
logs. For instance, an OS upgrade on Liberty instan-
taneously increased the average message traffic. On
Spirit, a single node experiencing disk failure pro-
duced the majority of all log messages.

• Different categories of failures have different predic-
tive signatures (if any). Event prediction efforts should
produce an ensemble of predictors, each specializing
in one or more categories.

• Along with the issues above, automatic identification
of alerts must deal with: corrupted messages, incon-
sistent message structure and log formats, asymmetric
alert reporting, and the evolution of systems over time.

Section 3 describes the five supercomputers, the log col-
lection paths, and the logs themselves. Section 3.2 explains
the alert tagging process and notes what challenges will be



faced by those hoping to do such tagging (or detection) au-
tomatically. Section 4 contains graphical and textual ex-
amples of the data and a discussion of the implications for
filtering and modeling. Finally, Section 5 summarizes the
contributions and our recommendations.

The purpose of this paper is not to argue for a particular
reliability, availability, and serviceability (RAS) architec-
ture, nor to compare the reliability of the supercomputers.
The systems we study are real, and the logs are in the form
used by (and familiar to) system administrators. Our inten-
tion is to elucidate the practical challenges of log analysis
for supercomputers, and to suggest fruitful research direc-
tions for work in data mining, filtering, root cause analysis,
and critical event prediction. This is the first paper, to our
knowledge, that has considered raw logs from multiple su-
percomputing systems.

2 Related Work

Work on log analysis and large-systems reliability has
been hindered by a lack of data about their behavior. Recent
work by Schroeder [21] studied failures in a set of cluster
systems at Los Alamos National Lab (LANL) using the en-
tries in a remedy database. This database was designed to
account for all node downtime in these systems, and was
populated via a combination of automatic procedures and
the extensive effort of a full-time LANL employee, whose
job was to account for these failures and to assign them
a cause within a short period of time after they happened.
Schroeder also examined customer-generated disk replace-
ment databases [22], but there was no investigation into how
these replacements were manifested in the system logs. Al-
though similar derived databases exist for the supercomput-
ers considered in this paper, our goal was to describe the
behavior of the systems rather than human interpretations.

There is a series of papers on logs collected from Blue
Gene/L (BG/L) systems. Liang, et al [10] studied the sta-
tistical properties of logs from an 8-rack prototype system,
and explored the effects of spatio-temporal filtering algo-
rithms. Subsequently, they studied prediction models [9] for
logs collected from BG/L after its deployment at Lawrence
Livermore National Labs (LLNL). The logs from that study
are a subset of those used in this paper. Furthermore, they
identified alerts according to the severity field of messages.
Although it is true that there exists a correlation between
the value of the severity field of the message and the actual
severity, we found many messages with low severity that
indicate a critical problem and vice versa. Section 3.2 elab-
orates on this claim and details the more intensive process
we employed to identify alerts.

System logs for smaller systems have been studied for
decades, focusing on statistical modeling and failure pre-
diction. Tsao developed a tuple concept for data organiza-

tion and to deal with multiple reports of single events [26].
Early work at Stanford [13] observed that failures tend to
be preceded by an increased rate of non-fatal errors. Using
real system data from two DEC VAX-cluster multicomputer
systems, Iyer found that alerts tend to be correlated, and
that this has a significant impact on the behavior and mod-
eling of these systems [25]. Lee and Iyer [8] presented a
study of software faults in systems running the fault-tolerant
GUARDIAN90 operating system. The task of automati-
cally discovering alerts in log data has been explored from
a pattern-learning perspective [7]. There have also been ef-
forts at applying data mining techniques to discover trends
and correlations [12, 23, 27, 28].

In order to solve the reliability and performance chal-
lenges facing supercomputer installations, we must study
the machines as artifacts, characterizing and modeling what
they do rather than what we expect them to do. By number
of processor hours (∼774 million), this is the most exten-
sive system log study to date.

3 Supercomputer Logs

The broad range of supercomputers considered in this
study are summarized in Table 1. All five systems are
ranked on the Top500 Supercomputers List as of June
2006 [2], spanning a range from #1 to #445. They vary by
two orders of magnitude in the number of processors and by
one order of magnitude in the amount of main memory. The
interconnects include Myrinet, Infiniband, GigEthernet, and
custom or mixed solutions. The various machines are pro-
duced by IBM, Dell, Cray, and HP. All systems are installed
at Sandia National Labs (SNL) in Albuquerque, NM, with
the exception of BG/L, which is at Lawrence Livermore Na-
tional Labs (LLNL) in Livermore, California.

3.1 Log Collection

It is standard practice to log messages and events in
a supercomputing system; no special instrumentation nor
monitoring was added for this study. Table 2 presents an
overview of the logs. The remainder of this section focuses
on the infrastructure that generated them.

On Thunderbird, Spirit, and Liberty, logs are generated
on each local machine by syslog-ng and both stored to
/var/log/ and sent to a logging server. The logging
servers (tbird-admin1 on Thunderbird, sadmin2 on
Spirit, and ladmin2 on Liberty) process the files with
syslog-ng and place them in a directory structure ac-
cording to the source node. We collected the logs from that
directory. As is standard syslog practice, the UDP protocol
is used for transmission, resulting in some messages being
lost during network contention.



System Owner Vendor Top500 Rank Procs Memory (GB) Interconnect
Blue Gene/L LLNL IBM 1 131072 32768 Custom
Thunderbird SNL Dell 6 9024 27072 Infiniband
Red Storm SNL Cray 9 10880 32640 Custom

Spirit (ICC2) SNL HP 202 1028 1024 GigEthernet
Liberty SNL HP 445 512 944 Myrinet

Table 1. System characteristics at the time of collection. External system names are indicated in
parentheses. Some information was obtained from the Top500 Supercomputer list [2]. The machines
are representative of the design choices and scales seen in current supercomputers.

System Start Date Days Size (GB) Compressed Rate (bytes/sec) Messages Alerts Categories
Blue Gene/L 2005-06-03 215 1.207 0.118 64.976 4,747,963 348,460 41
Thunderbird 2005-11-09 244 27.367 5.721 1298.146 211,212,192 3,248,239 10
Red Storm 2006-03-19 104 29.990 1.215 3337.562 219,096,168 1,665,744 12

Spirit (ICC2) 2005-01-01 558 30.289 1.678 628.257 272,298,969 172,816,564 8
Liberty 2004-12-12 315 22.820 0.622 835.824 265,569,231 2,452 6

Table 2. Log characteristics. The number of alerts reflects redundant reporting and the preferences
of the system administrators more than it indicates the reliability of the system. Alerts were tagged
into categories according to the heuristics supplied by the administrators for the respective systems,
as described in Section 3.2. Two alerts are in the same category if they were tagged by the same
expert rule; the categories column indicates the number of categories that were actually observed
in each log. Compression was done using the Unix utility gzip.

Red Storm has several logging paths [1]. Disk and RAID
controller messages in the DDN subsystem pass through
a 100 Megabit network to a DDN-specific RAS machine,
where they are processed by syslog-ng and stored. Sim-
ilarly, all Linux nodes (login, Lustre I/O, and management
nodes) transmit syslog messages to a different syslog-ng
collector node for storage. All other components (com-
pute nodes, SeaStar NICs, and hierarchical management
nodes) generate messages and events which are transmitted
through the RAS network (using the reliable TCP protocol)
to the System Management Workstation (SMW) for auto-
mated response and storage. Our study includes all of these
logs.

On BG/L, logging is managed by the Machine Manage-
ment Control System (MMCS), which runs on the service
node, of which there are two per rack [3]. Compute chips
store errors locally until they are polled, at which point
the messages are collected via the JTAG-mailbox proto-
col. The polling frequency for our logs was set at around
one millisecond. The service node MMCS process then re-
lays the messages to a centralized DB2 database. That RAS
database was the source of our data, and includes hardware
and software errors at all levels, from chip SRAM parity
errors to fan failures. Events in BG/L often set various
RAS flags, which appear as separate lines in the log. The
time granularity for BG/L logs is down to the microsecond,
unlike the one-second granularity of typical syslogs. This
study does not include syslogs from BG/L’s Lustre I/O clus-
ter and shared disk subsystem.

Raw Filtered
Type Count % Count %

Hardware 174,586,516 98.04 1,999 18.78
Software 144,899 0.08 6,814 64.01

Indeterminate 3,350,044 1.88 1,832 17.21

Table 3. Hardware was the most common
type of alert, but not the most common type
of failure (as estimated by the filtered re-
sults). Filtering dramatically changes the dis-
tribution of alert types.

3.2 Identifying Alerts

For each of the systems, we worked in consultation with
the respective system administrators to determine the subset
of log entries that they would tag as being alerts. Thus, the
alerts we identify in the logs are certainly alerts by our def-
inition, but the set is (necessarily) not exhaustive. In all, we
identified 178,081,459 alerts across the logs; see Table 2 for
the breakdown by system and Table 4 for the alerts, them-
selves. Alerts were assigned types based on their ostensible
subsystem of origin (hardware, software, or indeterminate);
this is based on each administrator’s best understanding of
the alert, and may not necessarily be root cause. Table 3
presents the distribution of types both before and after fil-
tering (described in Section 3.3).

Note that many of these alerts were multiply reported by
one or more nodes (sometimes millions of times), requiring
filtering of the kind discussed in Section 3.3. Furthermore,
it means that the number of alerts we report does not neces-



Alert Type/Cat. Raw Filtered Example Message Body (Anonymized)

BG/L 348,460 1202
H / KERNDTLB 152,734 37 data TLB error interrupt

H / KERNSTOR 63,491 8 data storage interrupt

S / APPSEV 49,651 138 ciod: Error reading message prefix after LOGIN MESSAGE on CioStream [...]
S / KERNMNTF 31,531 105 Lustre mount FAILED : bglio11 : block id : location

S / KERNTERM 23,338 99 rts: kernel terminated for reason 1004rts: bad message header: [...]
S / KERNREC 6145 9 Error receiving packet on tree network, expecting type 57 instead of [...]
S / APPREAD 5983 11 ciod: failed to read message prefix on control stream [...]
S / KERNRTSP 3983 260 rts panic! - stopping execution

S / APPRES 2370 13 ciod: Error reading message prefix after LOAD MESSAGE on CioStream [...]
I / APPUNAV 2048 3 ciod: Error creating node map from file [...]
I / 31 Others 7186 519 machine check interrupt

Thunderbird 3,248,239 2088
I / VAPI 3,229,194 276 kernel: [KERNEL IB][...] (Fatal error (Local Catastrophic Error))

S / PBS CON 5318 16 pbs mom: Connection refused (111) in open demux, open demux: cannot [...]
I / MPT 4583 157 kernel: mptscsih: ioc0: attempting task abort! (sc=00000101bddee480)

H / EXT FS 4022 778 kernel: EXT3-fs error (device sda5): [...] Detected aborted journal

S / CPU 2741 367 kernel: Losing some ticks... checking if CPU frequency changed.

H / SCSI 2186 317 kernel: scsi0 (0:0): rejecting I/O to offline device

H / ECC 146 143 Server Administrator: Instrumentation Service EventID: 1404 Memory device [...]
S / PBS BFD 28 28 pbs mom: Bad file descriptor (9) in tm request, job [job] not running

H / CHK DSK 13 2 check-disks: [node:time] , Fault Status assert [...]
I / NMI 8 4 kernel: Uhhuh. NMI received. Dazed and confused, but trying to continue

Red Storm 1,665,744 1430
H / BUS PAR 1,550,217 5 DMT HINT Warning: Verify Host 2 bus parity error: 0200 Tier:5 LUN:4 [...]
I / HBEAT 94,784 266 ec heartbeat stop|src:::[node] |svc:::[node]warn|node heartbeat fault|[...]
I / PTL EXP 11,047 421 kernel: LustreError: [...] @@@ timeout (sent at [time], 300s ago) [...]
H / ADDR ERR 6763 1 DMT 102 Address error LUN:0 command:28 address:f000000 length:1 Anonymous [...]
H / CMD ABORT 1686 497 DMT 310 Command Aborted: SCSI cmd:2A LUN 2 DMT 310 Lane:3 T:299 a: [...]
I / PTL ERR 631 54 kernel: LustreError: [...] @@@ type == [...]
I / TOAST 186 9 ec console log|src:::[node]|svc:::[node]|PANIC SP WE ARE TOASTED!

I / EW 163 58 kernel: Lustre:[...] Expired watchdog for pid[job] disabled after [#]s
I / WT 107 45 kernel: Lustre:[...] Watchdog triggered for pid[job]: it was inactive for [#]ms
I / RBB 105 19 kernel: LustreError: [...] All mds cray kern nal request buffers busy (0us idle)

H / DSK FAIL 54 54 DMT DINT Failing Disk 2A

I / OST 1 1 kernel: LustreError: [...] Failure to commit OST transaction (-5)?

Spirit 172,816,564 4875
H / EXT CCISS 103,818,910 29 kernel: cciss: cmd 0000010000a60000 has CHECK CONDITION, sense key = 0x3

H / EXT FS 68,986,084 14 kernel: EXT3-fs error (device[device]) in ext3 reserve inode write: IO failure

S / PBS CHK 8388 4119 pbs mom: task check, cannot tm reply to [job] task 1

S / GM LANAI 1256 117 kernel: GM: LANai is not running. Allowing port=0 open for debugging

S / PBS CON 817 25 pbs mom: Connection refused (111) in open demux, open demux: connect [IP:port]
S / GM MAP 596 180 gm mapper[[#]]: assertion failed. [path]/lx mapper.c:2112 (m->root)

S / PBS BFD 346 296 pbs mom: Bad file descriptor (9) in tm request, job [job] not running

H / GM PAR 166 95 kernel: GM: The NIC ISR is reporting an SRAM parity error.

Liberty 2452 1050
S / PBS CHK 2231 920 pbs mom: task check, cannot tm reply to [job] task 1

S / PBS BFD 115 94 pbs mom: Bad file descriptor (9) in tm request, job [job] not running

S / PBS CON 47 5 pbs mom: Connection refused (111) in open demux, open demux: connect [IP:port]
H / GM PAR 44 19 kernel: GM: LANAI[0]: PANIC: [path]/gm parity.c:115:parity int():firmware

S / GM LANAI 13 10 kernel: GM: LANai is not running. Allowing port=0 open for debugging

S / GM MAP 2 2 gm mapper[736]: assertion failed. [path]/mi.c:541 (r == GM SUCCESS)

Table 4. Example alert messages from the supercomputers. System names are listed with the total
number alerts before and after filtering. “Cat.” is the alert category. Types are H (Hardware), S (Soft-
ware), and I (Indeterminate). Indeterminate alerts can originate from both hardware and software, or
have unknown cause. Due to space, we list only the most common of the 41 BG/L alert categories.
Bracketed text indicates information that is omitted; a bracketed ellipsis indicates sundry text. Alert
categories vary among machines as a function of system configurations, logging mechanisms, and
what each system’s administrators deem important.



Messages Alerts
Severity Count % Count %
FATAL 855,501 18.02 348,398 99.98

FAILURE 1714 0.03 62 0.02
SEVERE 19,213 0.41 0 0
ERROR 112,355 2.37 0 0

WARNING 23,357 0.49 0 0
INFO 3,735,823 78.68 0 0

Table 5. The distribution of severity fields
for BG/L among all messages and among
our expert-tagged alerts. Tagging all FA-
TAL/FAILURE severity messages as alerts
would have yielded a 59% false positive rate.

Messages Alerts
Severity Count % Count %
EMERG 3 0.00 0 0
ALERT 654 0.00 45 0.00
CRIT 1,552,910 6.09 1,550,217 98.69
ERR 2,027,598 7.95 11,784 0.75

WARNING 2,154,944 8.45 270 0.02
NOTICE 3,759,620 14.74 0 0

INFO 15,722,695 61.63 8,450 0.54
DEBUG 291,764 1.14 0 0

Table 6. The distribution of severity fields
for Red Storm syslogs among all messages
and among our expert-tagged alerts. These
syslog alerts were dominated by disk failure
messages with CRIT severity. Except for this
failure case, these data suggest that syslog
severity is not a reliable failure indicator.

sarily relate to the reliability of the systems in any meaning-
ful way. The heuristics provided by the administrators were
often in the form of regular expressions amenable for con-
sumption by the logsurfer utility [18]. We performed
the tagging through a combination of regular expression
matching and manual intervention. The administrators with
whom we consulted were responsible for their respective
systems throughout the period of log collection and the pub-
lication of this work. Examples of alert-identifying rules us-
ing awk syntax include (from Spirit, Red Storm, and BG/L,
respectively) include the following:

/kernel: EXT3-fs error/
/PANIC_SP WE ARE TOASTED!/
($5 ˜ /KERNEL/ && /kernel panic/)

Previous work on BG/L log analysis used simple alert
identification schemes such as the severity field of messages
[9, 10, 20] or an external source of information [21, 25].
Because our objective was not to suggest an alert detection
scheme, but rather to accurately characterize the content of
the logs, we instead used the time-consuming manual pro-
cess described above. We discovered, furthermore, that ad-
ministrators for these machines do not use the severity field

as the singular way to detect alerts, and that many systems
(Thunderbird, Spirit, and Liberty) did not even record this
information.

Table 5 shows the distribution of severity fields among
messages and among unfiltered alerts. If we had used the
severity field instead of the expert rules to tag alerts on
BG/L, tagging any message with a severity of FATAL or
FAILURE as an alert, we would have a false negative rate
of 0% but a false positive rate of 59.34%. Of the Sandia
systems, only Red Storm is configured to store the severity
of syslog messages (the Red Storm TCP log path is not sys-
log and has no severity analog). Table 6 gives the severity
distribution, which suggests that syslog severity is of dubi-
ous value as a failure indicator. The use of message severity
levels as a criterion for identifying failures should be done
only with considerable caution.

3.2.1 Alert Identification Challenges

Automatically identifying alerts in system logs is an open
problem. To facilitate others in tackling this challenge, we
offer the following account of issues we observed while
manually tagging the logs that must be addressed by an au-
tomated scheme:

Insufficient Context. Many log messages are ambiguous
without external context. The most salient piece of missing
information was what we call operational context, which
helps to account for the human and other external factors
that influence the semantics of log messages. For example,
consider the following ambiguous example message from
BG/L (anonymized):

YY-MM-DD-HH:MM:SS NULL RAS BGLMASTER FAILURE
ciodb exited normally with exit code 0

This message has a very high severity (FAILURE), but
the message body suggests that the program exited cleanly.
If the system administrator was doing maintenance on the
machine at the time, this message is a harmless artifact of
his actions. On the other hand, if it was generated dur-
ing normal machine operation, this message indicates that
all running jobs on the supercomputer were (undesirably)
killed. The disparity between these two interpretations is
tremendous. Only with additional information supplied by
the system administrator could we conclude that this mes-
sage was likely innocuous. In our experience, operational
context is one of the most vital, but often absent, factors in
deciphering system logs.

As seen in Figure 1, operational context may indicate
whether a system is in engineering or production time. San-
dia, Los Alamos, and Livermore National Laboratories are
currently working together to define exactly what informa-
tion is needed, and how to use it to quantify RAS perfor-
mance [24]. It may be sufficient to record only a few bytes
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Figure 1. Operational context example. Event
significance can be disambiguated if the ex-
pected state of components is known. This
diagram is the current basis of Red Storm
RAS metrics, and is being developed by
LANL, LLNL, and SNL towards establishing
standardized RAS performance metrics.

of data: the time and cause of system state changes. For ex-
ample, the commencement of an OS upgrade would be ac-
companied by a message indicating that at time t the system
entered scheduled downtime for a system software instal-
lation. A similar message would accompany the system’s
return to production time.

The lack of context has also affected the study of parallel
workloads. Feitelson proposed removing non-production
jobs from workload traces (such as workload flurries at-
tributable to system testing [5]). Analogously, some alerts
may be ignored during a scheduled downtime that would be
significant during production time.

Asymmetric Reporting. Some failures leave no evidence
in the logs, and the logs are fraught with messages that in-
dicate nothing useful at all. More insidiously, even single
failure types may produce varying alert signatures in the
log. For example, the Red Storm DDN system generates a
great variety of alert patterns that all mean “disk failure”.
Nodes also generate differing logs according to their func-
tion. Figure 2(b) shows the number of messages broken
down by source. The chatty sources tended to be the ad-
ministrative nodes or those with persistent problems, while
the reticent sources were either misconfigured or improp-
erly attributed (the result of corrupted messages).

System Evolution. Log analysis is a moving target. Over
the course of a system’s lifetime, anything from software
upgrades to minor configuration changes can drastically al-
ter the meaning or character of the logs. Figure 2(a) shows
dramatic shifts in behavior over time. This makes machine
learning difficult: learned patterns and behaviors may not be
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applicable for very long. The ability to detect phase shifts in
behavior would be a valuable tool for triggering relearning
or for knowing which existing behavioral model to apply.

Implicit Correlation. Groups of messages are sometimes
fundamentally related, but there is no explicit indication of
this. See Figures 3 and 4. A common such correlation re-
sults from cascading failures.

Inconsistent Structure. Despite the noble efforts of the
BSD syslog standard and others, log messages vary greatly
both within and across systems. BG/L and Red Storm
use custom databases and formats, and commodity syslog-
based systems do not even record fields such as severity
by default. Ultimately, understanding the entries may re-
quire parsing the unstructured message bodies, thereby re-
ducing the problem to natural language processing on the
shorthand of multiple programmers (consider Table 4). Log
anonymization is also troublesome, because sensitive infor-
mation like usernames is not relegated to distinct fields [6].
Our log data are not available for public study primarily be-
cause we cannot remove all sensitive information with suf-
ficient confidence. We are working to overcome this chal-
lenge and to release the logs.

Corruption. Even on supercomputers with highly engi-
neered RAS systems, like BG/L and Red Storm, log en-
tries can be corrupted. We saw messages truncated, partially
overwritten, and incorrectly timestamped. For example, we
found many corrupted variants of the following message on
Thunderbird (only the message bodies are shown):

kernel: VIPKL(1): [create_mr] MM_bld_hh_mr
failed (-253:VAPI_EAGAIN)
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Figure 2. The number of messages generated by Liberty.

Some corrupted versions of that line include:

kernel: VIPKL(1): [create_mr] MM_bld_hh_mr
failed (-253:VAPI_EAure = no

kernel: VIPKL(1): [create_mr] MM_bld_hh_mr
failed (-253:VAPI_EAGAI

kernel: VIPKL(1): [create_mr] MM_bld_hh_mr
failed (-253:VAPI_EAGsys/mosal_iobuf.c
[126]: dump iobuf at 0000010188ee7880 :

3.3 Filtering

A single failure may generate alerts across many nodes
or many alerts on a single node. Filtering is used to re-
duce a related set of alerts to a single initial alert per failure;
that is, to make the ratio of alerts to failures nearly one.
This section motivates the need for effective filtering and
then describes our algorithm, which is based on previous
work [9, 10] with some incremental optimizations. Briefly,
the filtering removes an alert if any source had generated
that category of alert within the last T seconds, for a given
threshold T . Two alerts are in the same category if they
were both tagged by the same expert rule.

3.3.1 Motivation for Filtering

During the first quarter of 2006, Liberty saw 2231 job-
fatal alerts that were caused by a troublesome software
bug in the Portable Batch System (PBS). The alerts, which
read pbs mom: task check, cannot tm reply,
indicated that the MPI rank 0 mom died. Jobs afflicted by
this bug could not complete and were eventually killed, but
not before generating the task check message up to 74
times. We estimate that this bug killed as many as 1336 jobs
before it was tracked down and fixed (see Figure 4).

Between November 10, 2005 and July 10, 2006, Thun-
derbird experienced 3,229,194 so-called “Local Catas-
trophic Errors” related to VAPI (the exact nature of many
of these alerts is not well-understood by our experts). A
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Figure 4. Categorized filtered alerts on Lib-
erty over time. The horizontal clusters of
PBS CHK and PBS BFD messages are not
evidence of poor filtering; they are actually
instances of individual failures. Specifically,
they are the manifestation of the PBS bug de-
scribed in Section 3.3.1. These two tags are
a particularly outstanding example of corre-
lated alerts relegated to different categories.

single node was responsible for 643,925 of them, of which
filtering removes all but 246.

The Spirit logs were largest, despite the system be-
ing the second smallest. This was due almost entirely to
disk-related alert messages which were repeated millions of
times. For example, over a six-day period between February
28 and March 5, there was a disk problem that triggered a
total of 56,793,797 alerts. These were heavily concentrated
among a handful of problematic nodes. Over the complete
observation period, node id sn373 logged 89,632,571 such
messages, which was more than half of all Spirit alerts.

3.3.2 Filtering Algorithm

A temporal filter coalesces alerts within T seconds of each
other on a given source into a single alert. For example,
if a node reports a particular alert every T seconds for a
week, the temporal filter keeps only the first. Similarly, a
spatial filter removes an alert if some other source had pre-



viously reported that alert within T seconds. For example, if
k nodes report the same alert in a round-robin fashion, each
message within T seconds of the last, then only the first is
kept. Previous work applied these filters serially [9, 10].

Our filtering algorithm, however, performs both tempo-
ral and spatial filtering simultaneously; an alert message
generated by source s is considered redundant (and re-
moved) if any source, including s, had reported that alert
category within T seconds. This change reduces compu-
tational costs (16% faster on the Spirit logs), and increases
conceptual simplicity. We applied this filter to the logs from
the five supercomputers using T = 5 seconds in correspon-
dence with previous work [4, 9, 10]. The algorithm in pseu-
docode is given below, where A is the sequence of N unfil-
tered alerts. Alert ai happens at time ti and has category ci.
The sequence is sorted by increasing time. The table X is
used to store the last time at which a particular category of
alert was reported.

Algorithm 3.1: LOGFILTER(A)

l← 0
for i← 1 to N

do



if ti − l > T
then clear(X)

l← ti
if ci ∈ X and ti −X[ci] < T

then X[ci]← ti

else
{

X[ci]← ti
output (ai)

This filter may remove independent alerts of the same
category that, by coincidence, happen near the same time on
different nodes. For example, node sn373 on Spirit experi-
enced disk problems and output tens of millions of alerts
over the course of several days. Coincidentally, another
node (sn325) had an independent disk failure during this
time. Our filter removed the symptomatic alert, erroneously.

In some cases, serial filtering fails to remove alerts that
share a root cause, and which a human would consider to
be redundant. The problem arises when the temporal filter
removes messages that the spatial filter would have used as
cues that the failure had already been reported by another
source. Alerts removed by our filter that would be left by
serial filters tend to indicate failures in shared resources that
were previously noticed by another node. The most com-
mon such errors in Liberty, Spirit, and Thunderbird were
related to the PBS system.

At most one true positive was removed on any single ma-
chine, whereas sometimes dozens of false positives were
removed by using our filter instead of the serial algorithm.
Limiting false positives to an operationally-acceptable rate
tends to be the critical factor in fault and intrusion detection
systems, so we consider this trade-off to be justified.
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Figure 5. Critical ECC memory alerts on
Thunderbird. These data are filtered, but that
had little effect on the distribution. Both (a)
and (b) are the same data, viewed in different
ways. We conclude that these low-level fail-
ures are basically independent.

4 Analysis

Modeling the timing of failure events is a common en-
deavor in systems research; these models are then used to
study the effects of failures on other aspects of the system,
such as job scheduling or checkpointing performance. Fre-
quently, for mathematical convenience and reference to ba-
sic physical phenomena, failures are modeled as occurring
independently (exponential interarrival times). For low-
level failures triggered by such physical phenomena, these
models are appropriate; we found that ECC failures (mem-
ory errors that were critical, rather than single bit errors) be-
haved as expected. Figure 5 shows these filtered alert dis-
tributions on Thunderbird, where the distribution appears
exponential and is roughly log normal with a heavy left tail.

For most other kinds of failures, however, this indepen-
dence is not an appropriate assumption. Failure prediction
based on time interdependence of events has been the sub-
ject of much research [9, 11, 13, 19], and it has been shown
that such prediction can be a potent resource for improving
job scheduling [17], QoS [16], and checkpointing [14, 15].

We expected CPU clocking alerts, for instance, to be
similar to ECC alerts: driven by a basic physical process.
We were surprised to observe clear spatial correlations, and
discovered that a bug in the Linux SMP kernel sped up the
system clock under heavy network load. Thus, whenever
a set of nodes was running a communication-intensive job,
they would collectively be more prone to encountering this
bug. We investigated this message only after noticing that
its occurrence was spatially correlated across nodes.

Through our attempts to model failure distributions, we
are convinced that supercomputer failure types are diverse
in their properties. Some clearly appear to be lognormal
(Figure 5(a)), most clearly do not (Figures 6(a) and 5(b)).
In even the best visual fit cases, heavy tails result in very
poor statistical goodness-of-fit metrics. While the tempta-
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Figure 6. The log distribution of interar-
rival times after filtering suggests correlated
alerts on BG/L (a) and largely independent
categories on Spirit (b). This illustrates two
weaknesses in current filtering algorithms:
(1) message tags must represent indepen-
dent sets of alerts to avoid timing correla-
tions and (2) a single filtering threshold is not
appropriate for all kinds of messages.

tion to select and publish best-fit models and parameters is
strong, the most important observation we can make is that
such modeling of this data is misguided. The mechanisms
and interdependencies of failures must be better understood
before statistical models of their distributions will be of sig-
nificant use. The merit of a model is dependent on the con-
text in which it is applied; one size does not fit all.

Moreover, whereas the failures in this study have widely
varying signatures, previous prediction approaches focused
on single features for detecting all failure types (e.g. sever-
ity levels or message bursts). Future research should con-
sider ensembles of predictors based on multiple features,
with failure categories being predicted according to their
respective behavior.

Current filtering algorithms, including ours, suffer from
two significant weaknesses. First, they require a mechanism
for determining whether two alerts from different sources at
different times are “the same” in some meaningful way. We
are not aware of any method that is able to confidently state
whether two messages that are labeled as different are actu-
ally correlated with one another. The second major weak-
ness is that a filtering threshold must be selected in advance
and is then applied across all kinds of alerts. In reality,
each alert category may require a different threshold, which
may change over time. The bimodal distribution visible in
Figure 6(a) is believed to be a consequence of these short-
comings. One of the modes (the first peak) is attributed to
unfiltered redundancy. Figure 3 shows an example of inter-
tag correlation. On Spirit, the problems enumerated above
were not as prevalent after filtering, and the result was the
unimodal distribution in Figure 6(b).

5 Recommendations

In order to accurately detect, attribute, quantify, and pre-
dict failures in supercomputers, we must understand the be-
havior of systems, including the logs they produce. This pa-
per presents the results of the broadest system log study to
date (nearly one billion messages from five production su-
percomputers). We consider logs from the BG/L, Thunder-
bird, Red Storm, Spirit, and Liberty supercomputers (Sec-
tion 3), and we identify 178,081,459 alert messages in 77
categories (Table 4). In conclusion, we describe how people
want to use supercomputer logs, what obstacles they face,
and our recommendations for overcoming those challenges.

Detect Faults We want to identify failures quickly. Most
failures are evidenced in logs by a signature (presence or
absence of certain messages), while others leave no sign.
We believe such silent failures are rare. Accurate detection
and disambiguation requires external information like oper-
ational context (Figure 1). We suggest logging transitions
among operational states (Section 3.2.1).

Attribute Root Causes We want to respond to failures
effectively, which requires knowing what failed and why.
Logging mechanisms themselves may fail, resulting in cor-
rupted or missing messages. Redundant and asymmetric
alert reporting necessitates filtering (Section 3.3); we advise
that future work investigate filters that are aware of correla-
tions among messages and characteristics of different fail-
ure classes, rather than a catch-all threshold (Section 4).

Quantify RAS We want to model and improve RAS met-
rics. Despite the temptation to calculate values like MTTF
from the system logs, doing so can be inaccurate and mis-
leading. The content of the logs is a strong function of
the specific system and logging configuration; using logs
to compare machines is absurd. Even on a single system,
the logs change over time, making them an unreliable mea-
sure of progress. We recommend calculating RAS metrics
based on quantities of direct interest, such as the amount of
useful work lost due to failures.

Predict Failures We want to predict failures in order
to minimize their impact. The mapping from failures to
message signatures is many-to-many. Prediction efforts
must account for significant shifts in system behavior (Sec-
tion 3.2.1). Just as filtering would benefit from catering to
specific classes of failures, predictors should specialize in
sets of failures with similar predictive behaviors (Section 4).

System logs are a rich, ubiquitous resource worth ex-
ploiting. They present many analysis challenges, however,
and should not be taken lightly. Pursuing the recommenda-
tions in this paper will lead us closer to our ultimate goal:
reliable computing for production users.
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