
What to do and how to do it:
Translating Natural Language Directives into Temporal and Dynamic Logic

Representation for Goal Management and Action Execution

Juraj Dzifcak and Matthias Scheutz and Chitta Baral and Paul Schermerhorn

Abstract— Robots that can be given instructions in spoken
language need to be able to parse a natural language utterance
quickly, determine its meaning, generate a goal representation
from it, check whether the new goal conflicts with existing goals,
and if acceptable, produce an action sequence to achieve the
new goal (ideally being sensitive to the existing goals).

In this paper, we describe an integrated robotic architecture
that can achieve the above steps by translating natural language
instructions incrementally and simultaneously into formal log-
ical goal description and action languages, which can be used
both to reason about the achievability of a goal as well as to
generate new action scripts to pursue the goal. We demonstrate
the implementation of our approach on a robot taking spoken
natural language instructions in an office environment.

I. INTRODUCTION

Social and service robots have become quite advanced in

their overall mechanical design and behavioral functionality,

allowing them to perform quite sophisticated tasks (from

delivering mail in office environments, to doing certain

household chores, to allowing for simple play-like inter-

actions not unlike those people have with their pets). Yet,

natural language interactions with those robots are still in the

very infancy, for several good reasons. Speech recognition

has been a recurrent show stopper due the noise levels in

natural environments where social and service robots are

employed. Moreover, parsing, semantic interpretation, and

dialogue management are typically only performed for a very

limited set of natural language primitives, and thus allow

for only a tiny set of natural language instructions that user

could give to robots that would also be understood. This

lack of sufficient natural language capabilities significantly

diminishes the utility of many social and service robots

and provides a main hurdle for deploying robots in open

unconstrained natural environments (like office spaces and

living rooms).

In this paper, we propose a novel way for processing natu-

ral language on robots that tightly integrates natural language

(NL) with the robot’s goal management and action execution

systems. Specifically, we will develop an incremental NL

parser that takes lexical items (from English) with syntactic

annotations from a combinatorial categorial grammar and

semantic annotations from temporal and dynamic logics ex-

tended by λ-expressions and maps them onto λ-free temporal

and dynamic logic expressions that represent the goals and

Juraj Dzifcak, ASU, jurajd@gmail.com
Matthias Scheutz, Indiana University, mscheutz@indiana.edu
Chitta Baral, ASU, chitta@gmail.com
Paul Schermerhorn, Indiana University, pscherme@indiana.edu

actions specified in the natural language directive, respec-

tively. This two-pronged approach of extracting goals and

action sequences incrementally at the same time has many

advantages: (1) it allows for quick responses for the robot

when it does not understand an expression (e.g., [6]), (2) it

enables the robot to check the consistency of the new goals

from the directives with existing goals, (3) it gives the robot

an (at least partial) action sequence to achieve the goals,

which can be further refined via planners, and (4) it allows

the robot to detect and react to important syntactic, semantic,

and pragmatic ambiguities in the directive immediately.

The rest of the paper proceeds as follows. We start with

a very brief background of the employed temporal and

dynamic logics, and give a few examples on how goals and

action sequences can be specified based on NL directives.

We also review some existing work on the processing of

NL directives on robots. We then introduce the different

steps in our approach of the parallel generation of temporal

and dynamic logic formulas based on NL directives and

describe the implementation in the context of our integrated

robotic DIARC architecture. Finally, we show results from

qualitative evaluations we performed on the robot in an

office domain, discussing the properties and limitations of

the current approach and concluding with a summary of our

work and possible future directions.

II. BACKGROUND

The general idea of our proposed system is that the

meaning of verbs in directives, instructions or commands

can be interpreted as having two intended meanings: (1) that

of specifying post-conditions or goal states and (2) that of

specifying means of achieving them or action sequences. For

example, the instruction “Go to the breakroom” specifies

both the goal of being at the breakroom at some future

point in time and the action of going to the breakroom.

Consequently, we need to find both goal and action repre-

sentations in a formal language to capture both meanings.

Since goal specifications make intrinsic references to times,

time intervals, events, etc., as well as temporal properties

of behaviors, we need a logic that can capture temporal

aspects. And since action specifications make reference to

actions, sequences of actions, conditional actions, repeated

actions, etc., we need an action logic to capture the dynamic

aspects of actions and action execution. While there have

been proposals for merging temporal and action logics that

could express both aspects within the same formal framework

(e.g., TAL [7]), there are good reasons to separate the two

aspects.1

We will thus first review the two formal languages/logics

that we chose to specify goals and action sequences and

then give examples of how natural language directives can

be expressed in both formalisms.

A. Branching Temporal Logic CTL∗

Branching temporal logics such as CTL∗ [8] were devel-

oped to be able to specify goals that cannot be specified using

linear temporal logics like LTL.2 The need for branching the

time operators arises when we have to specify conditions

outside the agent’s path or plan. For example, when a robot

is moving from position A to position B, we might require it

to be always within a certain distance of a charging station.

This goal cannot be expressed in LTL, which only has state

formulas that are properties of states. Let 〈p〉 denote an

atomic proposition, 〈sf〉 denote state formulas, and 〈pf〉
denote path formulas.

sf ::= p | sf ∧ sf | sf ∨ sf | ¬sf | E pf | A pf
pf ::= sf | pf U pf | ¬pf | pf ∧ pf | pf ∨ pf |

©pf | ✸pf | ✷pf

The symbols A and E are the branching time operators

meaning “for all paths” and “there exists a path” respectively.

The branching structure is specified by a transition relation

R between states of the world. Intuitively, R(s1, s2) means

that the state of the world can change from s1 to s2 in one

step. Given a transition relation R and a state s, a path in R
starting from s is a sequence of states s0, s1, . . . such that

s0 = s, and R(si, si+1) is true.

When planning in an environment where the robot is the only

one that can make changes to the world, R(s1, s2) is true if

there exists an agent’s action a such that s2 = Φ(s1, a). If

there are external agents other than the robot then R(s1, s2)
is true if there exists an action (by some agent) a such

that s2 = Φ(s1, a). Finally, we say a sequence of actions

a1, . . . , an is a plan with respect to the initial state s0 and

a goal G if (s0, R, σ) |= G, where σ is the trajectory

corresponding to s0 and a1, . . . , an. For details on the formal

semantics of CTL∗, see [4].

B. Dynamic logic

Actions and action sequences that the robot can execute

are specified in the form of scripts or action programs. The

specification is based on a simplified subset of first-order

dynamic logic (FDL) (e.g., [11] without the “?” operator

that turns arbitrarily complex formulas into programs that

1For one, because the computational complexity of TAL expressions is
intractable. Another reason is that building fast and incremental independent
translations allows for early starts of actions (based on successfully parsed
action primitives, e.g., see [6]), quick consistency checks of goals, dialogue-
based disambiguation of instructions, partial understanding of sentence
fragments (where either only goal or only actions are understood), and
many others. For space reasons, we have to defer developing more fully
the rationale for using separate logics.

2The role of LTL in specifying planning goals has been well studied and
examples of that can be found in [1], [14], [3].

can check their truth).3 Rather, checking the truth of a for-

mula must be achieved via special “primitive truth checking

actions” that are defined for some predicates (e.g., there are

special primitive actions that can check whether an obstacle

is in front of the robot and thus explicitly test the truth of the

expression “obstacle(infront)”). For all other formulas (that

do not have corresponding primitive truth checking actions),

checking the truth has to be accomplished via explicit truth

checking programs (expressed in dynamic logic). For exam-

ple, checking whether φ∨ψ is true translates into the program

“if ¬φ then ψ else true”.4 Programs are defined in

the standard way (as regular expressions) based on a set of

primitive actions Π that can be combined to form complex

programs using the standard operations for sequence (α;β),

choice (α∪β), and iteration (α∗). Conditionals (if φ then
α else β) and conditional loops (while φ do α) are

also defined in the usual way, hence we will not give a

detailed description of FDL and its semantics here, but refer

to the treatment in [11].5 We have implemented an action

interpreter which will take a program specified in the above

restricted FDL and execute it (e.g.,[6]).

C. Examples of NL translations into goal descriptions and

action scripts

We can now illustrate how a simple natural language

instruction like “go to the breakroom and report the location

of the blue box” in the context of an office domain can

be expressed in our goal and action interpreter languages

and how multiple possible translations can reveal interesting

ambiguities in the goal specification based on the meaning

of “and”.

The first translation assumes that the intended meaning of

“and” is that of a temporal sequence and thus that the robot

is supposed to report the location of a blue box that located

within the breakroom. This can be represented in CTL∗

as ✸(at(breakroom) ∧ ✸reported(location, blue box))
and the corresponding action script (i.e., the robot pro-

gram) to accomplish these goals can be translated as

go to(breakroom); report(location, blue box).6

3The rationale for this restriction is that checking the truth of (complex)
predicates is typically not an atomic operation, but takes time and amounts
to executing actions in the virtual machine of the robot architecture (e.g.,
checking whether a goal has been reached will require a look-up operation
on the goal stack, or checking whether an obstacle can be seen in front of
the robot will require checking distance and/or vision sensors). As such,
complex formulas might require a sequence of operations in the virtual
machine architecture that may or may not be executed in parallel, and could
potentially fail at different points. Hence, it seems reasonable in the robotic
context to require that the processes of checking the truth of formulas be
explicitly expressed in programs.

4Note that the negation here is also treated as an action that negates the
exit status of an action.

5We are also using a variant of PDL with parallel execution α||β of two
actions α and β which has been demonstrated to be finitely axiomatizable
and decidable.

6Note that we assume here that the report-action takes two arguments,
the first being a property of an object, the second being an object type. This
is to avoid complications with quantifiers that arise from using determiners
like “a”, “the”, “one”, “any”, “some”, “all”, etc. which all have different
meanings and require different translations.

Another, quite different, goal description

is obtained if “and” is construed “proposi-

tionally” (instead of specifying a sequence):

✸at(breakroom) ∧ ✸reported(location, blue box)
with the corresponding action script being

go to(breakroom)||report(location, blue box). In this

case, the robot could report a blue box that it might see

on the way to breakroom instead of a box located within

the breakroom. If one wants the robot to report only

a blue box within the room, then one needs to add an

explicit statement that no report should be made before

the robot is in the breakroom, which can be translated

as ✸(at(breakroom) ∧ ✸reported(location, blue box) ∧
¬reported(location, blue box)Uat(breakroom)). Note

that while this translation will require that the report be

made from within the breakroom, it still does not prevent

the robot from sensing a blue box outside the room and

only reporting its location once it is inside the room (to

account for this possibility, additional predicates regarding

the perceptual functions and when they are executed need

to be added to the goal specification and to the program).

This simple example already demonstrates several impor-

tant challenges with natural language directives, in particular,

that they frequently involve default assumptions about how

to interpret logical and temporal connectives, that they can be

syntactically and semantically ambiguous, but that pragmatic

constraints might hint at the intended meaning, and that

logical translations might be one way for robots to address

and deal with these ambiguities if the intended interpretation

cannot determined (e.g., the robot could ask for clarification,

providing the different interpretations it found, rather than

just executing one of them).

D. Related Work

There are several examples of robots that can be given

instructions or goals in natural language (e.g., a semi-

autonomous wheelchair that responds to coarse route de-

scriptions (e.g. “turn left,” “follow corridor”) [13]; or a robot

that can be guided through an environment using goal-based

commands (e.g. “go to the left of the ball”) or direction-

based commands (“turn right”); or the system developed by

[9], which can use violations of preconditions of actions

or impossible actions to eliminate incorrect interpretations

and disambiguate otherwise ambiguous expressions; or the

system proposed in [15] which can learn simple action

scripts through natural language instruction as long as the

instruction follows a clearly defined scheme or template).

Yet, aside from a large body of research in natural language

semantics on translating English into formal logics (e.g.,

first-order logic [5] or more recently ASP [2]), we are not

aware of any examples of such NL systems on robots where

natural language expressions are systematically translated

into formal goal and action representations (even though

some systems share the incremental processing properties

of the proposed system, e.g., [12]).

In none of the above systems are natural language sen-

tences mapped directly onto explicit goal representations that

can be used both for checking the achievability of goals and

as a guide for planning and action execution. Moreover, none

of the above systems generates novel action scripts from

NL expressions in a formal logic that can be directly used

for verification of achievability (of the action sequence), for

planning (to fill in missing actions due to the high level

description), and for execution.

III. INCREMENTAL NATURAL LANGUAGE TRANSLATION

INTO GOAL LANGUAGES AND ACTION SCRIPTS

We start with defining categories of all lexical items in

a combinatorial categorial grammar ([18], [10]) and also

introduce λ-expressions into CTL∗ and FDL to represent

the goal and action meanings of lexical expressions.7 At any

given point in the parsing process (i.e., after the consumption

of n lexical items), the parser will retrieve the grammatical

category and associated λ-expressions for a new lexical item

and determine the way its λ-expressions should be combined

with those of the sentence fragment so far based on the order

dictated by the CCG grammar (cp. to [2]).

A. Combinatorial Categorial Grammar (CCG)

Word or phrase Categories

and, or, but, until, before (S/S)\S

while, always (S/S[c])\S[c], (S/S[c])/S[c]

when (S/S[c])\S[c], (S/S[c])/S[c]

within, during (S\(S/NP)/S)\S, (S/S)/S

do not S/(S/NP), (S/N)/(S/NP)

go to, pass by, reach (S/NP), (S[c]/NP)

stay, detect, clean, check (S/NP), (S[c]/NP)

speak, wait S, S[v]

is (S/NP)\NP

turn on, get, open, close S/NP , (S[c]/NP)

report (S/P P [of])/NP

a, the, one NP/N

all, some NP/N[p]

in NP/N[loc]

of P P [of]/NP

immediately, eventually, then (S/N)/(S/NP), S/S[v]

keep, maintain, stay (S/(S/NP))/N , S/NP

you P P/(S/NP)

ever (S\(S/(S/NP)))/S

Room 1...n1 NP , N , N[loc]

Door 1...n2 NP , N , N[loc]

Corridor 1...n3 NP , N , N[loc]

hit, foyer, light, break, blue box NP , N

blue boxes NP [p], N[p]

door, corridor, location NP , N

recharge station, breakroom NP , N , N[loc]

on, occupied, detected NP , N

TABLE I

COMBINATORIAL CATEGORIAL GRAMMAR

Following [10], a combinatorial categorial grammar

(CCG) can is characterized by (1) a set of basic categories,

(2) a set of derived categories, each constructed from the ba-

sic categories, and (3) some syntactical (combinatorial) rules

describing the concatenation and determining the category of

the result of the concatenation.8

Table I shows a subset of the implemented lexical items

from the office domain (i.e., words or phrases) and their

7Note that there is a long tradition in formal linguistics of using λ-calculus
for translating English sentences into first order logic formulas [5].

8There are various combinatorial rules used in CCGs for natural language,
such as (forward/backward/forward-crossing/backward-crossing) function
application, (forward/backward/forward-crossing/backward-crossing) sub-
stitution and others (See, e.g., [18]). For the purpose of this presentation,
we only assume forward and backward application rules.

Word or Phrase λ-TL-expression λ-FDL-expression

and λxλy.✸(x ∧ ✸y) λxλy.x; y
λxλy.✸x ∧ ✸y λxλy.x||y

but λxλy.✸x ∧ ✸y λxλy.x ∧ y

or λxλy.✸x ∨ ✸y λxλy.x ∪ y

until λxλy.xUy λxλy.x∗; y

before λxλy.✸(y ∧ ✸x) λxλy.x; y

when λxλy.✷(x ⇒ y) λxλy.x||y

while λxλy.x ∧ y λxλy.x||y

eventually, then λx.✸x λx.x

immediately λx. © x λx.x

reach, go to, pass by λx.at(x), λx.✸at(x) λx.go to(x)

get λx.✸get(x) λx.get(x)

stay λx.✷at(x), λx.✷x λx.stay − at(x)

report λxλy.report(x, y) λxλy.report(x, y)

maintain, ever, always λx.✷x λx.x

keep λx.✷x λx.x

within λxEx λx.x

during λxEx λx.x

do not λx.¬x λx.¬x

turn on λx.on(x) λx.turn − on(x)

detect λx.detect(x) λx.detect(x)

check λx.check(x) λx.check(x)

clean λx.clean(x) λx.clean(x)

open λx.open(x) λx.open(x)

speak λx.x@speak λx.x@speak

a, the, you, one λx.x λx.x

all, some, in, of, is λx.x λx.x

Room A λx.x@roomA λx.x@roomA

Corridor B λx.x@corridorB λx.x@corridorB

Door C λx.x@doorC λx.x@doorC

light λx.x@light λx.x@light

on λx.on(x) λx.on(x)

blue box λx.x@blue box λx.x@blue box

recharge station λx.x@recharge − station λx.x@recharge − station

breakroom λx.x@breakroom λx.x@breakroom

TABLE II

SOME OF THE λ-EXPRESSIONS USED TO OBTAIN THE LOGICAL

REPRESENTATIONS OF SENTENCES. WE ASSUME x AND y ARE ACTIONS,

WITH ACTION-PREDICATE MAPPING AVAILABLE.

assigned categories in a standard NL CCG. Note that lexical

items here do not include inflected forms (e.g., on verbs or

plurals on nouns).

B. λ-calculus

In addition to grammatical categories, we also need

to assign meanings to lexical items, which are lambda-

expressions in CTL∗ and FDL. A λ-expression is either a

variable v, or an abstraction (λv.e) where v is a variable

and e is a λ-expression; or an application e1e2 where

e1 and e2 are two λ-expressions. Given a λ-expression e
and variables x1 and x2, α(e, x1, x2) = e[x1 := x2],
where e[x1 := x2] denotes the substitution of x1 by x2

in e. Given a free variable x and λ-expressions e1 and

e2, (λx.e1)@e2 = e1[x := e2]. A β-reduction can be

viewed as a function application and will be denoted by the

symbol @. For example, λx.go to(x) @ breakroom results

in go to(breakroom).
Table II shows the lambda-expressions for CTL∗ and FDL

associated with a subset of lexical items from the dictionary.

A,B and C are variables corresponding to the indexes of

the rooms, corridors and doors respectively. Please note

we use the formula λx.x to denote that the word has no

meaning for our logic(s). Also, we allow multiple λ-TL-

expressions and action associations for lexical items with

the same CCG category to capture lexical ambiguities (i.e.,

multiple meanings).

C. Parsing

We currently employ a simple heuristic-based parser that

supports several combinatorial rules, most notably the for-

ward and backward application and their generalized version.

The parser incrementally builds goal and action descriptions

for natural language directives by combining expressions

based on those combinatorial rules using various heuristics.

The first heuristic tries to assign categories in a such a way

that for any possible complex category of a word, we initially

try the ones for which all the basic categories (or at least the

less complex ones) are present in the rest of the sentence. For

example, if for a word ‘w’ we have the categories S/(S/NP)
and (S/N)/(S/NP) to choose from and currently no word

in the sentence has the category N assigned, we try the

category S/(S/NP) first.

Another heuristic is used for rule selection where less

complex categories are combined first, if possible. This is

because such combinations are more likely lead to a failure

if there is one.

To get an understanding of how the parser obtains the final

CTL∗ and FDL expression, we give an example of one of

the derivations.

1) Go to the breakroom and report the location of the

blue box. One of the possible derivations is shown

in Table III. It shows the resulting formulas to be

✸(at(breakroom) ∧ ✸report(location, blue box))
and go to(breakroom); report(location, blue box).
Please note that there is an alternate derivation

using a different formula for ’and’, resulting in

✸at(breakroom) ∧ ✸report(location, blue box) and

go to(breakroom)||report(location, blue box).

D. Implementation and Preliminary Evaluation

We used our DIARC [6] (based on the ADE robotic

infrastructure [16]) for the implementation and evaluation of

the proposed parser.9 Specifically, the parser was integrated

into our DIARC architecture [6] by replacing the previous

incremental parser in the natural language subsystem of

DIARC [6]. The architecture was run on a dual-core 2.4GHz

Pentium Mobile Lenovo laptop under Linux kernel 2.6.24.

The laptop was mounted on top of an ActivMedia Pioneer AT

with a BumbleBee stereo fire-wire camera mounted above a

Sick Laser. The laser was used for localization and obstacle

avoidance, the camera for detecting colored objects with

simple shapes (like boxes).

The test environment (see Fig. 1) was an office setting

with a long hallway and several rooms on the right and

the left of the hallway. The robot had an annotated map

of the whole environment and was thus able to associate

locations like “breakroom” with particular areas on the map.

The robot received instructions via a wireless microphone

9DIARC is a distributed integrated affect reflection and cognition architec-
ture especially developed for natural human-robot interaction that has been
used with a variety of robots (from ActivMedia Pioneer and Peoplebots, to
Segway robots, and various custom-made platforms). It integrates typical
cognitive tasks (such as natural language understanding and complex action
planning and sequencing) with lower level activities (such as multi-modal
perceptual processing, feature detection and tracking, and navigation and
behavior coordination) and has been used for several years in human subject
experiments to study advanced human-robot interactions.

Go to the breakroom and report the location of the blue box.

S/NP NP/N N (S/S)\S (S/P P [of])/NP NP/N N P P [of]/NP NP/N N
S/NP NP (S/S)\S (S/P P [of])/NP NP P P [of]/NP NP

S (S/S)\S (S/P P [of]) P P [of]
S (S/S)\S S

(S/S) S
S

Go to the breakroom and report the location of the blue box.

λx.at(x) breakroom λxλy.✸(x ∧ ✸y) λxλy.report(x, y) location λx.x blue box
λx.at(x) breakroom λxλy.✸(x ∧ ✸y) λxλy.report(x, y) location λx.x blue box

at(breakroom) λxλy.✸(x ∧ ✸y) λy.report(location, y) blue box
at(breakroom) λxλy.✸(x ∧ ✸y) report(location, blue box)

λy.✸(at(breakroom) ∧ ✸y) report(location, blue box)
✸(at(breakroom) ∧ ✸report(location, blue box))

Go to the breakroom and report the location of the blue box.

λx.go to(x) breakroom λxλy.x; y λxλy.report(x, y) location λx.x blue box
λx.go to(x) breakroom λxλy.x; y λxλy.report(x, y) location λx.x blue box

go to(breakroom) λxλy.x; y λy.report(location, y) blue box
go to(breakroom) λxλy.x; y) report(location, blue box)

λy.go to(breakroom); y report(location, blue box)
go to(breakroom); report(location, blue box))

TABLE III

CCG AND λ-CALCULUS DERIVATION FOR “GO TO THE BREAKROOM AND REPORT THE LOCATION OF THE BLUE BOX.”

which was connected to the sound card on the laptop onboard

the robot.10

A human speaker instructed the robot in natural lan-

guage to “go to the breakroom and report the location

of the blue box”. As soon as the utterance was fin-

ished, the robot had generated the goal representation

✸(at(breakroom) ∧ ✸reported(location, blue box)) and

accepted the goal (as there was no other higher priority

goal in conflict with it, see [6] for more details on the

goal management subsystem). The robot then acknowledged

the goal verbally (“OK, going to breakroom”) and started

to move towards the breakroom based on the action script

go to(breakroom); report(location, blue box). Once it ar-

rived in the breakroom, it started a “look-for” action as part

of the “report” action, found a blue box next to the printer

(which was a landmark in its internal map of the office) and

then generated a verbal report of the location “The blue box

is by the printer” (based on the determined proximity of the

target object to the closest landmark object, in this case the

printer). We also tested the robot with various other similar

instructions (e.g., the above example “Go to Room 7 and

wait until the light is on”) and in all cases the robot was

immediately able to understand and carry out the directives.

IV. DISCUSSION AND RELATED WORK

The qualitative experimental evaluation demonstrated that

our approach to generating goal and action representations

from natural language expressions is viable (i.e., can be

done in real-time on an actual robot in a natural human

environment) and allows the robot to carry out directives

that have temporal aspects and conditions (such as the ones

described above) and can have some lexical and syntactic

variation. For example, “move to the break-room and then

wait” and “wait after you’ve reached the break-room” will

result in the same interpretation of goals and programs

(template-based robotic NL systems cannot handle these

lexical and syntactic differences, e.g.,[15]). Yet, the current

system is clearly only a start. For one, because natural

language directives, aside from being ungrammatical or using

words that are not in the robot’s lexicon, can be incomplete

10For speech recognition we used CMU’s SPHINX recognizer at
http://cmusphinx.sourceforge.net/html/cmusphinx.php.

and/or too abstract to allow for clear determinations of

goals or actions. For example, our current system assumes

that instructions are complete and grammatical (e.g., that

there are no missing words, no wrong word substitutions,

no ungrammatical syntactic constructs, etc.). Moreover, it

assumes that all words are in the robot’s lexicon and thus

have a clearly specified grammatical category and seman-

tic interpretation. Even under those assumptions, there are

interesting problems connected to even simple instructions.

Take again the sentence “go to the breakroom and report

the location of the blue box”. Aside from the already

mentioned ambiguity in the interpretation of “and” and the

implicit assumption that the blue box is in the breakroom, the

action script we obtain from the parser is actually incomplete

in that it leaves out the “look-for” action which is required

for the robot to determine the location of the blue box. In our

experimental evaluation, we addressed this problem by mak-

ing “look-for” a subgoal of the “report” action, but “report”

could have solved this problem itself and determined online

(via a planner or problem-solver) that it needs to perform

the “look-for” action if we assume that report(x, y) has a

precondition known(x, y′) where y′ in an instance of type y
and that “look-for” has ¬known(x, y′) as precondition and

¬known(x, y′) as postcondition for perceivable properties

x.

In addition to filling in implicit steps, there are challenges

for determining the correct meaning (and thus the right parse)

for lexically ambiguous words. Take again the conjunction

“and” with its two interpretations (propositional vs tempo-

rally sequential). If the above instruction had been “Go to the

breakroom and report the location of the blue box along the

way”, then it would have been clear that the blue box was not

in the breakroom, and that both actions (“goto” and “report”)

had to be executed in parallel. Another example of how

the intended meaning of “and” can depend on subsequent

words (even based on the meaning of verbs) would be “go

to the breakroom and remain undetected” (parallel execution)

and “go to the breakroom and remain there” (sequential

execution); in these cases the correct meaning cannot be

determined until the final word.

A successful NL system that can take instructions from hu-

mans in (largely unconstrained) natural language will clearly

Fig. 1. The Pioneer AT robot used in the experiment when it received the instruction “Go to the breakroom and report the location of
the blue box” in the hallway (left) and when it detected the blue box by the printer in the breakroom (right). The right upper corner of
each screen shot shows the environment from the perspective of the robot’s cameras.

have to address these and other challenges (e.g., including

the parsing and generation of referential expressions in ways

that do not lead to overspecification, see [17]).

V. CONCLUSION

In this paper we demonstrated a novel natural language

translation scheme that allows robots to generate formal goal

and action descriptions in temporal and dynamic logics from

natural language directives. We have implemented a parser

for the scheme and demonstrated on robot that it works very

effectively in real-time for a small lexicon. We also discussed

the advantages of such as system for planning, the detection

of goal inconsistencies or ambiguities in the natural language

specifications of the goals. The current system is clearly only

a start and much more work on integrating annotations of

lexical items using the employed logics is required to handle

more complex instructions and cases of ambiguities. Future

work will address the integration of the NL components with

a planner than can determine and fill in missing steps in

action scripts and with a natural language dialogue system

that can be used to generate natural language questions to

disambiguate or further specify insufficiently precise instruc-

tions. Moreover, a formal human-subject evaluation of the

system is planned with different speakers under controlled

and uncontrolled conditions.

VI. ACKNOWLEDGMENTS

This work was in part funded by ONR MURI grant

#N00014-07-1-1049 to second and third author.

REFERENCES

[1] Fahiem Bacchus and Froduald Kabanza. Planning for temporally
extended goals. Annals of Math and AI, 22:5–27, 1998.

[2] Chitta Baral, Juraj Dzifcak, and Tran Cao Son. Using ASP and lambda
calculus to characterize NL sentences with normatives and exceptions.
In AAAI, 2008.

[3] Chitta Baral, Vladik Kreinovich, and Raul Trejo. Computational
complexity of planning with temporal goals. In IJCAI-01, pages 509–
514, 2001.

[4] Chitta Baral and Jicheng Zhao. Goal specification in presence of non-
deterministic actions. In Proceedings of ECAI’04, pages 273–277,
2004.

[5] Patrick Blackburn and Johan Bos. Representation and Inference for

Natural Language: A First Course in Computational Semantics. Center
for the Study of Language and Inf, 2005.

[6] Timothy Brick and Matthias Scheutz. Incremental natural language
processing for HRI. In Proceedings of the Second ACM IEEE

International Conference on Human-Robot Interaction, pages 263–
270, Washington D.C., March 2007.

[7] Patrick Doherty, Joakim Gustafsson, Lars Karlsson, and Jonas Kvarn-
ström. Temporal action logics (TAL): Language specification and
tutorial. Linköping Electronic Articles in Computer and Information

Science, 3(15), 1998.
[8] E. Allen Emerson. Temporal and modal logic. In J. van Leeuwen,

editor, Handbook of Theoretical Computer Science, volume B, pages
997–1072, 1990.

[9] Will Fitzgerald and R. James Firby. The dynamic predictive memory
architecture: Integrating language with task execution. In Proceedings

of the IEEE Symposia on Intelligence and Systems, Washington, D.C,
1998.

[10] L.T.F. Gamut. Logic, Language, and Meaning. The University of
Chicago Press, 1991.

[11] Robert Goldblatt. Parallel action: Concurrent dynamic logic with
independent modalities. Studia Logica, 51(3/4):551–578, 1992.

[12] Geert-Jan M. Kruijff, Pierre Lison, Trevor Benjamin, Henrik Jacobs-
son, and Nick Hawes. Incremental, multi-level processing for com-
prehending situated dialogue in human-robot interaction. In Language

and Robots: Proceedings from the Symposium (LangRo’2007)IJCAI-

01, pages 509–514, 2007.
[13] R. Müller, T. Rofer, A. Landkenau, A. Musto, K. Stein, and

A. Eisenkolb. Coarse qualitative description in robot navigation. In
C. Freksa, W. Braner, C. Habel, and K. Wender, editors, Spatial

Cognition II, pages 265–276. Spinger-Verlag, Berlin, 1998.
[14] Rajdeep Niyogi and Sudeshna Sarkar. Logical specification of goals.

In Proc. of 3rd international conference on Information Technology,
pages 77–82, 2000.

[15] P. E. Rybski, J. Stolarz, K. Yoon, and M. Veloso. Using dialog
and human observations to dictate tasks to a learning robot assistant.
Journal of Intelligent Service Robots - To appear, 2008.

[16] Matthias Scheutz. ADE - steps towards a distributed development and
runtime environment for complex robotic agent architectures. Applied

Artificial Intelligence, 20(4-5):275–304, 2006.
[17] Matthias Scheutz, Kathleen Eberhard, and Virgil Andronache. A

parallel, distributed, realtime, robotic model for human reference
resolution with visual constraints. Connection Science, 16(3):145–167,
2004.

[18] Mark Steedman. The syntactic process. MIT Press, 2000.

