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Abstract—The human vision system can interpret a single 2D line drawing as a 3D object without much difficulty even if the hidden lines

of the object are invisible. Many reconstructionmethods have been proposed to emulate this ability, but they cannot recover the complete

object if the hidden lines of the object are not shown. This paper proposes a novel approach to reconstructing a complete 3D object,

including the shape of the back of the object, from a line drawing without hidden lines. First, we develop theoretical constraints and an

algorithm for the inference of the topology of the invisible edges and vertices of an object. Then, we present a reconstruction method

based on perceptual symmetry and planarity of the object. We show a number of examples to demonstrate the success of our approach.

Index Terms—3D reconstruction, hidden topology, line drawings, visual perception.

Ç

1 INTRODUCTION

A line drawing is defined as a 2D projection of the edges
and vertices of a 3D object in a generic view, with or

without hidden lines visible. The human vision system has
the ability to interpret 2D line drawings as 3D objectswithout
difficulty. Emulating this ability is an important research
topic in computer vision and is finding applications in a
diverse range of areas such as providing 2D sketch query
interface for 3D object retrieval from large databases or from
theWeb [1], [2], [3], interactive generation of 3Dmodels from
images [4], [5], [6], providing rich databases to object
recognition systems and reverse-engineering algorithms for
shape reasoning [7], [8], [9], and flexible sketching interface
for designers to sketch ideas in object design [10], [11], [12].

There has been much effort devoted to line drawing
interpretation. However, few study the inference of the
hidden topology and the reconstruction of the complete
3D objects from line drawings with only visible edges and
vertices. This is a challenging task since we have to infer the
most plausible shape of the back of the objectwithout looking
at it. This paper proposes a novel approach to tackle this hard
problem.Comparedwith the linedrawingswith hidden lines
visible, these line drawings are easier and more natural to
draw.More importantly, most vision systems do not provide
the hidden lines and, thus, our work is more suitable for
general vision applications. For example, if we want to
recover the complete 3D shape of an object in an image,wedo
not have the invisible edges toworkwith. Based on the visual

perception of such line drawings, our algorithm is designed
in two steps: inference of the topology of the hiddenpart of an
object and reconstruction of the geometrical shape of the
complete object. Fig. 1 shows the two steps with an example.

The rest of this paper is organized as follows: Section 2
reviews related work. Section 3 gives assumptions for our
work and terms that are often used in the paper. We present
theoretical constraints for the inference of the hidden
structure from a line drawing in Section 4. The algorithmic
implementation of the inference is discussed in Section 5.
Section 6 proposes an optimization-based method for the
complete 3D object reconstruction. Experimental results are
given in Section 7. Finally, Section 8 concludes this paper.

2 RELATED WORK

Since the early stage of computer vision, a large amount of
work called line labeling has been carried out for line
drawing interpretation [13], [14], [15], [16], [17], [18], [19].
Line labeling focuses on finding a set of consistent labels
from a line drawing without hidden lines, and does not
explicitly give the 3D shape represented by a line drawing.

There is a body of work that discusses 3D reconstruction
from multiple views of a line drawing. Its target is to
reconstruct a 3D CAD model from its multiple (three, in
general) orthographic projections [20], [21], [22]. More
information can be found from three orthographic views for
the reconstruction task than from a single projection. In this
paper, we concern the 3D reconstruction from only one view
of an object.

Some relatedwork is about testing the correctness of a line
drawing based on algebraic or geometric tests [23], [24], [25],
[26], [27] that apply to a line-labeled version of the line
drawing.Thealgorithmpresentedin[28] tries toovercomethe
superstrictness problem in this line drawing interpretation.

Most 3D reconstruction methods from a line drawing
(with or without hidden lines and vertices) assume that the
face topology of the line drawinghas been known in advance.
This information can greatly reduce the complexity of the
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reconstruction. Face identification from line drawings is not a
trivial problem, andmanyalgorithmshavebeenproposed for
it [29], [30], [31], [32], [33]. The algorithm in [29] can handle
only very simple objects, and the one in [32] focuses on
manifolds with all hidden lines visible. The three algorithms
in [30], [31], and [33] deal with general objects, but the one in
[33] is most efficient. In this work, we use it to find the face
cycles from a line drawing.1

The ultimate target of line drawing interpretation is to
reconstruct the 3Dobjects from2D line drawings. To this end,
many researchers formulated the problem as an optimization
problem based on different objective functions. Marill
proposed a criterion, minimizing the standard deviation of
the angles between all pairs of lines meeting at vertices in a
reconstructed object, to emulate human 3D perception of
2D line drawings [34]. This idea is followed by many
researchers [5], [10], [12], [29], [35], [36], [37]. With the help
of the shading information in images, Sugihara [38], Shim-
shoni and Ponce [39], and Shimodaira [40] tried to recover
3D polyhedra in the images from the edges (line drawings) of
the polyhedra. These reconstruction methods [34], [5], [10],
[12], [29], [35], [36], [37], [38], [39], [40] cannot recover
complete 3D objects if their hidden lines are not given. Varley
and Martin [41] attempted to find the hidden topology of
a line drawing representing a manifold polyhedron. How-
ever, they had to assume that the 3D geometry of the visible
part of the polyhedron has been obtained, and the poly-
hedron has been assigned to one of the several regular
categories, which can be very difficult to determine when
only the visible part of the object is given.

3 ASSUMPTIONS AND TERMINOLOGY

Although the 2D projection of a 3D object has lost the depth
information of the 3D vertices and edges, human beings still
have the ability to perceive the complete 3D shape from the
line drawing even if its hidden lines are invisible.
Emulating this function presents a very hard problem.
One reason is that there are infinite possible structures
being the hidden part of the object. Therefore, we have to
impose reasonable constraints for the inference of the
hidden structure such that the final recovered 3D object is
in accordance with our perception from the line drawing. In
this work, we focus on a class of solids that covers a large
set of common objects.

Assumption 1. The 3D objects are polyhedra with each vertex

met by three edges and each edge passed through by two faces

and without through holes.

Assumption 2. A line drawing is the parallel or near-parallel

projection of the visible edges and vertices of a single

polyhedron defined above in a generic view.

Assumption 3. Every hidden vertex is connected with at least

one visible vertex.

InAssumption 2, a line drawing is said to be the projection

of a polyhedron in a generic view if the topology of the line

drawing is preserved under slight variations of the view-

point. The reason to have Assumption 3 is that if all the three

invisible edges meeting at a hidden vertex are allowed to

connect to otherhiddenvertices, therewill be infinitepossible

structures being the hidden part. This assumption restricts

the infinite structures to limited simpler cases. Gestalt

psychology, one of the most influential theories with a long

history, asserts that human beings are innately driven to

perceive things as good a whole as possible. Here, good can

mean many things such as simplicity, symmetry, and

regularity [42], [43]. Assumption 3 reflects the perception of

simplicity by human beings.
For easier understanding of the technical content of our

approach, we summarize the terms that will be used in the

rest of the paper. Some of these terms are illustrated in Fig. 2.

. Edge. An edge of a line drawing is the intersection of
two noncoplanar planes.

. Degree. The degree dðvÞ of a vertex v is the number of
edges meeting at v in a line drawing.

. Incomplete vertex. An incomplete vertex v is a vertex
of dðvÞ ¼ 2.

. Complete vertex. A complete vertex v is a vertex of
dðvÞ ¼ 3.

. Broken vertex. A broken vertex v is defined as one
formed when part of an edge is blocked by a face. It
is not a real vertex of the object the line drawing
represents, and its degree is defined as dðvÞ ¼ 1.

. Broken edge. A broken edge is a visible edge
connected to a broken vertex.

. Cycle. A cycle is a closed trail in a line drawing
where all its vertices except the end vertices are
distinct.

. Visible face. A visible face is a face bounded by a cycle
where all its edges are visible.
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Fig. 1. (a) A line drawing without hidden lines. (b) The inferred hidden

topological structure (dotted lines and circles) before reconstruction.

(c) Reconstructed complete 3D object. (d) The 3D object in another view.

1. For the line drawings discussed in this paper, since the hidden lines
are invisible, the task of face identification becomes easier, and it is possible
to develop simpler algorithms for it.

Fig. 2. Illustration of some terms. Here, v1�9 are complete vertices, v10�14

are incomplete vertices, and v15 is a broken vertex. Edge ðv11; v9Þ is a
boundary edge, and ðv1; v15Þ is both a broken edge and a zero edge. Cycle
ðv1; v2; v3; v4; v1Þ is a visible face, and cycle ðv10; v5; v11; v9; v12; v8; v10Þ is a
boundary cycle.



. Rank. The rank RðeÞ of an edge e is the number of
visible faces with edges passing through e.

. Zero edge. A zero edge e is an edge of RðeÞ ¼ 0. A
broken edge is also a zero edge.

. Boundary edge. A boundary edge e is an edge of
RðeÞ ¼ 1.

. Boundary cycle. A boundary cycle is a cycle where all
its edges are boundary edges.

. Hidden cycle. A hidden cycle is a cycle, where all its
edges and vertices are invisible.

. NH . NH denotes the number of hidden vertices.

4 CONSTRAINTS FOR INFERRING THE HIDDEN

TOPOLOGICAL STRUCTURE

At first, we compute the degrees of vertices and the ranks of
edges from a given line drawing. There are three types of
vertices, as defined in Section 3. Incomplete vertices are
easy to find but to distinguish broken vertices from
complete vertices is not obvious. The following theorem
allows us to identify the broken vertices.

Theorem 1. If a vertex v0 touches a straight line in a line
drawing, as shown in Fig. 3; then, v0 is a broken vertex.

Proof. Suppose, on the contrary, that v0 is not a brokenvertex.
Then, it is a complete vertex. With the assumption that
every edge of the object is passed through by two
faces, there are three planar faces passing through v0. Let
them be f1 ¼ ðv1; v0; v2; . . . ; v1Þ, f2 ¼ ðv1; v0; v3; . . . v1Þ, and
f3 ¼ ðv2; v0; v3; . . . ; v2Þ, as shown in Fig. 3. According to the
assumption that the line drawing is the projection of a
polyhedron in a generic view, the three vertices v1, v0, v2
are also collinear in 3D space. Thus, the straight line ðv1; v2Þ
and the vertex v3 that is not on this line define a plane in
3D space, implying that the two faces f2 and f3 are
coplanar, which contradicts the definition that an edge
(ðv3; v0Þ here) is the intersection of two noncoplanar faces.
Therefore, if edge ðv3; v0Þ is a visible edge of the object, v0 is
a broken vertex. tu

Knowing the types of all the vertices, we obtain their
degrees immediately. To find the ranks of the edges, we have
to find thevisible faces first. Thealgorithmpublished in [33] is
used for this purpose. For example, the four visible faces
found from the line drawing shown in Fig. 2 are ðv1; v2; v3;
v4; v1Þ, ðv6; v9; v12; v8; v6Þ, ðv2; v3; v5; v10; v8; v6; v7; v14; v2Þ, and
ðv4; v3; v5; v11; v9; v6; v7; v13; v4Þ. Then, we have Rðv2; v3Þ ¼
Rðv3; v4Þ ¼ Rðv3; v5Þ ¼ Rðv6; v7Þ ¼ Rðv6; v8Þ ¼ Rðv6; v9Þ ¼ 2;
Rðv1; v2Þ ¼ Rðv1; v4Þ ¼ Rðv2; v14Þ ¼ Rðv7; v14Þ ¼ Rðv5; v10Þ ¼
Rðv10; v8Þ¼Rðv8; v12Þ ¼ Rðv12; v9Þ ¼ Rðv9; v11Þ ¼ Rðv11; v5Þ ¼
Rðv7; v13Þ ¼ 1. Since v15 is a broken vertex, we cannot find the
visible faces passing through ðv1; v15Þ at this stage. Thus,

Rðv1; v15Þ ¼ 0. Note that when v15 is detected to be a broken
vertex, we have dðv15Þ ¼ 1, and the line from v7 to v13 is one
edge but not two.

The key to the inference of the invisible vertices and edges
is to determine the number of hidden vertices NH and the
connections among invisible, incomplete, and broken ver-
tices. The following theorems give constraints useful for the
inference.

Theorem 2. Let VI and VB be the sets of incomplete and broken
vertices of a line drawing, respectively. Then, we have

NH � jVI j þ jVBj; ð1Þ

where j � j denotes the number of elements in a set.

Proof. A complete vertex does not connect to any hidden
vertex. An incomplete vertex connects to one hidden
vertex. A broken vertex connects to one hidden vertex
too. From Assumption 3, the largest value of NH appears
when all the hidden vertices connect to different visible
vertices, which implies the inequality in (1). tu

The following Lemma [44] is used to prove Theorem 3.

Lemma 1. Let G be any graph, E be the set of edges, and V be the
set of vertices in G. It holds that

X

v2V

dðvÞ ¼ 2jEj: ð2Þ

Theorem 3. Let VI and VB be the sets of incomplete and broken
vertices of a line drawing, respectively. If jVI j þ jVBj is even
(odd), then NH of the line drawing must be even (odd).

Proof. Suppose that there are NH hidden vertices and
l hidden edges in the object the line drawing represents.
If we construct a graph using all the hidden edges,
hidden vertices, incomplete vertices, and broken vertices
(without all the visible edges), from Lemma 1, we have

X

v2VI

1þ
X

v2VB

1þ
X

v2VH

3 ¼ 2l; ð3Þ

where VH is the set of hidden vertices and jVHj ¼ NH . The
above equation can be rewritten as jVI j þ jVBj þNH ¼
2ðl�NHÞ. Therefore, if jVI j þ jVBj is even (odd),NH must
be even (odd) too. tu

Theorem 4. Given a line drawing, we have

RðeiÞ < dðvÞ ð4Þ

and

XdðvÞ

i¼1

RðeiÞ ¼ 2F; ð5Þ

where ei, i ¼ 1; 2; . . . ; dðvÞ, are the edges adjacent to vertex v,
and F is the number of visible faces passing through v.

Proof. If v is a broken vertex, then ei is a zero edge, and
RðeiÞ ¼ 0. Thus, RðeiÞ < dðvÞ ¼ 1. If v is an incomplete
vertex, then RðeiÞ � 1 and RðeiÞ < dðvÞ ¼ 2. If v is a
complete vertex, then RðeiÞ � 2 and RðeiÞ < dðvÞ ¼ 3.
Thus, the inequality in (4) holds.

Since a visible face passing through v passes through
two of the ei, i ¼ 1; 2; . . . ; dðvÞ, and RðeiÞ is the number of
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Fig. 3. Part of a line drawing where v1, v0 and v2 are collinear.



visible faces passing through ei, we have the equation in
(5) immediately. tu

Theorem 5. If a line drawing has no zero edges, all the boundary
edges must be on one of the boundary cycles.

Proof. We divide the proof into three parts:

1. We first show that every incomplete vertex is
connected with two boundary edges. For an
incomplete vertex v with its two adjacent edges e1
and e2,wehave dðvÞ ¼ 2. From (4) inTheorem4,we
obtain Rðe1Þ < 2 and Rðe2Þ < 2. Since there are no
zero edges, it follows thatRðe1Þ ¼ Rðe2Þ ¼ 1. Thus,
the two edges are boundary edges.

2. We then prove that each of the two vertices of a
boundary edge e is connected with one and only
one other boundary edge.

. When a vertex v of the boundary edge e is an
incomplete vertex, the statement is true by
Part 1 of this proof.

. When a vertex v of the boundary edge e is a
complete vertex, let the other two edges
connecting to v be e1 and e2, as shown in
Fig. 4. From (5) in Theorem 4, we know that
RðeÞ þRðe1Þ þRðe2Þ is even. Since e is a
boundary edge and there are no zero edges in
the line drawing, we haveRðeÞ ¼ 1,Rðe1Þ 6¼ 0,
Rðe2Þ 6¼ 0,Rðe1Þ � 2, andRðe2Þ � 2. Therefore,
there are only two cases for Rðe1Þ and Rðe2Þ:
1) Rðe1Þ ¼ 1 and Rðe2Þ ¼ 2 and 2) Rðe1Þ ¼ 2

andRðe2Þ ¼ 1. EitherCase 1orCase 2 indicates
that one andonlyoneof the twoedges e1 and e2
is a boundary edge.

3. By the statement in Part 2 of this proof, we can
always walk from a boundary edge to another
boundary edge (see Fig. 5). Since the line drawing
has finite vertices, we must meet one of the
vertices on the path we have passed through.
However, the case in Fig. 5b cannot happen
because the vertex vi is met by three boundary
edges, which contradicts the statement in part 2 of

this proof. Thus, we can only have the case shown
in Fig. 5a, which forms a boundary cycle. tu

Corollary 1. If a line drawing has no zero edges, an incomplete

vertex must be on a boundary cycle.

Proof. Since every incomplete vertex is connected with two

boundary edges (see Part 1 in the proof of Theorem 5), it

must be on a boundary cycle by Theorem 5. tu

From Section 5, it can be seen that boundary cycles are

important for the inference of the hidden structure of a line

drawing. Theorem 5 and Corollary 1 show that boundary

edges and incomplete vertices can only appear on boundary

cycles in a line drawing without zero edges. Fig. 6 gives

such an example.
When a line drawing has zero edges, we remove these

edges and, thus, reduce the linedrawing to anewonewithout

zero edges. Then, Theorem 5 and Corollary 1 apply to this

new line drawing. Fig. 7 shows an example. In Fig. 7a, the

edge ðv1; v2Þ is a zero edge since v2 is a broken vertex. After

removing ðv1; v2Þ, the reduced line drawing is shown in

Fig. 7b, where the bold lines illustrate two boundary cycles.

We can also see that all the incomplete vertices are on the

cycles.

5 RECOVERING THE HIDDEN TOPOLOGICAL

STRUCTURE

This section discusses how to recover the hidden structure of

a line drawing, based on the assumptions and properties

stated in the previous section. We first present an algorithm

for this propose and then explain the implementation of the

steps. We consider line drawings without zero edges first.

How to handle line drawings with zero edges is discussed in

Section 5.5.
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Fig. 4. Part of a line drawing, where e is a boundary edge, and v is a
complete vertex.

Fig. 5. Walking along boundary edges. (a) A boundary cycle. (b) An
impossible path.

Fig. 6. (a) A line drawing without zero edges. (b) The boundary cycle

(bold lines) in which all the boundary edges and incomplete vertices

(filled-in circles) reside.

Fig. 7. (a) A line drawing with a zero edge ðv1; v2Þ. (b) The line drawing

after removing the zero edge, where all the boundary edges and

incomplete vertices are on the boundary cycles (bold lines).



5.1 Outline of the Algorithm

Step1.Compute thedegreesof all thevertices and the ranksof
all the edges from a line drawing.

Step 2. Find boundary cycles and incomplete vertices.

Step 3. Construct an initial hidden structure.

Step 4. Reduce the initial hidden structure to the most
plausible one according to human visual perception of
the 3D object.
Fig. 8 demonstrates how the algorithm works by an

example. In the algorithm, Step 1 has been described in the
first part of Section 4; Step 2 can be done according to
Theorem 5, Corollary 1, and the definitions of boundary
cycles and incomplete vertices; Step 3 will be discussed in
Section 5.2; Step 4 will be explained in Sections 5.3 and 5.4.

5.2 Constructing an Initial Hidden Structure

Theorem 2 indicates that the largest NH ¼ jVI j since we
now consider a line drawing without zero edges (thus,
VB ¼ ;). We set jVI j hidden vertices and connect each
incomplete vertex to a different hidden vertex. Two hidden
vertices are connected if their corresponding incomplete
vertices are closest on the boundary cycle. One example is
given in Fig. 8c, where the cycle ðv1; v2; v3; v4; v5; v1Þ is a
hidden cycle. Note that the result of this initialization meets
the constraints presented in Section 4.

5.3 Reducing the Initial Hidden Structure

Beginning with the initial hidden structure, we design a
procedure to search for other possible hidden structureswith
fewer hidden vertices. The procedure uses a strategy of
cutting-and-merging of edges and vertices. Cutting one edge
on a hidden cycle removes this edge from the cycle while
keeping the twovertices of the edge.After the cutting, the two
hidden vertices of the edge aremet by only two hidden edges
(see Fig. 9b). To maintain that every vertex is met by three
edges, we {merge} the two vertices to their adjacent hidden
vertices (see Fig. 9c). Since each cutting-and-merging reduces
two of the hidden vertices, the resulting number of hidden
vertices is even (odd) if the initial NH is even (odd), which
satisfies the constraint imposed by Theorem 3.

At first, the cutting is applied to one hidden edge on the
hidden cycle each time, resulting in different hidden
structures. The cutting is also used to cut two or more
such edges each time. It should be emphasized that not
every cutting of two or more edges each time is valid.

Figs. 9d and 9f show two examples of cutting two edges

each time in Fig. 9a. The former is valid but the latter is not.
The cutting-and-merging procedure is always applied to

the initial hidden structure, cutting one edge or multiple
edges each time. The maximum number of edges that can

be cut each time is the largest integer � NH=2 because
removing one edge reduces two hidden vertices. All the
hidden structures obtained from the procedure plus the
initial structure are kept for the selection of the most

plausible one. Fig. 10 shows all the hidden structure
obtained from that in Fig. 8c.
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Fig. 8. An example of inferring the hidden topology of a line drawing.
(a) The line drawing of an object. (b) Finding the boundary edges (the
bold cycle) and the incomplete vertices (filled-in circles). (c) Initial hidden
vertices (blank circles). (d) The most plausible result after the reduction
of the initial hidden structure.

Fig. 9. Illustration of the cutting-and-merging procedure, where a� e are

incomplete vertices, v1�5 are hidden vertices, and ðv1; v2; v3; v4; v5; v1Þ is a
hidden cycle. (a) The initial hidden structure. (b) Result after cutting one

edge ðv1; v5Þ from (a). (c) Result aftermerging v1 to v2 and v5 to v4 from (b).

(d) Result after cutting two edges ðv1; v5Þ and ðv3; v4Þ from (a). (e) Result

after merging v1 and v3 to v2 andmerging v5 and v4 from (d), where v5 and

v4 disappear after being merged. (f) Result after cutting two edges ðv1; v5Þ
and ðv4; v5Þ from (a), where v5 has no place to be merged with.

Fig. 10. The initial hidden structure and all others derived by the cutting-
and-merging procedure.



Now, we analyze the complexity of the cutting-and-

merging procedure. Since the maximum number of edges

that can be cut each time is the largest integer l � NH=2 ¼

jVI j=2, the number of all the hidden structures (valid or

invalid) is equal to C0

jVI j
þ C1

jVI j
þ C2

jVI j
þ . . .þ Cl

jVI j
, where

C0

jVI j
¼ 1 denotes the initial structure. Thus, the complexity

of the procedure is exponential in the number of the

incomplete vertices in a line drawing. Although it is

exponential, the computational time for recovering a hidden

structure usually takes negligible time when the number of

incomplete vertices is small (say, less than 15). For each of

the objects in the experiments, the time spent to recover the

hidden structure is less than 0.02 seconds.

5.4 Selecting the Most Plausible Structure

Given a set of possible hidden structures, the selection of the
most plausible one is based on the visual psychological
properties from Gestalt psychology. The law of symmetry is
one of themost importantGestalt laws,which reveals that the
human visual system is overwhelmed by symmetry and
tends to interpret a figure in such a way as to produce an
object that is as symmetrical as possible. When this law is
applied to the inference of the hidden structure of a line
drawing, each hidden face is related to a similar visible face.
At this stage, sincewe discuss topological structures only,we
say that two faces are similar if they have the same number of
edges. These two similar faces are also called topologically
same.Motivated by this law,we have the followingRule 1 for
selecting the most plausible hidden structure:

Rule 1. Given a set of hidden structures from a line drawing,
select the one having as many hidden faces similar to the
visible faces as possible.

We define a nonsymmetry measure NSM for the
selection. Suppose that there are n hidden structures.
Initially, we set NSMi ¼ 0, 1 � i � n. For every hidden
face in the ith structure, we check if there is a corresponding
topologically same visible face. If no, increase NSMi by 1.
For each structure, one visible face cannot be used more
than once in the checking. The most plausible is the jth
structure with NSMj ¼ min1�i�nfNSMig.

Rule 2. When there are two or more plausible structures with the
same value of nonsymmetry measure, choose the one with the
fewest hidden vertices.

Rule 2 is based on the property of simplicity in Gestalt
psychology. If finally there are still more than one candidate
after applyingRules 1 and2, all of themare reconstructed and
the user can select one. Inmost cases, only onemost plausible
hidden structure in a line drawing is obtained using Rules 1
and 2. For the example shown in Fig. 10, the second hidden
structure is the most plausible one and selected.

5.5 Handling Line Drawings with Zero Edges

For a line drawing with zero edges, we remove these edges
and thus reduce the line drawing to a new one without zero
edges. Then, Theorem 5 guarantees that the boundary edges
of thenew linedrawing formboundary cycles. Basedon these
boundary cycles, we treat the zero edges as part of the initial
hidden topology and then perform the inference procedure
described in Sections 5.3 and 5.4. The only difference is that
wedonot cut andmerge the zero edges.Anexample is shown
in Fig. 11. From the original line drawing (Fig. 11a), we
remove the zero edge ðv1; v2Þ and find the two boundary
cycles (Fig. 11b). Then, each incomplete vertex is connected to
a hidden vertex, as shown in Fig. 11c. Note that the zero edge
is now treated as a “hidden” edge. The final selected hidden
structure is given in Fig. 11d.

Another line drawing with four zero edges is shown in
Fig. 12a. After removing the zero edges, we obtain a new line
drawing (Fig. 12b) from which one boundary cycle and
incomplete vertices are found. In the initialization, each
incomplete vertex is connected to a hidden vertex (Fig. 12c),
and the hidden vertices are connected by a hidden cycle
(Fig. 12d). Then, the inference procedure reduces the initial
hidden structure, and the most plausible structure is shown
in Fig. 12e.

It should be emphasized that the found hidden vertices
and edges, except zero edges, have no geometrical con-
straints in the 2D plane. They provide only the topological
structures. The geometrical reconstruction of a complete
3D object from a line drawing is the purpose of Section 6.

6 3D RECONSTRUCTION

In what follows, we call a line drawing with its recovered
hidden structure a complete line drawing. After obtaining a
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Fig. 11. (a) A line drawing with only one zero edge. (b) Two found
boundary cycles (bold lines) with incomplete vertices (filled-in cycles)
after removing the zero edge from (a). (c) Each incomplete vertex
connected to a hidden vertex. (d) The final selected result.

Fig. 12. (a) A line drawing with four zero edges. (b) One boundary cycle
(bold lines) with incomplete vertices (filled-in circles) after removing all
the zero edges from (a). (c) Each incomplete vertex connected to a
hidden vertex. (d) The initial hidden structure (dotted lines). (e) The final
selected result.



complete line drawing, the next task is to reconstruct its
3D shape. Since we already know the face topology of the
complete line drawing, we only need to derive the
3D coordinates of all the visible and hidden vertices. We
consider a line drawing as a parallel (or near parallel)
projection of a 3D object. The x- and y-coordinates of each
visible vertex are thus already known, and only the
z-coordinate (depth) has to be derived. However, all the x,
y, and z-coordinates have to be found for hidden vertices.
This reconstruction problem is more difficult than those in
the previous work where the 2D positions of all the vertices
and edges of a line drawing are known.

In the following, we use an optimization-based approach
to tackle the reconstruction problem. It inflates a flat line
drawing into a 3D object by assigning depths to all the
vertices and x and y-coordinates to all the hidden vertices.
The recovered object should be in accordance with our
visual perception. Note that in Section 5.5, we treat zero
edges as part of the hidden structure of a line drawing. In
3D reconstruction, the x and y-coordinates of the visible
vertices on zero edges are already available (see Fig. 12e).
Besides, the x and y-coordinates of a hidden vertex
connected to a broken vertex are not independent; this
hidden vertex is confined on the line passing through the
visible broken edge corresponding to the broken vertex. An
example is given in Fig. 13, where v2 is a broken vertex and
not a real vertex of the 3D object. We do not need to derive
the depth of v2. Instead, we need to find the x, y, and
z-coordinates of the vertex v3. The x and y-coordinates of v3
are confined on the line passing through the broken edge
ðv1; v2Þ. More precisely, v3 is located somewhere by
stretching the broken edge ðv1; v2Þ. Next, we develop an
objective function first and then discuss how to obtain the
3D reconstruction by optimization.

The objective function consists of three components. The
first one is a symmetrymeasure. Based on the spirit of the law
of symmetry from Gestalt psychology, we consider a
symmetrymeasureS for a closedplanar figure. It isdefinedas

S ¼
A

P 2
; ð6Þ

where A and P are the area and perimeter of the figure,
respectively.

It holds that S � 1

4� for any closed planar figure [45]. A
circle is themost symmetrical planar figurewithS ¼ 1

4� . For a
polygon with m vertices, its symmetry measure S �
4m tanð�mÞ [45]. The maximum is achieved if and only if the
polygon is the most symmetrical with m equal-length sides.
These facts indicate that (6) is a rather reasonable measure of
symmetry.

Apolyhedron consists ofmore than three faces, each being
apolygon.Weconsider the recoveredobject as the integration

of all its planar faces in 3D space. Thus, the whole symmetry
measure of a polyhedron with n faces is defined as

WS ¼
Xn

i¼1

Ai

P 2
i

; ð7Þ

where Ai and Pi, 1 � i � n, are the area and perimeter of

face i, respectively. We expect that given a line drawing,

maximizing WS combined with other two criteria would

provide us with the most plausible recovered 3D object. The

intuition behind it is that if we force the faces of the

reconstructed object to be as symmetrical as possible, then

the flat 2D line drawing will be inflated into a 3D object.

More explanation of this constraint and its comparison with

the second constraint described next can be found in [46].
It should be mentioned that the faces of the 3D object

may not be strictly planar. In this case, the area of a face is

denoted by the sum of the areas of the triangles obtained by

the triangulation of the face (see Fig. 14). An algorithm for

the triangulation of a polygon can be found in [47].
Marill [34] presented his approach to 3D reconstruction

based on a criterion: minimizing the standard deviation of

all the angles (SDA) formed by every two adjoining lines in

the reconstructed object. SDA is computed by

SDA ¼ Varð�1; �2; . . . �kÞ; ð8Þ

where �1; �2; . . . ; �k are all these k angles, and Var denotes

standard deviation. This criterion can be regarded as another

representation of the symmetry constraint. Minimizing SDA

is the second component of the objective function.
The third component is about planarity.Whenwe observe

a line drawing representing a 3D polyhedron, we can clearly

identify the cycles representing faces. This face information is

very useful in helping our perception of the shape of the

object. We also enforce this planarity constraint in the

3D reconstruction.
Let the plane passing through face i be represented by a

vector f i ¼ ðai; bi; ciÞ
T . In what follows, we also represent

3D vertices in vector form. Then, a vertex v ¼ ðx; y; zÞT on

the plane f i satisfies the linear equation

aixþ biyþ ciz� 1 ¼ 0 ð9Þ

or

v
T
f i ¼ 1: ð10Þ

Suppose that face i has m vertices vij ¼ ðxij; yij; zijÞ
T ,

1 � j � m. Then, we have

CAO ET AL.: WHAT THE BACK OF THE OBJECT LOOKS LIKE: 3D RECONSTRUCTION FROM LINE DRAWINGS WITHOUT HIDDEN LINES 513

Fig. 13. The 2D position of v3 obtained by stretching the visible broken

edge ðv1; v2Þ.
Fig. 14. (a) A face of an object which may not be planar in 3D space.

(b) Triangulation of the face, where the area of the face is denoted by the

sum of the areas of the three triangles.



Vif i ¼ 1; ð11Þ

where Vi ¼ ðvi1;vi2; . . . ;vimÞ
T , and 1 is an m-dimensional

column vector with all its elements being 1.

However, for a face with more than three vertices, it is not

likely for all the vertices to be located exactly on a plane in

3D space, especially during the first stage of the reconstruc-

tion. To compute thedeviation fromplanarity for the vertices,

the least square fitting technique is employed. Instead of

solving the overconstrained equation in (11), we seek f i

that minimizes the square error ðVif i � 1ÞT ðVif i � 1Þ. In

other words, f i should satisfy

@

@f i
ðVif i � 1ÞT ðVif i � 1Þ ¼ 0 ð12Þ
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Fig. 15. Results of the inference of the hidden structures (dotted lines) and the final 3D reconstruction. Each reconstructed object is shown in two

views, and its faces are denoted by different gray levels.



from which we have

f i ¼ ðVT
i ViÞ

�1
V

T
1: ð13Þ

Thus, we evaluate the deviation from planarity DPi for
the vertices on face i by the sum of all the squared distances
of the m vertices to the plane, that is,

DPi ¼
1

a2i þ b2i þ c2i

Xm

j¼1

ðaixij þ biyij þ cizij � 1Þ2: ð14Þ

For an object with n faces, the weighted total deviation from
planarity DP is defined as

DP ¼ w
Xn

i¼1

DPi; ð15Þ

where theweightw is a balance parameter and is chosen to be
0.01. BecauseDP is usuallymuch larger thanWS0 in (16) and
SDA if w ¼ 1, we set w as a small value to balance the three
constraints.

Based on the above analysis, the objective of reconstruc-
tion is to maximize WS while minimizing DP and SDA. In
order to combine the three targets into one objective
function, WS is replaced with WS0 that takes the form

WS0 ¼
Xn

i¼1

P 2

i

Ai
: ð16Þ

Finally, the objective function to be minimized is defined as

fðz1; z2; . . . ; zv; d1; d2; . . . ; db; xh1; yh1; xh2; yh2; . . . ; xhu; yhuÞ

¼ �ðWS0 þ SDAÞ þ ð1� �ÞDP;

ð17Þ

where 0 � � � 1 is a weighting factor; z1; z2; . . . ; zv are the
depths of all the v visible and hidden vertices; d1; d2; . . . ; db
are the lengths of all the b broken vertices stretched out along
the directions of their broken edges (see Fig. 13); ðxh1; yh1Þ,
ðxh2; yh2Þ, and . . . ; ðxhu; yhuÞ are the x and y-coordinates of all
the u hidden vertices, except the b hidden vertices stretched
out from the broken vertices.Minimizing f expresses our aim
to construct a 3D object as symmetrical as possible with the
constraint of planarity.

Witha fixed� in (17),manyoptimizationalgorithmscanbe
used tominimize the objective function such as hill-climbing,
genetic algorithms, simplex search, and simulated annealing.
However, we have found that Leclerc and Fischler’s con-
tinuation method [29] with varying � is more effective to
obtain good results. Leclerc and Fischler used this method to
minimize an objective function that is in a similar form to (17).
We also use this method for our 3D reconstruction.

In the continuation method, � is a sequence of descent
steps applied to f for decreasing values of �. The sequence
begins with some initialization of the variables of f (for
example, assigning random values to them) and with some
relatively large � � 1, and the hill-climbing algorithm
presented in [34] is employed to minimize f . Then, � is
reducedbyagivenamount, and thehill-climbingalgorithmis
applied again, starting from the solution obtained by the hill-
climbing algorithm for the previous value of �. This
procedure is repeated until � reaches a predefined small
value. This strategy favors the symmetry at the beginning of
the optimization, and then, the constraint of planarity
becomes more dominating. More details about this method
canbe found in [29]. In our experiments, the sequenceof� is 1,
1/2, 1/4, 1/8, and1/16.Manyother descent schemes for� are
possible, which can lead to similar results.

7 EXPERIMENTAL RESULTS

In this section, we present a number of examples to illustrate
the proposed approach to the inference and reconstruction of
complete 3D objects from line drawings without hidden
edges and vertices. Fig. 15 shows 24 line drawings and their
reconstruction results. The results of the inference of the
hidden structures (dotted lines) are also illustrated. Note
again that the hidden structures in these illustrations are
topological but not geometrical; the 2D positions of the
hidden vertices cannot be located in the inference process.
They are recovered together with the z-coordinates of all the
vertices in the reconstruction stage. In Fig. 15, we can see that
the reconstructed objects accord with our visual perception
very well.

The algorithm is implemented in C++ running on a
Pentium 4 PC with a 3.2 GHz CPU. Table 1 gives the
computational time for eachobject inFig. 15, togetherwith the
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TABLE 1
The Numbers of the Visible and Invisible Vertices and Edges, and the Time Taken by Our Algorithm

to Handle Each Line Drawing in Fig. 15



numbersof thevisible and invisiblevertices andedgesof each
line drawing. The time includes both the inference of the
hidden structure and the 3D reconstruction. The time for the
inference can be negligible because the longest time is less
than 0.02 seconds. From the table, we see that each of the
objects can be handled within 5 seconds.

We have obtained a large set of successful examples, in
addition to those in Fig. 15. In general, however, our current
approach can only deal with line drawings satisfying the
three assumptions made in Section 3. Fig. 16 shows an
example our algorithm cannot handle. The hidden structure
is illustratedbydotted lines. The 3Dobject has a throughhole.
The complex hidden structure makes our algorithm fail.
However, our current work with the encouraging successful
results is an important step toward the research on handling
more complex objects.Webelieve that this can be achievedby
exploring more geometrical constraints and using higher-
level information from human visual perception.

8 CONCLUSIONS

We have proposed a novel approach to 3D reconstruction
from single 2D line drawings without hidden lines. We first
infer the hidden structure of a line drawing with the help of
the constraints given in several theorems.Then,wepresent an
optimization-based method to recover the 3D shape of the
complete object. The objective function is developedbasedon
perceptual symmetry and planarity. A number of encoura-
ging results have been obtained, which demonstrate the
success of the proposed approach. The future work includes
handling curved objects and more complex polyhedra by
exploring more geometrical constraints from line drawings
and using higher level information from human visual
perception.
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