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Interpreting partial information collected from systems subject to noise is a key problem across scientific
disciplines. Theoretical frameworks often focus on the dynamics of variables that result from coarse-
graining the internal states of a physical system. However, most experimental apparatuses can only detect a
partial set of transitions, while internal states of the physical system are blurred or inaccessible. Here, we
consider an observer who records a time series of occurrences of one or several transitions performed by a
system, under the assumption that its underlying dynamics is Markovian. We pose the question of how one
can use the transitions’ information to make inferences of dynamical, thermodynamical, and biochemical
properties. First, elaborating on first-passage time techniques, we derive analytical expressions for the
probabilities of consecutive transitions and for the time elapsed between them, which we call intertransition
times. Second, we derive a lower bound for the entropy production rate that equals the sum of two non-
negative contributions, one due to the statistics of transitions and a second due to the statistics of
intertransition times. We also show that when only one current is measured, our estimate still detects
irreversibility even in the absence of net currents in the transition time series. Third, we verify our results
with numerical simulations using unbiased estimates of entropy production, which we make available as an
open-source toolbox. We illustrate the developed framework in experimentally validated biophysical
models of kinesin and dynein molecular motors, and in a minimal model for template-directed
polymerization. Our numerical results reveal that while entropy production is entailed in the statistics
of two successive transitions of the same type (i.e., repeated transitions), the statistics of two different
successive transitions (i.e., alternated transitions) can probe the existence of an underlying disorder in the
motion of a molecular motor. Taken all together, our results highlight the power of inference from transition
statistics ranging from thermodynamic quantities to network-topology properties of Markov processes.

DOI: 10.1103/PhysRevX.12.041026

I. INTRODUCTION

Model systems in physics [1], chemistry [2—4], biology
[5-7], and computation [8] are routinely described by
Markov processes, which are also amenable to thermody-
namic analysis [9-13]. This approach thrives when there is
full knowledge of the system’s internal state, but in most
practical applications, experimental apparatuses access few
degrees of freedom or have a finite resolution; thus, only
partial information is available. One example is the rotation
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of flagella in a bacterial motor [14]: Observation of
orientation switches in the direction of the bacteria’s
flagella suggests the existence of internal states that are
hidden from the observer.

The problem of measuring partial information, or of
coarse-graining degrees of freedom, is usually framed in
terms of the internal state of a system [15-20]. However, in
most practical applications, an external observer only
measures “footprints” of one or several transitions, rather
than the internal state itself, as sketched in Fig. 1(a). These
footprints may be due to physical degrees of freedom
satisfying microscopic reversibility, in which case it is
possible to talk about their energetic and entropic balance,
as sketched in Fig. 1(b), where the observer can detect the
emission and absorption of a photon y, or the production or
consumption of a chemical species X. Finally, Fig. 1(c)
sketches the motion of a molecular motor (e.g., a kinesin)
along a periodic track (e.g., microtubule). The motor

Published by the American Physical Society


https://orcid.org/0000-0001-7105-2404
https://orcid.org/0000-0002-1420-5379
https://orcid.org/0000-0001-7196-8404
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevX.12.041026&domain=pdf&date_stamp=2022-12-07
https://doi.org/10.1103/PhysRevX.12.041026
https://doi.org/10.1103/PhysRevX.12.041026
https://doi.org/10.1103/PhysRevX.12.041026
https://doi.org/10.1103/PhysRevX.12.041026
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/

HARUNARI, DUTTA, POLETTINI, and ROLDAN

PHYS. REV. X 12, 041026 (2022)

(a) (b)

FIG. 1. Tllustrations of the partial information acquired by an
apparatus that can only detect a few visible transitions. (a) Setup
of our framework, for the case of only one visible transition. A
physical system performs a Markov-jump process in a network of
states (circles), all of which are hidden from an external observer.
The observer can only see occurrences of a few visible transitions
(one, in this example), while the rest of the transitions remain
hidden during the data acquisition (black shaded area). (b,c)
Model examples described by our theory: (b) photon emission or
absorption y and synthesis or consumption of chemical species X
that signal the occurrence of some transitions, and (c) a molecular
motor performing steps along a track and transitions related to
spatial motion along the track, detected by monitoring the
position of the cargo (orange sphere), with chemical fuel
consumption (ATP hydrolysis) often remaining hidden (gray
box); see also Fig. 2.

undergoes structural changes followed by a translocation
step associated with the consumption of some resources
(e.g., adenosine triphosphate [ATP]). In this case, the only
visible transitions are the forward and backward steps along
the track. As explained below, this situation is customary in
experiments where the motion of a microscopic bead
attached to the motor can be used to detect spatial displace-
ments along the track while conformational changes and
chemical fuel consumption remain undetectable to the
experimenter [21].

Significant developments in single-molecule experimen-
tal techniques with biological systems at cellular and
subcellular levels have been reported over the last few
decades [22]. For example, the motion of biomolecular
machines involved in cellular transport—such as kinesin
[23], dynein [24,25], and myosin [26]—has been resolved
at the subnanometer resolution. Examples include real-time
tracking of individual, fluorescently tagged biomolecules
[27,28] followed by data analysis techniques of the
recorded trajectories using, e.g., kymographs [29,30]. In
most of these experiments, biomolecular machines are
subject to nonequilibrium forces that may be intrinsic
(e.g., chemical reactions) or extrinsic (e.g., mechanical
forces exerted by optical tweezers). This motivates the fact
that the motion of the molecular motor is routinely
described by Markovian nonequilibrium stationary states.

The typical scenario of single-molecule studies is such
that only a partial set of degrees of freedom and/or

transitions are experimentally accessible. For example,
using high-resolution optical tweezers, it is customary that
the spatial transitions (e.g., a step in a linear track) can be
measured experimentally while conformational changes
or chemical reactions remain hidden from the experi-
menter. This is the case of, e.g., the molecular machines of
the central dogma of genetic information processing,
DNA polymerase [22], RNA polymerase [31], and ribo-
somes [32,33]. Because every transition during molecular
motor motion is accompanied by changes in internal
energy due to the chemical energy arising from the
coupling of the system to chemical reservoirs [34,35],
having reliable estimates of entropy production from the
observation of a partial set of transitions is key to
developing accurate bounds on efficiency and thermody-
namic costs of molecular machines [36,37].

In an attempt to extract useful thermodynamic informa-
tion from the partial observation of a few visible transitions’
statistics, we develop a transition-based coarse-graining
framework for continuous-time Markov processes. Our
analytical progress leads to descriptions and predictions
suitable for systems whose available information comes
only from counting transitions and measuring the time
elapsed between two consecutive transitions—a key con-
cept that we denote as intertransition times. In particular,
we focus on how one can infer thermodynamic and
topological properties from the sole observation of inter-
transition times and frequencies of transitions, and what the
consequences are for experimentally validated models of
biomolecular systems.

II. GOALS AND MAIN RESULTS

Recent work revealed that information extracted from
transitions between a few selected visible states provides
information about entropy production [38—40]. Yet, most of
these efforts relied on knowledge about the internal states
of the system. Instead, the main question we address in this
contribution is the following: What can be learned about a
system solely from the occurrence of a few visible
transitions (denoted #; € £) and from the time elapsed
between them (denoted #; and called intertransition time)?
Our object of study is therefore a time series of the form

t t t tn
Ff : f 0 lo ! 01 2 H | (1)

where #; denotes the time elapsed between the occurrence
of two successive transitions Z;_;,¢; € L, with £, the first
transition observed. Notice that the subindex 7 = >_"" ¢,
in T4 indicates the total time duration of the observed
trajectory, which is a deterministic quantity, whereas ¢; are
all positive random variables.

In the following, we use Dirac’s notation for vectors,
where [i) is a column vector with entries §; ; for j spanning
through the state space; thus, for example, (i|A|j) = A;; is
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the ith row and jth column entry of matrix A. We introduce
a special notation when we deal with transitions £ € L:
Here, ((Z|| is a row vector that has all zero entries except the
element corresponding to the source state of transition 7.
On the other hand, ||£)) is a column vector that has all
zero entries except the element corresponding to the target
state of transition . For example, transition £ = 1 — 3 has
(Z|| = (1|and||£)) = |3), and the matrix element associated
with transition 1 — 3 is (Z||AT||£) = (3|A|1) = A3,
where T denotes matrix transposition [41].

We assume that the underlying (hidden) dynamics that
produces the collected data is a continuous-time, discrete-
state-space Markov process with time-independent rates
(also known as a jump process) over an irreducible network
(from now on, simply called the Markov chain). The time
series T'Y is reminiscent of so-called hidden Markov
processes, but we emphasize again that here our focus is
on visible transitions rather than visible states. We focus on
the following statistical quantities, which are easily acces-
sible in experimental settings:

(i) Histograms collecting the frequency F(#|¢;, £, )dt
that the time ¢, elapsed between ¢; and ¢, , called
the intertransition time, which lies within the inter-
val [t, 1+ dt).

(ii) The conditional frequency F(¢;,|¢;) that a tran-
sition ;| is observed, given that the previous was
¢;. We call the case ¢; = ¢; | repeated transitions
and the case ¢; # ¢, alternated transitions.

(iii) The frequency that a transition ¢ occurs in an
observed trajectory F(£).

In this paper, we characterize these quantities from a
statistical, a thermodynamic, and a biophysical point of
view. The first task (statistical) is important from a
fundamental point of view, to understand which features
from a hidden process can be learned by looking only at the
statistics of a few visible transitions. The second (thermo-
dynamic) task is focused on inferring the rate of entropy
production of the underlying Markov chain, which is a key
quantity to characterize the irreversibility of a nonequili-
brium process. The third (biophysical) task is important
from an applied point of view because most single-
molecule experiments retrieve partial information about
the nonequilibrium dynamics of biological systems.

To tackle these objectives, we derive analytical expres-
sions for the expected value of the three aforementioned
transition statistics. From the thermodynamic point of view,
on the additional assumption that for every visible tran-
sition Z € L its reversed £ € L is also visible—which we
dub visible reversibility—we compute and characterize the
visible stationary rate of entropy production,

o¢ = lim © D(P[PE]||P[F2)), 2)

T—=00 T

defined as the rate of Kullback-Leibler divergence [42]

D(P[E]||PITE]) = / DryP[IY]In(P[IE]/PITE])  (3)

of the probability density of T4 with respect to that of its
suitably defined time-reversed trajectory I'*. Finally, we
apply the formalism to stochastic models of the molecular
motor motion of dynein, kinesin, and polymerization in
disordered tracks.

Our main results are as follows:

(1) Analytical expressions for intertransition-time prob-
abilities in terms of parameters of the hidden
Markov chain. To this aim, we solve analytically
a first-passage time problem in transition space, i.e.,
a “first-transition time” problem [47]. More specifi-
cally, letting W be any transition rate matrix (gen-
erator of a Markov chain), we introduce a survival
matrix S obtained by setting the entries in W
corresponding to the visible transitions to zero
[see Eq. (14) for a rigorous definition]. Mapping
the occurrence of transitions to a first-passage-time
problem, for the probability density of transition
?;y, happening in the infinitesimal time interval
[t,t + dt), and given that the previous visible tran-
sition was ¢;, we find

P(t,€:.1]6:) = (€Al [WT[|€151)
x (Zip1|lexp(sS)||£: ). (4)

The first factor (Z,.1||W'||£;11) is the rate of
transition ¢;,;, and the second factor
{Zis1]| exp(2S)]|¢;)) is the probability of going from
state ||£;)) to {£;,]| in time 7 without performing
any visible transition.

From Eq. (4), we obtain an explicit expression for
the conditional probability of successive transitions,
the intertransition-time probability density, and the
probability of the next observed transition given the
current occupation distribution. Furthermore, we
provide explicit expressions in the case of hidden
state spaces with ring topology, which we validate
with the above analytical expression (4). Equa-
tion (4) generalizes results in first-passage time
problems from reaching a subset of states [48,49]
to performing an arbitrary subset of transitions.

(2) Assuming visible reversibility, the visibility of the
opposite of each visible transition. We calculate the
stationary rate of entropy production ¢, given by
Eq. (2) and compare it with that of the hidden
Markov chain, ¢. In particular, we prove that

op <o, (5)
with the equality holding for systems with ring

topology or for systems in which every single
transition is visible.
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Furthermore, we also show that the visible en-
tropy production rate can be written as the sum of
two independent contributions,

op=0¢+o0, (6)

both of which are positive because they take the
form of Kullback-Leibler divergences of transition
statistics, i.e., o, > 0 and o, > 0. The contribution
o, depends solely on the mere occurrence of
transitions, whereas o, depends on the observed
intertransition times. Analytical expressions for o,
and o, can be found in Egs. (52) and (53), given here
for convenience:

P(Z|7")
P(£'|2)’

o, = (K) 3 PE£)P(#)n (7)

¢'el

o, = (K) > P(£|¢")P(¢)

el
x DIP(t|¢'. ¢)||P(1].2)], (8)

where (K) is the visible traffic rate, i.e., the expected
number of visible transitions that occur over time
[50], sometimes also called dynamical activity [51].
The sums in Egs. (7) and (8) run over the set of
visible transitions £, and the bar in # denotes the
opposite direction of 7, i.e., the observed transition
when the dynamics is time reversed. In Eq. (8) and in
the following, we denote by P(#|£’,¢) the proba-
bility density for the intertransition time between £’
followed by ¢, and we also introduce a key quantity
given by the Kullback-Leibler divergence between
intertransition-time distributions
D[P(t|t, ¢)||P(t|£.¢)]
!
- / = (e, £)n U0
0 P(H¢,¢)

©)

For the relevant case of only two visible tran-
sitions in forward (“4”) and backward (“-") direc-
tions between the same pair of states, i.e.,
L = {+,-}, Egs. (7) and (8) simplify to Egs. (54)
and (55), given here for convenience:

P(+|+)
P(—|-)"
or = (K)P(+|+)P(+)D[P(t[+, +)[| P(t]-. -)]
+ (K)P(=|=)P(=)D[P(t]= -)[|P(t]+, +)].
(11)

or = (K)[P(+) = P(=)]In

(10)

Interestingly, both depend on the statistics of re-
peated transitions; o, depends on the conditional
probabilities P(Z|¢), and o, depends on intertransi-
tion-time probability densities P(¢|¢,¢) through the
Kullback-Leibler divergences

DIP(t[+, +)[|P(t|=, —)]

[ nP(r|+,+)
_A Pl ) .

DIP(t|=, =)||P(1]+. +)]

_ = _ g PU= )
_/0 dtP(t|—, )lnP(t|+,+)' (12)

The value of 6, allows us to improve on entropy
production rate estimates previously proposed
[39,52]. We also show that our approach provides
a tighter bound for ¢ than some of the so-called
thermodynamic uncertainty relations [53,54], espe-
cially in situations where the net current is small
(e.g., for molecular motors close to stall force, the
force at which the motor stops moving).

(3) Application of the formalism to three distinct sto-
chastic models in cell biology: motion of dynein and
kinesin on linear tracks, and template-directed
polymerization processes in the presence of disor-
der. Particularly interesting from these examples is
the finding that intertransition times of repeated
P(t|¢,¢) and alternate transitions [viz. P(t|¢,7)]
carry different information about the hidden Markov
chain. Whereas repeated transitions allow us to
estimate dissipation, alternated transitions provide
hints about disorder.

The paper is structured as follows: In Sec. III, we develop
our framework and derive Eq. (4) for generic Markov
chains; in Sec. IV, we obtain the results for a pair of
transitions in opposite directions along a system with ring
topology; in Sec. V, we consider transitions over a pair of
states to address the problem of estimation of entropy
production; in Sec. VI, we discuss biophysical applications
for dynein, kinesin, and motion in disordered tracks;
finally, we conclude with a discussion in Sec. VIIL
Detailed mathematical proofs are given in the appendixes.
Results similar to those in the present paper are discussed in
the companion article [55]; see Sec. VII for a more detailed
discussion.

III. VISIBLE TRANSITIONS’ STATISTICS

A. Framework

We consider continuous-time Markov chains over a
finite and discrete state space {1,2,...,N}. We assume
that the state-space structure is such that any two states are
connected by only one transition and that the network of
states is irreducible. Thus, we assume that there always
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exists a nonzero probability path from any to every state.
The Perron-Frobenius theorem ensures the existence of a
unique stationary distribution, towards which the system
relaxes, and the system’s ergodicity, the equivalence
between time and ensemble averages. The occupation
probability at time ¢ is expressed as a column vector

Ip(2)) = (p1(2), po(t), ..., py(t))T obeying the master
equation

< p() = Wip(1), (13)

where W is a time-independent stochastic matrix with
positive nondiagonal elements W;;, which are the transition
rates from state j to i, and negative diagonal elements
Wi=-> 2 Wi; are the escape rates from state i.

An observer unambiguously detects transitions that
belong to a subset £ of all possible transitions, while
the remaining transitions and the occupancy of internal
states go unnoticed. Visible transitions £ € £ connect state
(|| to a different state ||£)). In jump processes, transitions
are instantaneous, and the system spends time in states,
called sojourn times. We define the intertransition time as
the sum of all sojourn times between two consecutive
visible transitions.

We introduce the survival matrix S, obtained by sub-
tracting from the stochastic matrix the transition rates
related to every visible transition:

S=W=) [IENIWT[£)¢e

el

, (14)

where the term being summed is a matrix with all zero
entries but for term (Z||WT||£), which is the rate of
transition £.

B. Main results

The survival propagator exp(sS) describes the system’s
evolution given that no visible transition occurs. It does not
conserve probability because not every column of S adds
up to zero; thus, it can be interpreted as a transition matrix
of a process with probability leakages whenever a transition
in L takes place.

Consider a succession of transitions and intertransition
times, as in Eq. (1), and create the histogram of times
conditioned on the occurrence of the previous and next
transitions. This provides the empirical definition of the
intertransition time’s frequency:

FT(t|fl~,flgrl)dt~hist0gram(t|fi,fi+l). (15)

The frequency that the next observed transition is £;
given that the previous is £; can be obtained as

#(C > Cin)
S (e - ¢))

F(€inl¢;) = (16)

where #(£; — ¢;,,) is the number of transitions ¢; fol-
lowed by ¢, and |L£] is the number of visible transitions,
the cardinality of subset £. Furthermore, the frequency that
one observed transition is ¢; among all transitions in a
trajectory is

42,

7Z|jﬂl#fj. (17)

F‘L’(l’ﬂi> =

Because of the system’s ergodicity, all empirical proba-
bilities have as both expected and asymptotic values the
real probability, P(-) = (F.(-)) = lim,_ o, F,(*).

Finding the probability that by time ¢ the system has not
performed any transitions in £ and then performs £ is a
first-transition time problem whose solution leads to our
main result below.

Result: Let W be the transition matrix of a continuous-
time and stationary discrete-state-space irreducible Markov
chain and consider a subset £ of all possible transitions and
the survival matrix as in Eq. (14). The joint probability that
the intertransition time falls within [z, 7 4 dr) and that the
next visible transition is ¢;,; € £, given that the last
observed transition was ¢; € L, is

P(t.€;4|¢)dt = (& [IWT | DKE st || exp(18) ]| ),
(18)

in agreement with Ref. [55]. See Appendix A for a proof.

All other probabilities we are interested in can be
obtained from Eq. (18), whose joint probability can be
splitinto P(z,¢;|¢;) = P(£i41|€;)P(#|€;, €i41). The con-
ditional probability of the next observed transition can be
obtained by integrating over time, resulting in

P(ilty) = / dtP(r. 112))
0

= —(Cia [IWTZia Wil ISTHIZ:).  (19)

Without the need for additional assumptions, the proba-
bility density of intertransition time ¢ between such a
transition and its preceding one can be obtained by dividing
the joint probability by the transition probability above,

P(t.inl|t) _ (Cinallexp(sS)[|£:)

Ple: Zin1) = P(¢ialt) (CinlIS~':)
(20)

It satisfies [° dtP(1|¢;,¢;,1) =1 for all Z; and £, ;.
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(a)

Repeated transitions
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Chemical Coordinate

Probability density

ATP. 5 5
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Position Coordinate

(b) +

G

Probability density

|

FIG. 2.

Tllustration of transition statistics in an ATP-driven motion of a molecular machine in which only spatial displacements are

visible to an experimental apparatus. Chemical transitions (ATP binding 1 — 2, ADP release 2 — 3, and Pi release 3 — 4) are hidden
from the apparatus. (a,b) Illustration of the model state network, given by a four-state model (b) arranged along a periodic spatial lattice
(a) along which the motor moves only when executing the 4 — 1 transition (motion forward + with step size §) or the 1 — 4 transition
(motion backward — with step size ). (c)—(f) Histograms for the intertransition-time probability densities obtained from Gillespie
simulations (bars), and analytical predictions given by Eq. (20). The dashed magenta lines have slope given by the largest eigenvalue of
the survival operator S [see Eq. (25)], and the inserted diagrams are illustrations of the displacement of the motor during the respective

pair of transitions (see insets).

We name the expected number of visible transitions over
time (K) the visible traffic rate, inspired by time-symmetric
quantities relevant in the analysis of stochastic systems far
from equilibrium [56], sometimes referred to as dynamical
activity [51] and frenesy [50,57,58]. Analytically, its value
can be obtained in the limit  — oo as

(K) =Y (WO Ipeo) (21)

el

where |p.) is the stationary distribution given by the
solution of W|p,) = 0. Furthermore, the stationary prob-
ability that a visible transition is £ € L is given by

1

P(?) :m«fHWTllf»«fllpoo}- (22)

C. Numerical illustration of the framework

Figure 2 presents an example of the application of our
approach to a model of a molecular motor with four internal
states that are driven by the consumption of ATP [59]. The
motor performs spatial displacements along a filament
through the only visible transition in a single-molecule
experiment. Figure 2(a) is a scheme of the motor’s motion;

transitions in the chemical coordinate involve consumption
and production of chemical species and are considered
invisible for the experimenter; conversely, transitions in the
position coordinate 1 <> 4 are considered visible since
they result in spatial displacement of size 6 (mechanical
movement), and in this case, they compose the subset L.
Figure 2(b) shows the irreducible network in which a
Markov chain describes the evolution, and visible transi-
tions 4 - 1 =+ and 1 - 4 = — are, respectively, related
to forward and backwards displacement. Figures 2(c)-2(f)
show an excellent agreement between numerical simula-
tions and Eq. (20) for all the distributions of intertransition
times between repeated (4++,——) and alternated (+—, —+)
transitions. While alternated transitions yield an intertran-
sition-time distribution that is monotonously decreasing,
the distribution of intertransition times between repeated
transitions is nonmonotonous. This is because of network
topology constraints: Whereas for alternated transitions ¢ =
0 is the most likely event, repeated transitions require
motion over the entire hidden network, which renders the
probability of r =0 almost impossible for large hidden
networks. Furthermore, we observe that the distributions of
all intertransition times have the same exponential tail
[magenta dashed line in Figs. 2(c)-2(f). This is consistent
with theory, as discussed in the next subsection.
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®

(ii)

(iif)

@iv)

D. Additional remarks

Moments of the intertransition times. Equation (20)
is key for further results of this work. An immediate
outcome is that, since Eq. (20) is the probability
density of the intertransition time of ;| after £, the
mean intertransition time can also be obtained from
the survival matrix:

© (€ ll(STH21€)
detP(t4;. 0 ) =— — . (23)
/) sz
and higher-order moments can be obtained analo-

gously.

Generalization of first-passage times. First-passage
times between states can be obtained as a particular
case of first-transition times. Let £; = {i’ —
i: V i'#i} be the set of all transitions leading
to an absorbing state i. The first time that state i is
reached coincides with the first time that one of these
transitions is observed. From Eq. (18), we then
obtain the probability density for the first-passage
time of reaching state i starting from a state j # i,

ZPtﬂ]

el;

= > _(CIWTI£)¢e1] exp(1S)| )

CeL;

(24)

where P(t,£|j)dt is the probability that, starting
from j, the first visible transition observed in the
time interval [z, 7 + dr) is . This latter result is well
known; see, e.g., Ref. [1].

Connection to large deviation theory. Consider the
number of times #,(#) a transition is performed up to
time ¢ (sometimes called flux, or counting field).
Notice that #,(¢) only vanishes for all Z € L if no
visible transition has been performed. Therefore, the

generating function of its moments (eﬁzfeﬁ #@)Y in
the limit 4 — —oo is precisely the survival proba-
bility density. The moment-generating function can
be calculated as ) (y| exp(tW,)|x) [60], where W,
is the so-called tilted matrix, which in the limit A —
—oo reduces to S, consistently with Eq. (18).

Existence of S7!. Since the process defined by
W is ergodic, for a large enough time, the
system will perform at least one of the observed
transitions with probability 1: lim,_ |p(?)) =

lim,_ o, exp(#S)| p(0)) = 0, where 0 is a vector of
zeros. This is ensured by the fact that every
eigenvalue of S has a negative real part, Re(4;) <
0 V i, as proved in the Supplementary Material of
Ref. [61]. Such a property also guarantees the
convergence of the integral [$°dr exp(sS), which

v)

(vi)

is required to normalize the probability in Eq. (20),
and det(S) = [[; 4; # 0, which grants the existence
of S71.

Probability of instantaneous pairs. The propagator
acting over a state results in a probability vector with
non-negative entries, exp(zS)||£;) > 0; therefore,
0, i1[| exp(1S)[|€:) = (i1 [|S exp(1S)[|£;)) has
the same sign as (Z;1||S||¢;)) at t=0. If the
transition £; | starts in the same state where &;
ended, (Z;.1|| = ||£;)), the intertransition time has
nonvanishing probability of being zero since the
diagonal entries of 9,(¢; || exp(zS)||£;) are al-
ways negative. Conversely, for sequences of tran-
sitions with (Z;.|| # ||£;)), the null intertransition
time has zero probability: The observer has to wait
for internal jumps to occur before £; | takes place.
This property explains the shape of intertransition-
time probability densities in Fig. 2: For alternated
transitions +— and —+, the source state of the
second transition is the target of the first transition;
therefore, the probability of instantaneous intertran-
sition time is nonzero [cf. panels (d) and (e)]. On the
other hand, for repeated transitions ++ and ——,
instantaneous intertransition times cannot be real-
ized because one needs to perform additional tran-
sitions [cf. panels (c) and (f)].

Universality of the tails. Notice that it is always
possible to decompose the numerator in Eq. (20) as
(Ci1|lexp(S)||€;) = SN, cxes, where s, are
the eigenvalues of S and ¢, are real coefficients
obtained by projecting onto its eigenvectors, under
the assumption that S has a nondegenerate spectrum,
and with minor modifications of the argument
otherwise [62]. Assuming hidden irreducibility,
i.e., the irreducibility of the state space after the
removal of all visible transitions, this property
implies that the long-time behavior of the intertran-
sition-time distribution is independent of the visible
transitions ¢, and £;:

im0 (1| exp(S)]£0] =< spe. (25)

where spr is the dominant Perron-Frobenius root, a
negative real value. Therefore, all intertransition-
time distributions have the same exponential tail
given by the largest eigenvalue of S. This can be
observed in Figs. 2(c)-2(f), where tails of the
histograms obtained for the four types of intertran-
sition times match the value given by spp.

IV. EXPLICIT RESULTS
FOR UNICYCLIC NETWORKS

In addition to the developed generic framework, ana-
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ring (unicyclic) networks can be obtained using Laplace
transforms. To this aim, we now use a combinatoric graph-
theoretic approach based on sums over all possible hidden
paths in Laplace space. As shown below, these explicit
calculations showcase that computing intertransition sta-
tistics in generic Markov chains is often a Herculean task,
which is greatly simplified by the exact analytical frame-
work developed in Sec. IIL

In a variety of models of, e.g., enzymatic reactions [63],
the state space can be depicted as a ring network, where
every state i is connected to only its nearest neighbors i + 1
and nothing else (1 <> 2 <> ... <> N < 1). In particular,
we consider as visible the pair of transitions between states
1 <> N, without loss of generality. For this section, we also
assume that every neighboring state has transitions in both
directions, W;;,; >0 and W, ;; > 0, allowing for the
cycle performance in both orientations.

We denote the two visible transitions as follows: The
clockwise transition from state N to 1 is + =N — 1, and
the counterclockwise transition is — =1 — N. There are
four possible intertransition times to be considered,
between pairs of successive transitions +-+, +—, —+,
and — —.

The probability density of spending time 7; in a given
state j before the next transition to i (often called sojourn
time) is given by

mij(t;) = P(rj. j = i|j) = Wijexp(=W;z;).  (26)
To characterize the different paths that intertwine the
desired transitions, we introduce the number of times
the pair of opposite transitions between i <> i+ 1 are

performed as k;, and the number of possible paths satisfy-
ing k= (ky.....ky_y. ky = 0) is C%_, . The simplest “bare”
path leading to ++ is a sequence of clockwise transitions
starting and ending in 1; the probability density of perform-
ing it in an interval ¢, up to a normalization constant, is
given by the convolution of sojourn times,

Pralii+) o [ i) (200(1= Yo ).

i

(27)

where ¢ is the Dirac delta distribution. As the Laplace
transform of convolutions is the product of Laplace trans-
forms, we further deal with products of terms in the form

N e e W; j

ﬂij(s) E[) deﬂij<Tj)€ ST = W, (28)
where the hat © denotes the Laplace transform and, for
simplicity, we often suppress the dependency on s, the com-
plex frequency corresponding to time in the Laplace space.

gackbOne

@@@)D

FIG. 3. Illustration of a single trajectory in a four-state Markov
process where only transitions 4 - 1 (+) and 1 — 4 (—) are
visible. Thin gray arrows represent the possible transitions in state
space, while thick arrows represent the trajectory. For this
example, we define its associated “backbone” (blue thick arrows)
by the sequence of the transitions last traveled between each pair
of states that were visited in the trajectory: 3 — 2, 2 — 1, and
1 — 4. See text for further details.

To count all trajectories, we solve a nontrivial combina-
toric problem introducing the concept of backbone: For a
given path, its associated backbone is composed of the set of
every last transition performed between each pair of visited
states, see Fig. 3. Once the backbone associated with a path is
identified, all other variables in the trajectory can freely
change without changing the fact that the trajectory starts and
ends at two prescribed visible transitions. For example, in the

case of repeated transitions +-, a path characterized by k
will contain k; transitions 2 — 1 and k; + 1 transitions
1 — 2. The last transition performed, 1 — 2, ensures that the
path is moving in the direction of eventually performing +
again and is part of the backbone; the rest of the backbone
will come from transitions 2 — 3, 3 — 4, and so on.

A. Repeated transitions

For the case 4+, notice that each pair of states i <> i + 1
accommodates 2k; transitions in a path, half clockwise and
half counterclockwise, and then one extra transition that
belongs to the backbone, ensuring that the path is not stuck
between these two states. The intertransition-time proba-
bility density can be obtained from the convolution of every
sojourn time in a path and by summing over all possible
paths. Its Laplace transform is given by

backbone

P(s|+.+) (Hm,)
_N-l
X Z CL o i B, (29)
Kpverrky =0 =l T
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where we define x; = 7; ;1 7;1 ; as the product of Laplace
transformed sojourn times in two opposite directions and
impose the condition N + 1 = 1.

The initial-value theorem for Laplace transforms states
that P(0) = lim,_,o, sP(s); therefore, the constant N
can be obtained by P(0|+, +) = 1, which ensures that the
inverse Laplace transform P(t|+,+) is normalized. The

combinatorial coefficient C¥__ is the number of all possible

paths between -+4 with transitions satisfying k. Tt is
obtained in Appendix B and reads

N-1
7 ki + k,’_
ck, = H< L 1). (30)

i=2

Equation (29) simplifies by plugging in Eq. (30) and
introducing a continued fractions generator O[x;] =
x;/(1 = ®lx,_;]) that truncates at ®[x;] = x;. From the
property > 8 (" F)xk = (1 — x)=("*+1), valid for [x| <1,
we obtain a simplified expression,

A 1 N_l ﬁl+1 7
P , =——17 e 31
(S|+ +) ./\/+’+ TN l];!: 1— ®[~xi] ( )

The case —— can be obtained analogously upon the
substitutions i > N —i + 1, Vi € [1,N], and E[x;] := x;/
(1 = Efxi]), with Elxy_] = xy_i:

A

N 1 R Nl ;i
P(s|-.—) = N Hi e (32)
-- i=1

1 - Ex;]

By a diagrammatic approach to explicitly obtain the
continued fraction generators ® and = (Appendix C), we
find that intertransition-time densities are the same for
repeated transitions,

P(t|+,+) = P(t]—, —). (33)

Such a property is reminiscent of the so-called generalized
Haldane equality [63—-65], which states that the probability
density of waiting time ¢ until a system performs a clockwise
cycle, given that a counterclockwise cycle was not per-
formed, is the same as waiting time ¢ for the opposite
phenomenon. This property can be observed in Figs. 2(d) and
2(e) and, in general, is not satisfied for alternated transitions.
Since lim,_,, #;; = 0 for every pair i, j, applying the
initial-value theorem to Egs. (31) and (32) results in

POl+.+) = P(0]-.-) =0, (34)
apart from very specific choices of transition rates that

might forbid the existence of the limit. This result confirms
that instantaneously performing a full cycle has zero

‘o0 070
)

® & o O

© (d)
@O O Q@
OO 6O
FIG. 4. Illustration of the four possible backbones (thick blue

arrows) that ensure the completion of a (—) 1 — 4 transition after
a (+) 4 — 1 transition, for the example of the four-state Markov
model shown in Fig. 3. Thick gray arrows represent the possible
transitions, while thick arrows represent the transitions used by
trajectories of different lengths. From panels (a)—(d), the trajec-
tories have M =0 to M = 3. More details are given in the
main text.

probability and gives a characteristic shape to the histo-
grams in Figs. 2(c) and 2(f).

B. Alternated transitions

Between alternated transitions, it is not necessary to
cover the whole state space. In fact, it is possible to not have
any transitions in between the visible ones, and this is how a
zero intertransition time might occur; thus, there is no
analogue of Eq. (34) for alternated transitions.

In this case, there are N possible backbones; they are
composed of M + 1 € [1,N] transitions with the same
orientation starting from the farthest visited state to the target
of the last visible transition; see Fig. 4. Also, we observe an
even number 2k; of transitions between pairs i <> i + 1.

The Laplace transform of the intertransition-time prob-
ability density for the pair +— is

. 1 N-1 00 P M
P(S|+,—):N Ty Z Z C#,—H[ﬁi,wlﬁiﬂ,i]k”,
+.- M=0k,... k=1 =

=x;

(35)
where the backbone contributions come from the sum over

A M A
M and 7y [T #541-
The coefficient

M
7 ki + ki— -1
S ) (R 30
i=2 i

041026-9



HARUNARI, DUTTA, POLETTINI, and ROLDAN

PHYS. REV. X 12, 041026 (2022)

counts the number of possible paths leading to +— with a
given k and backbone length of M (more details can be
found in Appendix B). Once again, from the property
S o(hxk = (1=x)™"", we obtain a simplified
expression

X; 1
P( manz Mlll_lH -])21—®[xM]’ (37)
and analogously, we find
{V/\} M i
P< OHTINZ ]/VAIIMJrl(l_':‘( j))z
y ;. (38)

1 - E‘(xN—M>

Applying the initial-value theorem to Egs. (37) and (38)
results in

PO+.-) = 5 (39)
and
T (40)

P(O|—, +) = N

We recall that A", _ and /', _ can be obtained by P(0|*) =1
as a property of Laplace transforms since P(t|*) is normal-
ized. The nonvanishing contribution comes from the terms
with M = 0, which means that it is possible to instanta-
neously observe a pair of alternated transitions, and it is due
to the shortest backbone of all: a single transition. This can be
observed in the shape of histograms in Figs. 2(d) and 2(e).

To obtain the intertransition-time densities, one needs to
perform an inverse Laplace transform on Egs. (31), (32),
(37), and (38). We remark that, while possible, in general, it
is not straightforward to find closed analytical expressions
to such inverse Laplace transforms (cf. Appendix B of
Ref. [66]). Notice that it is possible to obtain all moments of
intertransition times without resorting to the inverse
Laplace transforms by using the relation

(P16 ti) = 17 [Pl )

V. IRREVERSIBILITY AND ENTROPY
PRODUCTION

Entropy production and time irreversibility are the
thermodynamic footprints of nonequilibrium dynamics.
In stochastic thermodynamics, irreversibility of nonequili-
brium stationary processes can be quantified by the

asymmetry between a process and its time reversed in
terms of the Kullback-Leibler divergence of forward to
backward probabilities [44] that provide bounds for the rate
of entropy production. As we now show, in a jump process,
this asymmetry is present in the sequence of visited states
and, also, in the intertransition times. In this section, we
introduce an inference scheme for the entropy production
rate of a system for which only a few transitions are visible.
We also assume visible reversibility, i.e., that every visible
transition can be performed in its opposite direction, and
the opposite of a visible transition is also visible. This
scenario is typical in physical settings such as electron
hopping between leads or a molecular motor walking along
a microtubule.

The stationary rate of entropy production in the system
plus environment is a measure of time-reversal asymmetry
in the dynamics of the system averaged over all micro-
scopic trajectories y, over state space:

o= lim 13 Pl lﬁm (42)

D(Ply]||P[r:])

where y, is the time-reversed trajectory obtained by
reverting in time the states visited along the trajectory
7.. For Markovian nonequilibrium time-independent proc-
esses, it has been shown [67] that the entropy production
(42) depends only on the statistics of jumps between
different states as follows:

o= ZJ ij ln U (43)
i<j
where
Jij=Wipj(00) = W;;pi(co) (44)

denotes the stationary probability current from state j to state
i [68] and, for convenience, we have set the Boltzmann
constant kp to unity. Currents can be empirically observed
when the involved transitions are visible. In other words, if
¢ = j — i, the current can be empirically obtained by

#Z — #7
= lim , (45)

T—00 T

where we recall that 7 is the trajectory duration and #
represents the number of occurrences.

The entropy production rate from the available data in
the present framework is obtained by comparing visible
trajectories I'~ that can be seen as a transition-based coarse-
graining of the full trajectory y, over state space. A key
result for our estimates is the chain rule for the Kullback-
Leibler divergence between two random variables [43],
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which has also been applied to stochastic processes [44,69]:
Dlp,(x. y)[lp2(x,¥)] = Dlp; (x)||p2(x)] for any two distri-
butions p; and p, of two random variables x and y. Because
the trajectories I'~ contain less random variables than the
microscopic trajectories y, (e.g., most of the transitions and
their associated intertransition times are not included in
%), one gets D(Ply,]|[P[7.]) = D(PCE]||P[TE]), which
implies the inequality

oc = lim LD(PICE|IPIFE) <o (46)

In the following, we employ the transition information
using o, to obtain lower bounds for the entropy production,
and we analyze how o, can be computed in practice from
simulations or experimental data.

A. Inference of entropy production

We ask the question of how the inferred entropy
production rate o, can be computed in practice and study
how tight the lower bound is. The observer collects a
coarse-grained trajectory during an interval [0, 7] compris-
ing visible transitions in both directions ¢ € £ and the
intertransition times between them:

TE={(¢o.10), (1.11)..cc. (o 1)} (47)

with Y ") #; = 7. The construction of the time-reversed
trajectory in the transition space requires special care. The
time-reversed trajectory is given by the sequence of
reversed transitions 7 in the opposite order, and the
intertransition times are shifted: If the time before a
transition ; is t;, in the time-reversed dynamics, the time
before transition 7; is t;.; see Fig. 5 for an illustrative
example. Thus,

Fr: ((thnJrl)?(2n—lﬁtn)""7(20’tl))' (48)

The probability of a trajectory can be written in terms
of the conditional probabilities of consecutive transitions
and waiting times P(t;,;|¢i_1) = P(t;|€i_1, ;) P(€i|€i-1);
hence,

PITE] = P(ty. £0)P(11. 41| 60) - - - P(t,. €| 01).  (49)
P[fT] = P(tn+1’2n)P<tnv2n—l|Zn) o 'P(ﬁjo\;ﬁl)' (50)

After working out these expressions (see Appendix D for
details), we derive the following decomposition of the
irreversibility measure o ,:

op =07+ 0, (51)

where the first term is the contribution from the sequence of
transitions,

(a)
Ff = {(+7t0)7 (+7t1)7 (_7t2)}
3
2T 4% PN
- + -
1 b 2
to tq to t3
() _
Ff = {(+7 t3)7 (77 t2)7 (77 tl)}
3
2 4
+ — .
1 2 A 2
i3 to 131 to
FIG. 5. (a) Hidden trajectory over states {1,2,3} and the
observation rs for T=1ty+t +1+H and

L={+:1-2,—:2 > 1}. (b) Time-reversed hidden trajectory
and resulting T'%.

p(Z|2")

o, = (K) > P(£|£)P(£')In P

el

(52)

and the second from the intertransition times

o, = (K) Y P(¢|¢)P(¢)DIP(i|£'.€)||P(1]2. ), (53)
¢L'el

where the indices in ) _, ., run over the set £ of all visible
transitions.

We now focus on the case of a system where two
transitions in opposite directions between the same pair of
states are visible, £ = {4+, —}, as in single current mon-
itoring. Notice that in this case, the time reversal of a
transition is also the visible opposite transition Z = —7.
Thus, the above split of terms simplifies to

P(+|+)

or = (K)[P(+) — P(-)]In P(=15)

= JﬁAeff’ (54)

and

o; = (K)P(+|+)P(+)D[P(t|+, +)[| P(t]-. -)]
+ (K)P(=|=)P(=)D[P(t]= -)[|P(f|+.+)].  (55)

The current over the observed transition is J,:=
(K)[P(+) — P(—)] (cf. Appendix D). In view of the usual
bilinear form of the entropy production rate in usual
nonequilibrium thermodynamics, we identify the effective
affinity A = In P(+|+)/P(=|-).

One striking implication of Eq. (51) is that the pairs of
alternated transitions +— and —+ do not play any role in
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FIG. 6. Estimating the entropy production rate (kg/s) from repeated transition statistics. (a) Illustration of the inference scheme for a
network with the observation of transitions + = 1 — 2 and — = 2 — 1. From the analytical equations derived in Sec. III B, we show
(b) conditional and unconditional probabilities of transitions, and the value of the traffic rate, intertransition-time probability densities
for (c) repeated and (d) alternated transitions. In terms of a bias parameter, in panel (e), we show entropy production ¢ as a solid black
curve, the thermodynamic uncertainty relation’s lower bound oy as a solid magenta curve, and results from Gillespie simulation o™
as blue crosses. Next, we show the present results of the inferred entropy production rate ¢, in solid blue, its decomposition in
intertransition times o, is given in dotted blue, and the sequence of transitions o, in dashed blue. The vertical line is the value of the
(dimensionless) bias parameter for which the visible current vanishes. The transition rates are Wy = W3y = Wy = Wy =1,
Wis = Wy = W3 = Wy, = 20, and Wy, equals the exponential of the bias parameter. In panels (b)—(e), the bias parameter is fixed to
8.5. Simulations were performed with a Gillespie algorithm for 2 x 10° s, and the Kullback-Leibler divergence of intertransition times
was obtained with an unbiased estimation scheme (cf. main text).

the inferred entropy production. However, the incidence of
repeated transitions ++ and —— and their intertransition
times contribute to it. This means that only the statistics
related to ++ and —— are relevant to irreversibility.

The fact that both ¢, and o, are linear combinations of
Kullback-Leibler divergences with positive coefficients
implies that they are both always equal to or greater than
zero. This implies that both 6, > 0 and ¢, > 0 are lower
bounds to the rate of entropy production on their own. At
equilibrium, ¢ = 6, = 0, = 0; thus, no irreversibility can
be detected from transition frequencies or from intertran-
sition times. Out of equilibrium, however, ¢, and o, can
vanish in different scenarios, which can be illustrated for
the case of observing a single pair of transitions: ¢, = 0
when no net current (computed from frequency of tran-
sitions) is found along the visible transition and ¢, =0
when the Markov network is unicyclic, i.e., has a ringlike
shape, as we show below. In addition, as proved in
Ref. [55], if the hidden network either has no cycles or
satisfies detailed balance, one also gets o, = 0.

Estimates of entropy production and irreversibility can
be extracted from the statistics of single stationary trajec-
tories. A recent example is the thermodynamic uncertainty
relation, which allows us to estimate entropy production

from empirical time-integrated currents without knowing
the transition rates from the bound:

2(J)?

OTUR *= —Vafr(>J) <o, (56)
which states that the entropy production rate is lower
bounded by the average and variance of any stationary
current J = lim,_ (> _;; d;jn;;(t))/t flowing over the
system [53,54], with d;; being the asymmetric current
increment related to transition j — i and n;;(¢) the number
of such transitions in a time interval ¢. For each trajectory,
the stochastic time-integrated current J depends on the
number of transitions in each direction. Hence, the full
statistics of the sequence of transitions should contain at
least the same amount of information as the statistics of J;
therefore, we conjecture oyr < o,. Furthermore, the
intertransition times contribute to the entropy production
rate and go unnoticed by (J) and Var(J); therefore, the
contribution ¢, contains additional information such as the
detection of irreversibility in the absence of net currents.

Figure 6 illustrates how the entropy production inference
is obtained using empirical estimates of P(+|+) and

041026-12



WHAT TO LEARN FROM A FEW VISIBLE TRANSITIONS’ ... PHYS. REV. X 12, 041026 (2022)

()
0.35
0.30f
0.25f
0.20f
0.15F
Q=0
Hidden 0.05F
0.00f
(b)
Quantity | Value (d)
P(+|+) | 0.3226 15
P(—|-) | 0.0161
P(+|-) | 0.9839 tol
P(—|+) | 0.6774
P(+) | 0.5923
P(-) 0.4077 051 )
(K) 0.8s7! Bias parameter
0.0¢, ) - - - .
0 2 4 6 8 10
t
FIG. 7. (a) Ring with four states, ring network, and visible transitions + = 1 — 2 and — = 2 — 1. (b) Conditional and unconditional

probabilities of transitions and the visible traffic rate. (c) Coinciding intertransition-time densities for repeated transitions and (d) for
alternated transitions. (¢) Summary of the entropy production rate inference scheme. Entropy production ¢ and the sequence of transition
contribution o, coincide, both in solid black; the intertransition-time contribution o, in dotted blue is shown to vanish; the
thermodynamic uncertainty relation oy is depicted in solid magenta, and simulations 6™ in blue dots with error bars. All transition

rates are equal to 1 apart from Wy,, which is the exponential of the dimensionless bias parameter, and entropy production rate

dimensions are kg/s.

P(#|+, £) as a function of a bias parameter, a value present
in transition rates that controls the preference for the
performance of a counterclockwise cycle. In a four-state
multicyclic network, panel (e) shows the entropy produc-
tion rate o (solid black line) that is indeed larger than both
o, and o,. The contribution from the sequence of transitions
o, (dashed blue) coincides with the thermodynamic uncer-
tainty relation opyr (solid magenta), and both vanish for a
value of bias parameter that stalls the current between
1 <> 2, which is known as the stalling force. The inter-
transition time contribution is less sensitive to the bias
parameter in this region. It does not vanish at the stalling
force, leading to the detection of irreversibility when no net
current is visible.

Lastly, for different values of bias parameter, a single
trajectory of visible transitions and intertransition times
from Gillespie simulations is analyzed in view of Egs. (54)
and (55) to obtain the inferred entropy production rate o™
(blue crosses), in good agreement with the analytical 6.
Notably, to tackle possible statistical biases that may arise
in o, from crude histogram-counting procedures, we
employ the Pérez-Cruz numerical method [70] that min-
imizes the statistical bias in the estimation of Kullback-
Leibler divergences. See Ref. [71] for our open-source
toolbox implementing our estimate of entropy production.
Further details of the implementation and convergence
analyses are discussed in Appendix E.

B. Ring networks

Networks with ring topology are an important particular
case for the inference of irreversibility. They have only
one cycle and, therefore, one macroscopic flux and one
affinity (thermodynamic force) [68]; such a flux can be
obtained from the solution of the master equation, and the
affinity is the logarithm of the product of all transition rates
In[[;,(Wii1:/W,;i1). We show that, in this case, the
sequence-of-transitions contribution to the inferred entropy
production in Eq. (54) provides the exact real entropy
production rate, ruling out the necessity of assessing all the
microscopic details of stationary probabilities and transi-
tion rates.

In this case, the stochastic matrix has a tridiagonal structure
plus two terms on its corners, W,y and W y; without loss of
generality, let us consider that 1 <> 2 is the observed
transition, and hence [S];; = W;;(1 = 8;j12)(1 = 8;j01)-
Because of the particular structure of S in a ring, the
Laplace expansion of its inverse leads to the fact that the
effective affinity (associated with the visible transitions) in
this case equals the cycle affinity A,

Ay = nCH) Wi A. (57)

Pl ~ Wi
Analogously, we find that this is also the case for the
macroscopic affinity, which can be obtained from the ratio
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of conditional transition probabilities or estimated by their
respective empirical frequencies.

In this case, 6, = J A, which is the definition of entropy
production o in a cycle. Adding this to the fact proven in
Sec. IV that P(#|+,+) = P(t|]—,—), implying o, = 0, we
find that the inequality between the inferred and real
entropy production rates will be saturated and given solely
and exactly by the sequence of transitions

6p =0,=o0. (38)

In other words, the full entropy production of a ring
network can be assessed by a single experiment in which
a marginal observer collects statistics of the transitions
between a single pair of states.

Figure 7 shows the entropy production inference scheme
for a ring network of four states. The contribution o,
vanishes for any value of bias parameter due to the equality
of intertransition-time densities for repeated transitions
shown in panel (c). The values of ¢ and o, are precisely
the same (solid black) as discussed in Eq. (58). Meanwhile,
otyr provides a lower bound that is approximately satu-
rated for vanishing values of bias parameter, which repre-
sents the close-to-equilibrium regime.

VL. INFERENCES FROM VISIBLE TRANSITION IN
BIOMOLECULAR SYSTEMS

Here, we apply our theoretical framework to biomolec-
ular machines where partial information, stemming from
the observation of a few transitions, is experimentally
accessible: for example, DNA polymerase [72], data
obtained from single-molecule Forster resonance energy
transfer microscopy [23,73], and optical tweezers [33,74]
to resolve the displacement of a motor along a track, yet
most of the structural and chemical degrees of freedom are
hidden. Inspired by these experimental limitations, we first
focus on two examples of biologically relevant molecular
machines in which we assume that one can only resolve
mechanical transitions involving spatial displacements
dynein (Sec. VI A) and kinesin (Sec. VIB), which serve
as case studies of ring and multicyclic networks, respec-
tively. Next, we extend our study to motors that move in
heterogeneous tracks and study the effect of the degree of
disorder in the statistics of transitions (Sec. VID).

A. Dynein ring model

Dyneins are cytoskeletal nanoscale motors that move
along microtubules inside cells and perform a varied range
of functions, like intracellular cargo transport and beating
of flagella [75,76]. Dyneins transduce chemical energy
from ATP hydrolysis into mechanical work done by
displacing loads along the microtubule.

Here, we study a unicyclic seven-state kinetic model of
dynein stepping (cf. Fig. 8), which has a ring topology and

MT.D.ADP

' @
[
@ @MT.D.ATP

J

D.ATP

MT.D*.ADP.Pi ’\

D*.ADP.Pi

—

FIG. 8. Sketch of the chemomechanical ring network for
dynein with visible transitions 6 <> 7. The meaning of the
transitions between each state and the experimentally inferred
values of the transition rates are listed in Table I.

is described in Refs. [77,78]. During every forward-step-
ping cycle, one ATP molecule binds to the dynein
(D) (1 — 2), thereby triggering the release of the dynein
from the microtubule (MT) (2 — 3). This is followed by the
hydrolysis of ATP that induces a conformational change of
the dynein (D*) (3 — 4) and consequently leads to micro-
tubule binding (4 — 5). In the next step, release of one
phosphate group Pi (5 — 6) is followed by a power stroke
(6 — 7) and release of one adenosine diphosphate molecule
ADP (7 — 1). The different transition rates between these
discrete states and their description are listed in Table I.
We consider the setting where single-molecule experi-
ments can follow the cargo displacement and therefore
observe only transitions 6 <> 7. As discussed in Sec. V B,
the inferred entropy production rate for this model is

TABLE I. Transition rates for the chemomechanical cycle for
the dynein model in Fig. 8 (see Refs. [77,78]). All the rate
constants W; (except W1y, Ws,, and W, which are in s~! pM~")
are given in units of s~1, and the concentrations in pM. Here, MT
refers to the microtubule.

Parameter Description Value
Wiq ADP release 160
W1 ADP binding 2.7 x [ADP]
Wy, ATP binding 2 x [ATP]
Wio ATP release 50
W3, MT release in poststroke state 500
Was MT binding in poststroke state 100
Wy Linker swing to prestroke 1000
Wiy Linker swing to poststroke 100
Wsy MT binding in prestroke state 10000
Wys MT release in prestroke state 500
Wes Pi release 5000
Wse Pi binding 0.01 x [Pi]
W Power stroke 5000
Weq Reverse stroke 10
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TABLE II. Transition rates for the chemomechanical cycle for
the kinesin model in Fig. 10 [79]. All the rate constants W;;
(except Wy, Wa3, W3y, Wsy, Wse, and W, which are in units of
s~' uM~") are given in units of s~!, and the concentrations in pM.

Parameter Description Value

Wo, = o, ATP binding 2.0 x [ATP]
wo, Release of ATP 100

Wgz = Wg5 ADP release 100

Wl = WO, ADP binding 0.02 x [ADP]
WY, ATP binding 0.24

wo, Mechanical step 3x10°
WY, = Wi Hydrolysis of ATP 100

Wy, = W, Pi binding 0.02 x [Pi]
Wi, Release of ATP WO, (W5 /W9,)2

exactly given by ¢ = o, from Eq. (54). From the network
topology and transition rates, we evaluate o, analytically
for different values of parameters such as the concentra-
tions of ATP and ADP. The probabilities of a sequence of
two transitions P(+|+) and P(+| F) are given from our
framework by Eq. (19), and the probability of a single
transition is given by Eq. (22).

In Fig. 9, we observe that the entropy production rate
increases with the concentration of ATP and decreases with
the concentration of ADP. This implies that the forward
step of dynein is associated with high dissipation compared
to the backward step. The typical dissipation rate for
biophysical systems of nanometer to micrometer size
ranges between 10 and 1000 k5T /s [80]. Some examples
are kinesin with the dissipation rate 250 kg7 /s and a single
RNA hairpin with a dissipation rate between 10 and
250 kgT/s.

EPR o, =0 (kg/s)

100 f
2000
807] 1750
EE sol 1500
<) 1250
E§ a0l 1000
= 750
207 500
0 250

0 20 40 60 80 100
[ATP](mM)

FIG. 9. Entropy production rate in kg/s for the dynein with
visible transitions 6 <> 7, using rates from Table I and
[Pi] = 1 mM, in terms of ATP and ADP.

B. Kinesin multicyclic model

We now study a stochastic model for kinesin motion [79]
validated in single-molecule experimental studies [81,82];
see Fig. 10 for an illustration. The model is described by a
chemomechanical network comprising six discrete states
that describe the mechanism of movement of kinesin on the
microtubule. Notice that it has two independent cycles: the
“F” cycle [(1) = (2) = (5) = (6) — (1)] corresponding
to the forward motion of kinesin by one step, and the “B”
cycle [(4) = (5)F = (2) — (3) — (4)] resulting in a step
backwards. The dynamics along one F cycle is as follows:
After ATP binding (1 — 2), kinesin makes a step forward
(2 — 95) in the filament, followed by ATP hydrolysis that
results in the release of one ADP molecule (5 — 6) and
inorganic phosphate Pi (6 — 1). The backward B cycle
proceeds similarly, with the only difference that, after the
binding of ATP to kinesin, a backward step along the
filament (5 — 2) occurs. Notice that, in contrast to the
model example of dynein, here forward and backward
movements are driven by the hydrolysis of one molecule of
ATP. The transition rate values are listed in Table VI B. An
external load force f biases the transition rates W,s and
Ws, involving spatial motion:

Wsy(f) = W22e‘9f do/keT |
Wos(f) = Wisel1=0fdo/keT (59)

where 6 is the load distribution factor, d, is the step size,
and f is the load force. On the other hand, for the chemical
transitions, we have

Wis() = 2Wh(1 + enfblhn) =, (60)

where y;; represents the mechanical strain on catalytic
domains with y;; = y;; > 0, where i, j#2, 5, and the

N
ONI
OB

®

Aj;>/

FIG. 10. Sketch of the chemomechanical network model used
to describe kinesin motion. The only visible transitions 2 <> 5 are
marked in dotted magenta. Here, F and B denote the cycle
corresponding to the forward and backward movement of
kinesin, respectively.
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FIG. 11. Exact intertransition-time statistics for the kinesin

model in Fig. 10 with visible transitions 2 <> 5. (a) Intertransi-
tion-time densities for every possible pair of transitions. (b) Kull-
back-Leibler divergence for alternated transitions in terms of the
external force f, with the vertical line corresponding to the
stalling force of f ~ 7.02 pN. (c) The same as panel (b), but in
terms of the ATP concentration. The rates are displayed Table II,
and [ADP] = [P] = 5 pM.

concentration of molecular species involved in the chemical
transitions are accounted for in most of the W?j rates; see
Table VIB.

We now focus on the statistics of the transitions
associated with the mechanical movement of Kkinesin,
i.e., 2 <> 5, which are the only ones that can be obser-
ved experimentally. In our calculations, we have con-
sidered the concentration for [ADP] =70 uM and
[P,] =1 mM, the load distribution factor 6 = 0.65,
do = 2kBT, X2 = 025, and X56 = X61 — 0.15.

Figure 11 shows the intertransition statistics of this
model obtained from the analytical expressions in
Sec. III, which displays a rich structure due to the multi-
cyclic structure of the model. Our results show that,
apart from being defined in a network with two cycles,
intertransition-time densities for repeated transitions are
identical, P(#|+,+) = P(t|]—,—) [Fig. 11(a)]. This prop-
erty results from the symmetry property that the F and B
cycles of the model pass through transitions with
identical rates; it is not a generic property for multicyclic
networks [see Fig. 6(c)]. As can be seen in Fig. 11(a), the
intertransition times have very different densities, due
to the transition rates being orders of magnitude apart.
In this case, alternated transitions are much faster than
repeated ones.

As can be seen in Fig. 11(b), alternated transitions, in
general, have different intertransition-time densities, but,
for the stall force, P(¢|+, —) and P(t|—, +) become similar,
as can be seen by minima in D[P(t|+, —)||P(t|—, +)]. Both
for the force and the concentrations of ATP [cf. Fig. 11(c)],
we observe regions of decreasing divergence; however, the

(a) 800~

600 [

400 -
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(b) 500
400+
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[ATP] (M)

[ADP] (pM)

FIG. 12. Exact analytical values for the rate of entropy
production for the kinesin model in Fig. 10, with visible
transitions 2 <> 5: entropy production ¢ of the underlying
Markov chain (black curves), inferred entropy production from
transition statistics o, (blue dashed line), and estimate from
the thermodynamic uncertainty relation lower bound oyr
(magenta dotted line). (a) Values in terms of the external load
force f and a zoomed-in view around the stalling force in the
inset; for this case, [ATP] = 10 pM and [ADP] = [P] =5 pM.
(b) In terms of the concentration of ATP, with f =1 pN and
[ADP] = [P] = 5 pM. (c) In terms of the concentration of ADP,
with f = 1pN, [ATP] = 10 pM, and [P] =5 pM.

entropy production rate is increasing in these regions,
which is evidence that intertransition times between alter-
nated transitions do not contribute to the dissipation.

Figure 12 shows the entropy production rate ¢ and the
values inferred from our approach of observing the forward
and backward mechanical transition and the thermody-
namic uncertainty relation. Figure 12(a) is in terms of the
external force f with a zoomed-in view around the stalling
force, for which both o, and oryr vanish since there is
no flux and no intertransition-time asymmetry between
repeated transitions. Figure 12(b) is depicted in terms of the
concentration of ATP and (c) that of ADP, from which we
observe a monotonic increase of dissipation with [ATP],
while it is almost independent of [ADP]. In this model,
o, obtained from Eq. (51), in general, provides a good
estimate for o, generally overperforming the thermody-
namic uncertainty relation opyg. Because of the absence of
o;, no dissipation is detected when no net current is present
(at the stalling force).

C. Bounds for efficiency of molecular motors

To date, one of the most remarkable applications of the
thermodynamic uncertainty relation is the upper bounding
of biological motors by the first and second moments of its
motion [83,84]. Here, we consider the specific class of
molecular motors in which the “stepping transition” does
not involve chemical fuel consumption but rather work
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done against an external load force, which includes, as
specific examples, the dynein and kinesin models of
the previous sections. Within this class of molecular motors,
the rate of entropy production can be written as
6 = (Wepem — f0)/T, Where Wy is the average power
exerted on the motor by the chemical transitions (e.g., by the
ATP hydrolysis cycle). On the other hand, fv is the average
power exerted by the load force f, with v being the net
velocity of the motor along the track. For such motors, the
second law ¢ > 0 implies that one can introduce a notion of
efficiency asn = fv/Wpem» Which can be expressed in terms
of the entropy production rate as follows:

1

T 1+ To/fv (61)

n

From our observations, we conjecture that the hierarchy of
bounds is ¢ > o, > otyr, Which implies, together with
Eq. (61), the following conjectured hierarchy of upper
bounds for the molecular motors’ efficiency:

n< < : <
L+ Top/fv ™ 1+ Torr/fv

1. (62)

Equation (62) implies that the present inference scheme
leads to a tighter upper bound to the efficiency than that
based on the thermodynamic uncertainty relation introduced
in Ref. [83]. Unlike 6, and o1y, o, includes information
about irreversibility through intertransition times, which
shows how the notion of time tightens the efficiency bound.

We illustrate the bounds in Eq. (62) in Fig. 13 for our
kinesin model. Its efficiency is positive in the regime where
load force and net movement have opposite signs, 0 < f <
fa (fa=~7.02 is the stalling force); thus, the motor
performs work against the applied force at the cost of
ATP consumption. For the parameter choices that we

— (1+To/fv)™r == (1+Tog/fv)™ -+ (1+Toryr/fv)"

10[[ADP] = [P = 0.5pM  IIADP] = [P] ="M ..
o6 [[ATP] = 501 ¢ ATP] = 1uM
2 & S e
£ oo
o
E&EJ 0.4
0.2}
0.0l
[ (pN) [ (pN)
FIG. 13. Efficiency (solid black line) of a kinesin motor doing

work against a force f, and its upper bounds obtained from the
visible entropy production (dashed blue line) and the thermo-
dynamic uncertainty relation (dotted magenta line). More details
are given in Sec. VI B.

explore, we observe that, close to the motor maximum
efficiency, the upper bound obtained from transition sta-
tistics is 13% closer to the actual value with respect to the
estimate obtained from the TUR.

D. Motion on disordered tracks

In many instances, the stochastic motion of molecular
machines displays a disordered nature due to the hetero-
geneity of the track. For example, template-copying
machines like DNA and RNA polymerases [85] and
ribosomes [86] are often modeled as machines whose
motion is dependent on the sequence constituting the track,
in such a way that the transition rates depend on the specific
monomer type that the machine encounters at every step
[87,88]. In this section, we study the effects of the track’s
disorder in the intertransition statistics associated with the
motion of a minimal stochastic model of a molecular
machine.

We consider a minimal stochastic model of a molecular
machine that moves along a track by burning fuel (i.e.,
by hydrolysis of ATP). The machine undergoes a series
of conformational changes and translocates on a linear
heterogeneous track (a polymer) composed of two types
of monomers, labeled A and B. We assume that the track
is infinite (i.e., we effectively have annealed disorder)
and that the generation of the template ¢, € {A, B},
n=1{1,2,...}, is an independent and identically distrib-
uted process with prescribed probabilities P(g, = A) = p
and P(g, = B) = 1 — p for the occurrence of A- and B-
type monomers, respectively. For our numerical study, we
generate the template before running the simulations and
use the same template for every run. Figure 14 sketches the
disordered nature of a track along the motion of the
molecular machine. We also assume that the motor moves
following a unicyclic enzymatic reaction composed of four
internal configurational states and that only two transitions
are visible, 4 - 1 =+ and 1 — 4 = —, corresponding to
forward and backward steps along the track, respectively.
The template disorder is implemented in the stochastic
model as follows: When the motor reaches a monomer of
type g¢,, its internal configurational states within one
periodicity cell are connected by the rates

Wi ifg,=Aandi j#4,1
aW;; if g,=Bandi, j#4,1
W= ” (63)
! Wy ifg,.;=Aandi,j=41

aWy, ifqg,,=Bandi,j=4,1,

where a € (0, 1] is the disorder factor. This factor scales the
transition rates, effectively slowing or accelerating the
transitions depending on the track position. As a conven-
tion, we have set the transition rate related to a back step

ng”) to be defined in terms of the previous monomer’s
type ¢,—;- Apart from specific choices of the parameters,
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ADP+Pi

FIG. 14. Sketch of our minimal stochastic model for molecular
motor motion in a disordered linear track composed of two types
of monomers, A and B. The track is generated as an independent
identically distributed sequence of monomers A and B that occur
with probabilities p and 1 — p, respectively. Within each perio-
dicity cell of type A or B, the motor internal states have the same
structure given by a unicyclic network. The transition rates
depend on the motor’s position on the track according to
Eq. (63), where a is a disorder factor. We also assume that the
only visible transitions are those related to translocation to the
right (step “forward”) + =4 — 1 and to the left (step “back-
ward”) — =1 — 4.

this motor has a nonequilibrium dynamics, evidenced by a
net drift along the track. In ring topologies, we have
observed that intertransition times do not contain irrevers-
ibility traces, which is not necessarily true for the disor-
dered case.

We now study how the disorder parameters o and p of
this minimal model affects the intertransition-time statistics
of successive repeated transitions +-+ and +—, and
alternated transitions —+ and ——. From the simulation
of a molecular motor on a disordered track with four
internal states, we observe in Fig. 15 that only the statistics
of intertransition times between alternated transitions are
affected by the degree of disorder. In particular, we observe,
for our example model, that D[P(t|+,+)||P(t|—-,—)] = 0,
i.e., a symmetry relation between the intertransition-time
distributions of repeated transitions P(¢|+, +) =~ P(t]—, —),
which implies o, ~0. As we saw in Sec. VB, such a
symmetry relation is a hallmark of unicyclic networks,
whereas here we effectively have a multicyclic network
with two types of cycles, A and B. We expect the symmetry
P(t|4,+) ~ P(t|-, —), which is already expected for the
homogeneous case (¢ =1, p =0 or p = 1), originating
from the fact that different monomer types just affect the
timescale of the jumps and not the internal network
topology within each periodicity cell.
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FIG. 15. Kullback-Leibler divergence of the intertransition-
time densities for repeated [D[P(t#|+,+)||P(#]—, —)], black
circles] and alternated [D[P(#|+,—)||P(¢|-,+)], magenta
squares] transitions obtained from numerical simulations of
the model sketched in Fig. 14. We plot the values of these
Kullback-Leibler divergences as a function of two parameters
of disorder: (a) in terms of heterogeneity 1 —a with fixed
monomer probability p = 0.5, and (b) in terms of probability
p of monomer A, with fixed @ = 0.2. The rates used for Gillespie
simulations are Wy, = Wy3 =157, Wy = Wy = W3y =5 571,
and W5, = W, = W,; = 4 s~!, which leads to a nonequilibrium
dynamics, and « is introduced according to Eq. (63). Error bars
represent the standard deviation from five trajectories, each of
duration 5 x 10° s.

The results for repeated transitions are in stark con-
trast with our observations for the alternated transi-
tions; see magenta curves in Fig. 15, which shows that
D[P(t|+,-)||P(t|-,+)] is strongly dependent on the
values of o and p controlling the amount of disorder in
the track. Figure 15(a) shows that the degree of asymmetry
DI[P(t|+,—)||P(t|—,+)] in the alternated intertransition-
time statistics increases monotonously with the degree of
heterogeneity affecting the timescale of the jumps given by
1 — a. On the other hand, D[P(t|+,—)||P(t|]—,+)] > 0 is
also able to probe the presence of sequence heterogeneity
as we vary the probability of A monomers p for a fixed «;
see Fig. 15(b). Note that, in the latter case, we recover
DI[P(t|+,=)||P(t]—, +)] =~ 0 for the limiting cases p =0
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and p = 1, which correspond to homogeneous, unicyclic
networks. Taken together, these results highlight the possi-
bility of using the intertransition-time statistics between
alternated transitions as a probe of the presence of under-
lying disorder in cyclic enzymatic reactions, which could
be further generalized in future work.

VII. DISCUSSION

In this work, we have developed results for generic
stationary Markov-jump processes, in and out of equilib-
rium, whose partial information is restricted to the obser-
vation of a partial set among the whole network of
transitions. In particular, we investigated the following
question: What can one learn from counting the frequency
of a partial set of visible transitions and the time elapse
between two such visible and successive transitions occur-
ring in a time series? We have tackled the problem of
learning dynamic and thermodynamic properties of a
system in which only a few transitions are visible to the
observer, a novel coarse-graining scheme that proves to be
physically meaningful and that provides information
through simple relations. For the broad class of stationary
Markov processes, we have derived exact analytical results
for the conditional and unconditional probability of occur-
rence of successive transitions and for the time elapsed
between successive transitions (intertransition times),
which together comprise all the information available to
an observer that can only track the occurrence of a few
visible transitions.

A key insight of our work is that measuring intertransi-
tion times is crucial for thermodynamic inference.
Intertransition-time statistics of two successive repeated
transitions (e.g., + followed by +) carry different infor-
mation than that of two successive different transitions
(e.g., + followed by —). Repeated transition frequencies
and intertransition times contain information about time
irreversibility, which can be used to establish tight lower
bounds for entropy production even in the absence of
probability currents in the transition state space.
Counterintuitively, alternated transitions do not contribute
to entropy production estimates, but their statistics provide
a means to identify the presence of disorder in the hidden
state space. Taken together, our work unveils the relevance
of intertransition times in thermodynamic inference, put-
ting forward recent works [39,55,89,90] that identified
footprints of irreversibility in asymmetries of waiting-
time distributions in states rather than in transitions.
Exploring symmetry properties and developing inference
methods from statistics of a variety of waiting times is a
promising novel area of research within the field of
stochastic thermodynamics [39,55,89,91-93]. In particular,
the companion paper [55] also reports an analysis of
waiting-time statistics between transitions and provides
complementary results to those developed in our frame-
work and applications.

The results we have obtained are generic and can be
applied to large and complex networks, for any given set of
visible transitions. One must notice that the inferences
become limited when observing a tiny fraction of the
transitions on very large networks. Therefore, it would be
interesting to study how robust inferences are in relation
to the visible portion of the network, in particular, with
large and complex structures. In the context of biological
systems, this hurdle may be overcome with recent exper-
imental developments. For example, using two-color,
single-molecule, photoinduced, electron transfer, fluores-
cence imaging microscopy [94] and three-color Forster
resonance energy transfer [95], one can simultaneously
probe multiple conformational changes within an individ-
ual biomolecule using one fluorescence color per coordi-
nate. Additionally, the bias in the estimation of relative
entropy is circumvented using an unbiased estimator [70],
whose implementation is available as an open-source code
in Ref. [71]. This open-source toolbox can be used to
estimate Kullback-Leibler divergences from experimental
time series and, consequently, also the visible entropy
production developed herein.

A possible application of the present formalism is to the
problem of making insightful considerations about the
efficiency of complex biochemical systems or, more in
general, of multiterminal systems with more than one input/
output [96], or with unknown losses [97]. In fact, while
efficiency is well defined when there is one definite input
and output, biochemical systems most often involve many
sources. For example, in glycolysis, one has ATP, ADP,
lactate, water, phosphate, and glucose as metabolites [98];
being the universal energy tokens, it makes sense to
consider the ratio of ADP to ATP production as a measure
of efficiency, but then the problem is how to single them out
of all other mechanisms and make claims about the
efficiency of the process. Furthermore, in more complex
biochemical networks, such as those that also involve
respiration, one might want to focus on other metabolites
(oxygen, carbon dioxide, etc.). To develop such an
approach, it is thus mandatory to develop a more phenom-
enological theory that is consistent with the fundamental
tenets of thermodynamics but can also be adapted to the
specific tasks or instruments that the observer has in mind.
In this respect, the theory presented here may provide a
general conceptual and operational scheme.

We illustrated our results in two models of motion of
molecular motors that have been validated with experi-
mental data, revealing that our methodology could be
applied to real data extracted from, e.g., single-molecule
experiments. We expect that our generic inference tech-
niques will be applied to other disciplines where partially
observed transitions emerge, such as diagnosis algorithms
[99], finite automata [8,100], Markov decision processes
[101], disease spreading [102], information machines
[103], probing of open (quantum) systems [104,105],
and Maxwell demons [106].
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APPENDIX A: PROOF OF EQ. (18)

We now prove Eq. (18) in the main text as follows. We
map the first-transition time problem into a first-passage
time problem by introducing auxiliary absorbing states for
each transition in £. This procedure is inspired by recent
work on first-passage times between states in a Markov
chain [49] and is also similar to the manipulation of
networks to obtain current statistics by creating copies
of some states introduced by Hill [107,108]. We use the fact
that the survival probability density of a process described
by stochastic matrix W and starting in state i does not reach
state j by time ¢ and is given by [48,49]

S(t. jli) = Y _(klexp(tW)]i) = 1 = (jlexp(tW)]i), (A1)
K%

and rewrite this result for transitions rather than states.

We consider a continuous-time Markov jump process over
an irreducible network of discrete states @ = {1,2, ..., N}.
We introduce auxiliary absorbing states s; (sinks) for
i € [1,|L]] to account for the occurrence of every transition
¢ € L separately. The Q.| X |Qq]| stochastic matrix W,
associated with the dynamics over the extended state space
Qex == QU {5y, ..., 5} is such that every element of the
visible set £ € L, a visible transition, is redirected to point
towards its associated sink s, (cf. Fig. 16), and since the sink
is an absorbing state, we set [We,]; =0 for all j in Q.
Following our notation, the sources of visible transitions (||
are preserved while the targets are redirected to the respective
sinks ||£) = |s,).

The extended matrix W, has four blocks; the top-left
block is the survival matrix S with size |Q|x |Q|, and
both blocks to the right are zero matrices. The bottom-left
block L has size |£|x |Q| and contains the redirected
transitions; mathematically, it is expressed as L =

c . c
LWL DALl where the sum ST, runs
through every element of the visible set of transitions.
For the example in Fig. 16, the extended stochastic

matrix is

:’@

FIG. 16. Left diagram: example of a four-states network with
visible transitions £ = {1 — 4,4 — 3} (dashed magenta line).
Right diagram: network of the extended state space, where visible
transitions are redirected to auxiliary absorbing states s; and s,.

1 2 3 4 s1 S

=

>

I
© o o o o o
© o o o o o

Since the last columns are zero, any power n > 1 of the
matrix has the property that its left blocks only depend on
powers of themselves, and the right blocks remain zero,

[Wadis = > [Wed il Wil

keQ
£]
+ Z (Welig o (W o s

K=1
= Z[Wex]i,k[ng_l]k,j’
keQ

(A3)

where the second equality follows from [We,]; o = 0 for
any i and 1 <k’ <|L|. Hence, its matrix exponential
exp(Wey) = D% WK /k! is such that its top-left block
is its own exponential, i.e.,

exp(1S)
exp(tWe) = (Ls—l(exp(l‘s) -1)

USSR
1 ), (A4)
£/x|]

where the last column has a nonsquare block of zeros and
one |L| x | L] identity matrix.

We are interested in the case where a visible transition
was performed at time zero; thus, the initial state is ||£;),
Z; € L, and the next visible transition ¢;,; € L is per-
formed by time ¢, which is equivalent to the first-passage
distribution. Hence, the transition analogue of Eq. (Al) is
the survival density related to the respective sink sz,
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S(t’ Sf,'+] |fl) = 1 - <sfi+1 | exp(tWEX)Hfl»

= 1= (s, [LS™ (exp(tS) = 1)[|£;}). (AS)
where the last equality comes from the fact that the matrix
element in question belongs to the bottom-left block of
Eq. (A4). The first-transition distribution is given by the
time derivative F = —0,S; hence,

F(t,s¢,,,1)

= —0,S(t,s¢,,1¢:)

= 0,(s¢,,, LS~ (exp(zS) = 1)||£;)
= (¢, |Lexp(18)||£:)

|£]
— (s, | (Z <<cj||wT||c,,->>|j><<£j||) exp(1S)][£:)
=

= (i lIWT|€ia D (Z i1 || exp(1S)]1£:). (A6)

which provides the desired result

P(t.1|€;) = (L IWHE i DKL 111 || exp(£S)[1£:)
(A7)

for the joint probability density that a transition £; ; | happens
at a time ¢ given that #; was performed at time zero and no
other visible transition happened in between. (]

APPENDIX B: COMBINATORICS
OF RING NETWORKS

For a ring topology with reversible edges as described in

Sec. IV, we need to evaluate the coefficient C% ,. We
observe the following

(1) There are \!(k; + 1) possible backbones since
there are k; —|—1 clockwise edges between states i
and i+ 1. When the dynamics is occurring, the
chosen backbone is now a set of prohibited edges
that are saved for last in order to make sure that the
cycle is completed.

(ii) When the system is at state 1 < i < N for the first
time, it can choose between k; clockwise and k;_;
counterclockwise edges. Next time i is visited, there
will be one less way out of it since one transition was
already used, and so on. Therefore, we have the
contribution (k; + k;_;)! from each state.

(iii) The contributions of states 1 and N are, respectively,
k! and ky_;! since from there it is only possible to
jump in one direction.

(iv) Edges with the same direction and connecting the
same pair of states are indistinguishable, so we have
to divide everything by their number of permuta-
tions (k; + 1)!k;!.

By gathering every contribution discussed above, we
obtain

(B1)

For the alternated case, notice the following:

(i) There are [[¥, k; possible backbones.

(i) When the system is at state 1 <n < M + 1 for the
first time, it can choose between k; clockwise and
ki_; — 1 counterclockwise edges (one is from the
backbone). Next time i is visited, there will be
one less way out of it since one transition was
already used. Therefore, we have the contribution
(k; + k;i_; — 1)! of each state.

(iii) The contributions of states 1 and M + 1 are, re-
spectively, k;! and (ky, — 1)!.

(iv) Because of the indistinguishability of edges, every-
thing is divided by k, !>

Thus, we have the coefficient

M
z ki+ ki —1
k.M | | i i—1
G- = ( k; )

i=2

(B2)

APPENDIX C: DIAGRAMMATIC APPROACH

The division P(s|+, +)/P(0|+, +) involves a product of
#i—1.(8)/(#;-1.:(0)/, which, by definition, is W;;/(W;+s).
Therefore,

P(s|+.4) _ (11 I 1 - 6x]]—

sor = (U s) isen ©
and

P(sl--) _ [ 15 1 = 2],
P(O|_7_) ( Wu + S> Hi_\/:]l 1 —E(x,) ' (CZ)

The first factors in the right-hand side of both equations
above are the same, and using a diagrammatic approach, we
show that the second one is also the same.

Recall that the continued fraction generators used
in Sec. IV are defined as Olx;. ] = x; /(1 —O[x;]),
O[x;] = x;, which generates a continued fraction. To
evaluate the monomial [[;(1 —®l[x;]), we notice that if
we pick two consecutive terms, they simplify to

(I=0Oki])(1-0[x]) =1-0[x] —xiy1, (C3)
which means that each multiplication of consecutive terms
will lead to two terms: one that is only (1 — ©[x;]) and the
other —x;, . In other words, there are two possible paths
that will be added up to evaluate the whole product.
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This branching procedure can be portrayed by the
diagram below, where each node j represents the value
of [T/_, (1 — ®[x;]). Notice that at each transition, there are
two arrows arriving, one representing the multiplication by
+1 and the other by —x;, as discussed.

0 —.’,172 2 —I'4 P
+7 +1 +1
+1 +1
—x1 —x3

base

The value of the monomial at each transition can be
evaluated as the sum of all paths starting from the base and
reaching such a transition, weighted by the product of the
weight of all edges involved.

To illustrate this case, consider node 2:

12,1 6()) = +y OH\ V ’
1

base

—T
0——— 2

1
+Jr/

base

v V
base — 1
—

2

:1*1‘2*I1

For the reversed fraction generator E[x;], the analogue of
Eq. (C3) is
(1 =B )(1-Elx]) =1 -E[xipy] —x;. (C4)
which means that the diagram has the same structure and,
more importantly, it is covered in the backwards direction.
The arrows point in the other direction, but the weights
remain unchanged, leading to the final result when [],(1 —
O[x;]) and [];(1 — E[x;]) start and end at the same points,
which implies

N-1 N-1

T(1-0lx)) = [J(1-=x)-

i=1 i=1

(C5)

This property guarantees the Haldane-like equality Eq. (33).

APPENDIX D: IRREVERSIBILITY IN
TRANSITION TIME SERIES

We now analytically evaluate the rate of irreversibility in
the time series ', which is defined by Eq. (46), copied
here for convenience:

oz = lim - D(P[TE]||P[FE)),

T—00 T

(D1)

where the probability of a trajectory can be expressed as the
joint probability of all random variables involved, the
visible transitions, and intertransition times

P[TE] = P(ty. 6o, 1,.£1....) = P(1.7).  (D2)

With no further assumptions, the path probability of the
sequence of transitions can be cast as the product of the
sequence probability and intertransition times as P[['%] =

P(?)P(ﬂ?) Since the underlying process is Markovian
and there are no transitions with the same source and
target, the sequence of transitions is also Markovian,
P(ti|€i_1,...,C0) = P(¢;]¢;_1); thus, the probability of a
sequence of transitions in a trajectory is

P?) = P(0) [[ PE) (D3)

1

where n is the total number of transitions within I'?. On the
other hand, the probability of a sequence of intertransition
times conditioned to the occurrence of a given sequence of
transitions reads

P?) = [ [ Plultrr. ). (D4)
i=1

Therefore, the inferred entropy production rate reads

L
o = }Lf?o%%;”rf‘ o)
1
‘[—)00‘[%:/ 0
x {p[r] w4 i m@}. (D5)
P7] P[1|7]

The first term in Eq. (DS) is

041026-22



WHAT TO LEARN FROM A FEW VISIBLE TRANSITIONS’ ...

PHYS. REV. X 12, 041026 (2022)

lim — Z / drP FL PEfO)PEfl |Lﬂ9) U
DT P(fn)P(fi1—1|fn>"'

P(¢[¢)) }
= lim P[£]< In P(¢,) +1n?+...
HMZ { )77

P(Z|")
P('|?)

= (K) > P(£|¢)P(¢')In

el

=:0,.

The second term in Eq. (D5) reads
P(t1|60.¢) -

lim d7P[T'4]In
TLOOTZ/ n|fnvfn l)

=1im =Y P[Z [ dt,P(1,|£0. ) In
T—00 T ; {/
= (K) > P(¢|¢')P(¢)DIP(t|¢". ¢)||P(t]Z

tl'el

P(t1|f0’lfl)+ }
P(t|£1.%0)

)

=:0,. (D7)

For the special case of a single visible transition that can
only take values £ = {+, —}, the time reversal of + is —
and vice versa. Inference of the entropy production rate’s
first term simplifies to

o = (K)[P(+[+)P(+) - (D8)
The stationary occupation probability vector can be
found by
Po(j) = (=1)"/ det(Wy; ;). Vi  (D9)
since  det(W) = >, W,;;(=1)""/ det(W,(; ;) =0  and
>.iWiiPe(j) =0 for every transition matrix defining
a Markov chain. Lastly, by the construction of the
survival matrix S, we observe that S\, ; = W,(;; and
S\( i) = W\( i) Now, we are in the position to show that

P(+]4) =1=P(=|4)

= 1= (= W= D= 1871+ )

= 1w -y e

= 1w -y e

=== Wiy -y $ e

:1_%’ (D10)

and analogously, we obtain P(—|-)=1—-(K)P(+)/
det(S). Plugging this latter equation into Eq. (D8), it
simplifies to

(K)[P(+) = P(=)]In

=:J pAetrs (D11)

which is Eq. (54) in the main text. The factor (K)[P(+) —
P(—)] is the definition of the flux through the observed
transition J ;, suggesting the definition of the second factor
as the effective affinity Agg.

Following the same reasoning, the intertransition-time
contribution simplifies to

o, = (K)P(+|+)P(+)D[P(t|+, +)[| P(t] =, -)]

+ (K)P(=|=)P(=)D[P(t|=, -)|[P(t[+.+)]. (D12)
which is Eq. (55) in the main text. The sum of Egs. (D8)
and (D12) results in the entropy production rate inferred by
an observer who only accesses two opposite transitions
between a single pair of states.

APPENDIX E: KULLBACK-LEIBLER
DIVERGENCE FROM FINITE DATA

Estimation of Kullback-Leibler divergences between
distributions of continuous random variables, such as that
present in ¢,, from time series is not a straightforward task,
as it can lead to systematic errors and statistical biases
[44,109,110]. Furthermore, inference schemes to deal with
finite data have been largely explored in the analytical
sense, as discussed in this paper, hence the need for
accurate estimators.

The most intuitive approach involves estimating the
probability distributions (here, P and Q) via standard
histogram counting methods of the data collected from
an experiment or simulation and later approximating
the integral DI[P(x)||Q(x)] = [dxP(x)InP(x)/Q(x) ~
> Piln(P;/Q;), with P; and Q; the probability for the
data to fall in the ith bin. However, this approach leads to a
biased estimate of the Kullback-Leibler divergence, as
shown in previous work [44,109,110]. A method developed
in Ref. [70] explores an alternative, unbiased estimation
method for the bias-free Kullback-Leibler divergence,
which is based on the comparison between the cumulative
distributions of two independent data sets generated by P
and Q. This method was adapted to the estimate of the
intertransition-time Kullback-Leibler divergences shown in
the analysis of simulated results throughout the main text.
We made our code open source and available in Ref. [71],
with further details and illustrations of generating visible
transitions’ time series, and evaluating Kullback-Leibler
divergences and o .

Briefly, the method consists of taking two finite data sets
sampled from two independent processes with distributions
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FIG. 17. Convergence analysis of the two contributions to the
entropy production rate inferred from numerical simulations o™
for the model shown in Fig. 6 with bias parameter 8.6. The
magenta line (top) is the intertransition times’ Kullback-Leibler
divergence o™ evaluated by the biased method from histogram
counting. The black line (middle) is the intertransition times’
Kullback-Leibler divergence o{™ obtained using the unbiased
method [70,71]. The blue line (bottom) is the estimate of the
Kullback-Leibler divergence from the transitions’ occurrence
statistics from ¢$™. The analytical values of both o, and o,
are shown by horizontal gray lines.

P(x) and Q(x). Linear interpolations F.(x) and F.(x) of
their associated empirical cumulative distributions are
obtained for small enough e, which are used in the
following estimate shown to converge to the Kullback-
Leibler divergence in Ref. [70],

san:o[ (e —rx )]
DIP(x)||Q(x)], (E1)

where n is the number of points X; from the data with
distribution P(x).

Figure 17 shows the convergence of 6, and o, estimates
as the number of data points in the time series increases.
The value of a}im“ has a fast convergence using the
empirical frequencies of transitions. For o;, however, the
estimate depends strongly on the method used as inter-
transition times are continuous random variables. By
estimating the probability distributions with kernel density
estimations methods and numerically evaluating the
Kullback-Leibler divergence’s integral, we obtain &{™m
(magenta line), which leads to a significant bias above
the expected value. On the other hand, using Eq. (El)
through the resources in Ref. [71], the estimate ™ (black
line) displays no evident sign of statistical bias above or
below the analytical value of o,. This result motivated the
usage of Eq. (E1) as our estimate for all the Kullback-
Leibler divergences in this work.

[1] Nicolaas Godfried Van Kampen, Stochastic Processes
in Physics and Chemistry, Vol. 1 (Elsevier, New York,
1992).

[2] Abraham Tamir, Applications of Markov Chains in Chemi-
cal Engineering (Elsevier, New York, 1998).

[3] David F Anderson and Thomas G Kurtz, Continuous Time
Markov Chain Models for Chemical Reaction Networks, in
Design and Analysis of Biomolecular Circuits (Springer,
New York, 2011) pp. 3-42.

[4] Francesco Avanzini, Emanuele Penocchio, Gianmaria
Falasco, and Massimiliano Esposito, Nonequilibrium
Thermodynamics of Non-ldeal Chemical Reaction Net-
works, J. Chem. Phys. 154, 094114 (2021).

[5] Linda J. S. Allen, An Introduction to Stochastic Processes
with Applications to Biology (CRC Press, Boca Raton,
2010).

[6] Anatoly B. Kolomeisky and Michael E. Fisher, Molecular
Motors: A Theorist’s Perspective, Annu. Rev. Phys. Chem.
58, 675 (2007).

[7] Debashish Chowdhury, Modeling Stochastic Kinetics of
Molecular Machines at Multiple Levels: From Molecules
to Modules, Biophys. J. 104, 2331 (2013).

[8] David H. Wolpert, The Stochastic Thermodynamics of
Computation, J. Phys. A 52, 193001 (2019).

[9] Hao Ge and Hong Qian, Physical Origins of Entropy
Production, Free Energy Dissipation, and Their Math-
ematical Representations, Phys. Rev. E 81, 051133 (2010).

[10] Massimiliano Esposito and Christian Van den Broeck,
Three Faces of the Second Law. 1. Master Equation
Formulation, Phys. Rev. E 82, 011143 (2010).

[11] Christian Van den Broeck and Massimiliano Esposito,
Three Faces of the Second Law. Il. Fokker-Planck For-
mulation, Phys. Rev. E 82, 011144 (2010).

[12] Ken Sekimoto, Langevin Equation and Thermodynamics,
Prog. Theor. Phys. Suppl. 130, 17 (1998).

[13] Tania Tomé and Mario J. de Oliveira, Entropy Production
in Irreversible Systems Described by a Fokker-Planck
Equation, Phys. Rev. E 82, 021120 (2010).

[14] Ekaterina A. Korobkova, Thierry Emonet, Heungwon
Park, and Philippe Cluzel, Hidden Stochastic Nature of
a Single Bacterial Motor, Phys. Rev. Lett. 96, 058105
(2006).

[15] Stefano Bo and Antonio Celani, Multiple-Scale Stochastic
Processes: Decimation, Averaging and Beyond, Phys.
Rep. 670, 1 (2017).

[16] Massimiliano Esposito, Stochastic Thermodynamics under
Coarse Graining, Phys. Rev. E 85, 041125 (2012).

[17] Simone Pigolotti and Angelo Vulpiani, Coarse Graining of
Master Equations with Fast and Slow States, J. Chem.
Phys. 128, 154114 (2008).

[18] Saar Rahav and Christopher Jarzynski, Fluctuation Rela-
tions and Coarse-Graining, J. Stat. Mech. (2007) P09012.

[19] Gianluca Teza and Attilio L. Stella, Exact Coarse Graining
Preserves Entropy Production out of Equilibrium, Phys.
Rev. Lett. 125, 110601 (2020).

[20] Lucas Lacasa, Inés P. Marifio, Joaquin Miguez, Vincenzo
Nicosia, Edgar Rolddn, Ana Lisica, Stephan W. Grill,
and Jests Gomez-Gardeiies, Multiplex Decomposition of
Non-Markovian Dynamics and the Hidden Layer
Reconstruction Problem, Phys. Rev. X 8, 031038 (2018).

041026-24


https://doi.org/10.1063/5.0041225
https://doi.org/10.1146/annurev.physchem.58.032806.104532
https://doi.org/10.1146/annurev.physchem.58.032806.104532
https://doi.org/10.1016/j.bpj.2013.04.042
https://doi.org/10.1088/1751-8121/ab0850
https://doi.org/10.1103/PhysRevE.81.051133
https://doi.org/10.1103/PhysRevE.82.011143
https://doi.org/10.1103/PhysRevE.82.011144
https://doi.org/10.1143/PTPS.130.17
https://doi.org/10.1103/PhysRevE.82.021120
https://doi.org/10.1103/PhysRevLett.96.058105
https://doi.org/10.1103/PhysRevLett.96.058105
https://doi.org/10.1016/j.physrep.2016.12.003
https://doi.org/10.1016/j.physrep.2016.12.003
https://doi.org/10.1103/PhysRevE.85.041125
https://doi.org/10.1063/1.2907242
https://doi.org/10.1063/1.2907242
https://doi.org/10.1088/1742-5468/2007/09/P09012
https://doi.org/10.1103/PhysRevLett.125.110601
https://doi.org/10.1103/PhysRevLett.125.110601
https://doi.org/10.1103/PhysRevX.8.031038

WHAT TO LEARN FROM A FEW VISIBLE TRANSITIONS’ ...

PHYS. REV. X 12, 041026 (2022)

[21] Ronald D. Vale, Thomas S. Reese, and Michael P. Sheetz,
Identification of a Novel Force-Generating Protein,
Kinesin, Involved in Microtubule-Based Motility, Cell
42, 39 (1985).

[22] Jordanka Zlatanova and Kensal van Holde, Single-
Molecule Biology: What Is It and How Does It Work?,
Mol. Cell. 24, 317 (2006).

[23] Sander Verbrugge, Lukas C. Kapitein, and Erwin J. G.
Peterman, Kinesin Moving through the Spotlight: Single-
Motor Fluorescence Microscopy with Submillisecond
Time Resolution, Biophys. J. 92, 2536 (2007).

[24] Vaishnavi Ananthanarayanan and Iva M. Toli¢, Single-
Molecule Imaging of Cytoplasmic Dynein In Vivo, in
Methods in Cell Biology (Elsevier, New York, 2015),
pp. 1-12.

[25] Stefan Niekamp, Nico Stuurman, Nan Zhang, and Ronald
D. Vale, Three-Color Single-Molecule Imaging Reveals
Conformational Dynamics of Dynein Undergoing Motility,
Proc. Natl. Acad. Sci. U.S.A. 118 (2021).

[26] Rama Desai, Michael A. Geeves, and Neil M. Kad, Using
Fluorescent Myosin to Directly Visualize Cooperative
Activation of Thin Filaments, J. Biol. Chem. 290, 1915
(2015).

[27] W.E. Moerner and David P. Fromm, Methods of Single-
Molecule Fluorescence Spectroscopy and Microscopy,
Rev. Sci. Instrum. 74, 3597 (2003).

[28] Chirlmin Joo, Hamza Balci, Yuji Ishitsuka, Chittanon
Buranachai, and Taekjip Ha, Advances in Single-Molecule
Fluorescence Methods for Molecular Biology, Annu. Rev.
Biochem. 77, 51 (2008).

[29] Pierre Mangeol, Bram Prevo, and Erwin J. G. Peterman,
Kymographclear and Kymographdirect: Two Tools for the
Automated Quantitative Analysis of Molecular and Cel-
lular Dynamics Using Kymographs, Mol. Biol. Cell 27,
1948 (2016).

[30] Samara L. Reck-Peterson, Ahmet Yildiz, Andrew P. Carter,
Arne Gennerich, Nan Zhang, and Ronald D. Vale, Single-
Molecule Analysis of Dynein Processivity and Stepping
Behavior, Cell 126, 335 (2006).

[31] Elio A. Abbondanzieri, William J. Greenleaf, Joshua W.
Shaevitz, Robert Landick, and Steven M. Block, Direct
Observation of Base-Pair Stepping by RNA Polymerase,
Nature (London) 438, 460 (2005).

[32] Colin Echeverria Aitken, Alexey Petrov, and Joseph D.
Puglisi, Single Ribosome Dynamics and the Mechanism of
Translation, Annu. Rev. Biophys. 39, 491 (2010).

[33] Jin-Der Wen, Laura Lancaster, Courtney Hodges, Ana-
Carolina Zeri, Shige H. Yoshimura, Harry F. Noller, Carlos
Bustamante, and Ignacio Tinoco, Following Translation
by Single Ribosomes One Codon at a Time, Nature
(London) 452, 598 (2008).

[34] Annwesha Dutta, Gunter M. Schiitz, and Debashish
Chowdhury, Stochastic Thermodynamics and Modes of
Operation of a Ribosome: A Network Theoretic Perspec-
tive, Phys. Rev. E 101, 032402 (2020).

[35] Reinhard Lipowsky, Steffen Liepelt, and Angelo
Valleriani, Energy Conversion by Molecular Motors
Coupled to Nucleotide Hydrolysis, J. Stat. Phys. 135,
951 (2009).

[36] Dominic J. Skinner and J6rn Dunkel, Improved Bounds on
Entropy Production in Living Systems, Proc. Natl. Acad.
Sci. U.S.A. 118 (2021).

[37] Shun Otsubo, Sreekanth K. Manikandan, Takahiro
Sagawa, and Supriya Krishnamurthy, Estimating Time-
Dependent Entropy Production from Non-equilibrium
Trajectories, Communications in Physics 5§ (2022).

[38] Matteo Polettini and Massimiliano Esposito, Effective
Fluctuation and Response Theory, J. Stat. Phys. 176, 94
(2019).

[39] Ignacio A. Martinez, Gili Bisker, Jordan M. Horowitz, and
Juan M. R. Parrondo, Inferring Broken Detailed Balance
in the Absence of Observable Currents, Nat. Commun. 10,
3542 (2019).

[40] Naoto Shiraishi and Takahiro Sagawa, Fluctuation Theo-
rem for Partially Masked Nonequilibrium Dynamics,
Phys. Rev. E 91, 012130 (2015).

[41] Notice that for any two states i and j, we have (i|j) = &; ;,
with §; ; Kronecker’s delta, whereas transitions (7||£)) # 1.

[42] We denote by D[P(x)||Q(x)] = [5° dxP(x)In[P(x)/
O(x)] = 0 the Kullback-Leibler divergence between the
probability distributions P and Q of the random variable x
[43]. This information-theoretic measure can be generalized
to distributions of multiple random variables and path pro-
babilities of stochastic processes; see, e.g., Refs. [44—46] for
applications in stochastic thermodynamics.

[43] Thomas M. Cover and Joy A. Thomas, Elements of
Information Theory, in Wiley Series in Telecommunica-
tions and Signal Processing, 2nd ed. (Wiley-Interscience,
New York, 2006).

[44] Edgar Roldan and Juan M. R. Parrondo, Entropy Produc-
tion and Kullback-Leibler Divergence between Stationary
Trajectories of Discrete Systems, Phys. Rev. E 85, 031129
(2012).

[45] R. Kawai, J. M. R. Parrondo, and C. Van den Broeck,
Dissipation: The Phase-Space Perspective, Phys. Rev.
Lett. 98, 080602 (2007).

[46] J. M. R. Parrondo, C. Van den Broeck, and R. Kawai,
Entropy Production and the Arrow of Time, New J. Phys.
11, 073008 (2009).

[47] Name suggested by the second referee.

[48] Sidney Redner, A Guide to First-Passage Processes
(Cambridge University Press, Cambridge, England,
2001).

[49] Ken Sekimoto, Derivation of the First Passage Time
Distribution for Markovian Process on Discrete Network,
arXiv:2110.02216.

[50] Marco Baiesi, Christian Maes, and Bram Wynants, Non-
equilibrium Linear Response for Markov Dynamics, I:
Jump Processes and Overdamped Diffusions, J. Stat. Phys.
137, 1094 (2009).

[51] J. P. Garrahan, R. L. Jack, V. Lecomte, E. Pitard, K. van
Duijvendijk, and F. van Wijland, Dynamical First-Order
Phase Transition in Kinetically Constrained Models of
Glasses, Phys. Rev. Lett. 98, 195702 (2007).

[52] Gili Bisker, Matteo Polettini, Todd R. Gingrich, and Jordan
M. Horowitz, Hierarchical Bounds on Entropy Production
Inferred from Partial Information, J. Stat. Mech. (2017)
093210.

041026-25


https://doi.org/10.1016/S0092-8674(85)80099-4
https://doi.org/10.1016/S0092-8674(85)80099-4
https://doi.org/10.1016/j.molcel.2006.10.017
https://doi.org/10.1529/biophysj.106.093575
https://doi.org/10.1073/pnas.2101391118
https://doi.org/10.1074/jbc.M114.609743
https://doi.org/10.1074/jbc.M114.609743
https://doi.org/10.1063/1.1589587
https://doi.org/10.1146/annurev.biochem.77.070606.101543
https://doi.org/10.1146/annurev.biochem.77.070606.101543
https://doi.org/10.1091/mbc.e15-06-0404
https://doi.org/10.1091/mbc.e15-06-0404
https://doi.org/10.1016/j.cell.2006.05.046
https://doi.org/10.1038/nature04268
https://doi.org/10.1146/annurev.biophys.093008.131427
https://doi.org/10.1038/nature06716
https://doi.org/10.1038/nature06716
https://doi.org/10.1103/PhysRevE.101.032402
https://doi.org/10.1007/s10955-009-9754-9
https://doi.org/10.1007/s10955-009-9754-9
https://doi.org/10.1073/pnas.2024300118
https://doi.org/10.1073/pnas.2024300118
https://doi.org/10.1038/s42005-021-00787-x
https://doi.org/10.1007/s10955-019-02291-7
https://doi.org/10.1007/s10955-019-02291-7
https://doi.org/10.1038/s41467-019-11051-w
https://doi.org/10.1038/s41467-019-11051-w
https://doi.org/10.1103/PhysRevE.91.012130
https://doi.org/10.1103/PhysRevE.85.031129
https://doi.org/10.1103/PhysRevE.85.031129
https://doi.org/10.1103/PhysRevLett.98.080602
https://doi.org/10.1103/PhysRevLett.98.080602
https://doi.org/10.1088/1367-2630/11/7/073008
https://doi.org/10.1088/1367-2630/11/7/073008
https://arXiv.org/abs/2110.02216
https://doi.org/10.1007/s10955-009-9852-8
https://doi.org/10.1007/s10955-009-9852-8
https://doi.org/10.1103/PhysRevLett.98.195702
https://doi.org/10.1088/1742-5468/aa8c0d
https://doi.org/10.1088/1742-5468/aa8c0d

HARUNARI, DUTTA, POLETTINI, and ROLDAN

PHYS. REV. X 12, 041026 (2022)

[53] Andre C. Barato and Udo Seifert, Thermodynamic Un-
certainty Relation for Biomolecular Processes, Phys. Rev.
Lett. 114, 158101 (2015).

[54] Todd R. Gingrich, Jordan M. Horowitz, Nikolay Perunov,
and Jeremy L. England, Dissipation Bounds All Steady-
State Current Fluctuations, Phys. Rev. Lett. 116, 120601
(2016).

[55] Jann van der Meer, Benjamin Ertel, and Udo Seifert,
Thermodynamic Inference in Partially Accessible Markov
Networks: A Unifying Perspective from Transition-Based
Waiting Time Distributions, Phys. Rev. X 12, 031025
(2022).

[56] Christian Maes, Frenesy: Time-Symmetric Dynamical
Activity in Nonequilibria, Phys. Rep. 850, 1 (2020).

[57] Edgar Roldan and Pierpaolo Vivo, Exact Distributions of
Currents and Frenesy for Markov Bridges, Phys. Rev. E
100, 042108 (2019).

[58] Christian Maes and Karel Neto¢ny, Nonequilibrium Cor-
rections to Gradient Flow, Chaos 29, 073109 (2019).

[59] Yann R. Chemla, Jeffrey R. Moffitt, and Carlos
Bustamante, Exact Solutions for Kinetic Models of Macro-
molecular Dynamics, J. Phys. Chem. B 112, 6025 (2008).

[60] Juan P. Garrahan, Simple Bounds on Fluctuations and
Uncertainty Relations for First-Passage Times of Count-
ing Observables, Phys. Rev. E 95, 032134 (2017).

[61] Pedro E. Harunari, Alberto Garilli, and Matteo Polettini,
The Beat of a Current, arXiv:2205.05060.

[62] Matteo Polettini, Fisher Information of Markovian Decay
Modes, Eur. Phys. J. B 87, 215 (2014).

[63] Hong Qian and X. Sunney Xie, Generalized Haldane
Equation and Fluctuation Theorem in the Steady-State
Cycle Kinetics of Single Enzymes, Phys. Rev. E 74, 010902
(R) (2006).

[64] Hao Ge, Waiting Cycle Times and Generalized Haldane
Equality in the Steady-State Cycle Kinetics of Single
Enzymes, J. Phys. Chem. B 112, 61 (2008).

[65] Izaak Neri, Edgar Roldén, and Frank Jiilicher, Statistics of
Infima and Stopping Times of Entropy Production and
Applications to Active Molecular Processes, Phys. Rev. X
7, 011019 (2017).

[66] Matteo Polettini, BEST Statistics of Markovian Fluxes: A
Tale of Eulerian Tours and Fermionic Ghosts, J. Phys. A
48, 365005 (2015).

[67] Edgar Roldan and Juan M. R. Parrondo, Estimating Dis-
sipation from Single Stationary Trajectories, Phys. Rev.
Lett. 105, 150607 (2010).

[68] J. Schnakenberg, Network Theory of Microscopic and
Macroscopic Behavior of Master Equation Systems, Rev.
Mod. Phys. 48, 571 (1976).

[69] A. Gomez-Marin, J. M.R. Parrondo, and C. Van den
Broeck, Lower Bounds on Dissipation upon Coarse
Graining, Phys. Rev. E 78, 011107 (2008).

[70] Fernando Perez-Cruz, Kullback-Leibler Divergence Esti-
mation of Continuous Distributions, in 2008 IEEE
International Symposium on Information Theory (2008),
pp. 1666-1670.

[71] Pedro E. Harunari and Ariel Yssou, Kullback-Leibler
Divergence Estimation Algorithm and Inter-transition
Times  Application,  https://github.com/pedroharunari/
KLD_estimation (2022).

[72] Jos A. Morin, Francisco J. Cao, Jos M. Lzaro, J. Ricardo
Arias-Gonzalez, Jos M. Valpuesta, Jos L. Carrascosa,
Margarita Salas, and Borja Ibarra, Mechano-Chemical
Kinetics of DNA Replication: Identification of the Trans-
location Step of a Replicative DNA Polymerase, Nucleic
Acids Res. 43, 3643 (2015).

[73] Xinghua Shi and Taekjip Ha, Single-Molecule FRET:
Technique and Applications to the Studies of Molecular
Machines, in Molecular Machines in Biology, edited by
Joachim Frank (Cambridge University Press, Cambridge,
England, 2011), pp. 4-19.

[74] Carlos J. Bustamante, Yann R. Chemla, Shixin Liu, and
Michelle D. Wang, Optical Tweezers in Single-Molecule
Biophysics, Nat. Rev. Meth. Primers 1 (2021).

[75] John T. Canty, Ruensern Tan, Emre Kusakci, Jonathan
Fernandes, and Ahmet Yildiz, Structure and Mechanics of
Dynein Motors, Annu. Rev. Biophys. 50, 549 (2021).

[76] Jonathon Howard and R.L. Clark, Mechanics of Motor
Proteins and the Cytoskeleton, Appl. Mech. Rev. 55, B39
(2002).

[77] Andreja Sarlah and Andrej Vilfan, The Winch Model Can
Explain Both Coordinated and Uncoordinated Stepping of
Cytoplasmic Dynein, Biophys. J. 107, 662 (2014).

[78] Wonseok Hwang and Changbong Hyeon, Energetic Costs,
Precision, and Transport Efficiency of Molecular Motors,
J. Phys. Chem. Lett. 9, 513 (2018).

[79] Steffen Liepelt and Reinhard Lipowsky, Kinesin’s Network
of Chemomechanical Motor Cycles, Phys. Rev. Lett. 98,
258102 (2007).

[80] Carlos Bustamante, Jan Liphardt, and Felix Ritort, The
Nonegquilibrium Thermodynamics of Small Systems,
Phys. Today 58, No. 07, 43 (2005).

[81] Nick J. Carter and R. A. Cross, Mechanics of the Kinesin
Step, Nature (London) 435, 308 (2005).

[82] Masayoshi Nishiyama, Hideo Higuchi, and Toshio
Yanagida, Chemomechanical Coupling of the Forward
and Backward Steps of Single Kinesin Molecules, Nat. Cell
Biol. 4, 790 (2002).

[83] Patrick Pietzonka, Andre C. Barato, and Udo Seifert,
Universal Bound on the Efficiency of Molecular Motors,
J. Stat. Mech. (2016) 124004.

[84] Andreas Dechant and Shin ichi Sasa, Current Fluctuations
and Transport Efficiency for General Langevin Systems,
J. Stat. Mech. (2018) 063209.

[85] Pierre Gaspard, Template-Directed Copolymerization,
Random Walks Along Disordered Tracks, and Fractals,
Phys. Rev. Lett. 117, 238101 (2016).

[86] Sophia Rudorf and Reinhard Lipowsky, Protein Synthesis
in E. coli: Dependence of Codon-Specific Elongation on
tRNA Concentration and Codon Usage, PLoS One 10,
e0134994 (2015).

[87] Yariv Kafri, David K. Lubensky, and David R. Nelson,
Dynamics of Molecular Motors with Finite Processivity
on Heterogeneous Tracks, Phys. Rev. E 71, 041906
(2005).

[88] Thomas Harms and Reinhard Lipowsky, Driven Ratchets
with Disordered Tracks, Phys. Rev. Lett. 79, 2895 (1997).

[89] Dominic J. Skinner and Jorn Dunkel, Estimating Entropy
Production from Waiting Time Distributions, Phys. Rev.
Lett. 127, 198101 (2021).

041026-26


https://doi.org/10.1103/PhysRevLett.114.158101
https://doi.org/10.1103/PhysRevLett.114.158101
https://doi.org/10.1103/PhysRevLett.116.120601
https://doi.org/10.1103/PhysRevLett.116.120601
https://doi.org/10.1103/PhysRevX.12.031025
https://doi.org/10.1103/PhysRevX.12.031025
https://doi.org/10.1016/j.physrep.2020.01.002
https://doi.org/10.1103/PhysRevE.100.042108
https://doi.org/10.1103/PhysRevE.100.042108
https://doi.org/10.1063/1.5098055
https://doi.org/10.1021/jp076153r
https://doi.org/10.1103/PhysRevE.95.032134
https://arXiv.org/abs/2205.05060
https://doi.org/10.1140/epjb/e2014-50142-1
https://doi.org/10.1103/PhysRevE.74.010902
https://doi.org/10.1103/PhysRevE.74.010902
https://doi.org/10.1021/jp0729967
https://doi.org/10.1103/PhysRevX.7.011019
https://doi.org/10.1103/PhysRevX.7.011019
https://doi.org/10.1088/1751-8113/48/36/365005
https://doi.org/10.1088/1751-8113/48/36/365005
https://doi.org/10.1103/PhysRevLett.105.150607
https://doi.org/10.1103/PhysRevLett.105.150607
https://doi.org/10.1103/RevModPhys.48.571
https://doi.org/10.1103/RevModPhys.48.571
https://doi.org/10.1103/PhysRevE.78.011107
https://github.com/pedroharunari/KLD_estimation
https://github.com/pedroharunari/KLD_estimation
https://github.com/pedroharunari/KLD_estimation
https://doi.org/10.1093/nar/gkv204
https://doi.org/10.1093/nar/gkv204
https://doi.org/10.1038/s43586-021-00021-6
https://doi.org/10.1146/annurev-biophys-111020-101511
https://doi.org/10.1115/1.1451234
https://doi.org/10.1115/1.1451234
https://doi.org/10.1016/j.bpj.2014.06.022
https://doi.org/10.1021/acs.jpclett.7b03197
https://doi.org/10.1103/PhysRevLett.98.258102
https://doi.org/10.1103/PhysRevLett.98.258102
https://doi.org/10.1063/1.2012462
https://doi.org/10.1038/nature03528
https://doi.org/10.1038/ncb857
https://doi.org/10.1038/ncb857
https://doi.org/10.1088/1742-5468/2016/12/124004
https://doi.org/10.1088/1742-5468/aac91a
https://doi.org/10.1103/PhysRevLett.117.238101
https://doi.org/10.1371/journal.pone.0134994
https://doi.org/10.1371/journal.pone.0134994
https://doi.org/10.1103/PhysRevE.71.041906
https://doi.org/10.1103/PhysRevE.71.041906
https://doi.org/10.1103/PhysRevLett.79.2895
https://doi.org/10.1103/PhysRevLett.127.198101
https://doi.org/10.1103/PhysRevLett.127.198101

WHAT TO LEARN FROM A FEW VISIBLE TRANSITIONS’ ...

PHYS. REV. X 12, 041026 (2022)

[90] Yuhai Tu, The Nonequilibrium Mechanism for Ultrasen-
sitivity in a Biological Switch: Sensing by Maxwell’s
Demons, Proc. Natl. Acad. Sci. U.S.A. 105, 11737 (2008).

[91] Izaak Neri, Edgar Roldédn, Simone Pigolotti, and Frank
liilicher, Integral Fluctuation Relations for Entropy Pro-
duction at Stopping Times, J. Stat. Mech. (2019) 104006.

[92] David Hartich and Alja Godec, Comment on “Inferring
Broken Detailed Balance in the Absence of Observable
Currents”, arXiv:2112.08978.

[93] David Hartich and Alja z. Godec, Emergent Memory and
Kinetic Hysteresis in Strongly Driven Networks, Phys.
Rev. X 11, 041047 (2021).

[94] Jonathan Schubert, Andrea Schulze, Chrisostomos
Prodromou, and Hannes Neuweiler, Two-Colour Single-
Molecule Photoinduced Electron Transfer Fluorescence
Imaging Microscopy of Chaperone Dynamics, Nat. Com-
mun. 12, 6964 (2021)..

[95] Janghyun Yoo, John M. Louis, Irina V. Gopich, and Hoi
Sung Chung, Three-Color Single-Molecule FRET and
Fluorescence Lifetime Analysis of Fast Protein Folding,
J. Phys. Chem. B 122, 11702 (2018).

[96] Kay Brandner and Udo Seifert, Multi-terminal Thermoelec-
tric Transport in a Magnetic Field: Bounds on Onsager
Coefficients and Efficiency, New J. Phys. 15, 105003 (2013).

[97] Hadrien Vroylandt, Anthony Bonfils, and Gatien Verley,
Efficiency Fluctuations of Small Machines with Unknown
Losses, Phys. Rev. E 93, 052123 (2016).

[98] Kristopher D. Rawls, Bonnie V. Dougherty, Edik M. Blais,
Ethan Stancliffe, Glynis L. Kolling, Kalyan Vinnakota,
Venkat R. Pannala, Anders Wallqvist, and Jason A. Papin,
A Simplified Metabolic Network Reconstruction to Pro-
mote Understanding and Development of Flux Balance
Analysis Tools, Computers in Biology and Medicine 105,
64 (2019).

[99] Meera Sampath, Raja Sengupta, Stephane Lafortune,
Kasim Sinnamohideen, and Demosthenis C. Teneketzis,
Failure Diagnosis Using Discrete-Event Models, ITEEE
Trans. Control Syst. Technol. 4, 105 (1996).

[100] Weilin Wang, Stéphane Lafortune, and Feng Lin, An
Algorithm for Calculating Indistinguishable States and

Clusters in Finite-State Automata with Partially Observ-
able Transitions, Systems and Control Letters 56, 656
(2007).

[101] William S. Lovejoy, A Survey of Algorithmic Methods for
Partially Observed Markov Decision Processes, Ann.
Oper. Res. 28, 47 (1991).

[102] Anindya Bhadra, Edward L. lonides, Karina Laneri,
Mercedes Pascual, Menno Bouma, and Ramesh C.
Dhiman, Malaria in Northwest India: Data Analysis via
Partially Observed Stochastic Differential Equation Mod-
els Driven by Lévy Noise, J. Am. Stat. Assoc. 106, 440
(2011).

[103] Viviana Serreli, Chin-Fa Lee, Euan R. Kay, and David A.
Leigh, A Molecular Information Ratchet, Nature (London)
445, 523 (2007).

[104] Klaara L. Viisanen, Samu Suomela, Simone
Gasparinetti, Olli-Pentti Saira, Joachim Ankerhold, and
Jukka P. Pekola, Incomplete Measurement of Work in a
Dissipative Two Level System, New J. Phys. 17, 055014
(2015).

[105] Massimo Borrelli, Jonne V. Koski, Sabrina Maniscalco,
and Jukka P. Pekola, Fluctuation Relations for Driven
Coupled Classical Two-Level Systems with Incomplete
Measurements, Phys. Rev. E 91, 012145 (2015).

[106] Philipp Strasberg, Gernot Schaller, Tobias Brandes, and
Massimiliano Esposito, Thermodynamics of a Physical
Model Implementing a Maxwell Demon, Phys. Rev. Lett.
110, 040601 (2013).

[107] Terrell L. Hill, Interrelations between Random Walks on
Diagrams (Graphs) with and without Cycles, Proc. Natl.
Acad. Sci. U.S.A. 85, 2879 (1988).

[108] Mamata Sahoo and Stefan Klumpp, Backtracking Dynam-
ics of RNA Polymerase: Pausing and Error Correction,
J. Phys. Condens. Matter 25, 374104 (2013).

[109] Alexander Kraskov, Harald Stogbauer, and Peter
Grassberger, Estimating Mutual Information, Phys. Rev.
E 69, 066138 (2004).

[110] Juan A. Bonachela, Haye Hinrichsen, and Miguel
A. Muioz, Entropy Estimates of Small Data Sets,
J. Phys. A 41, 202001 (2008).

041026-27


https://doi.org/10.1073/pnas.0804641105
https://doi.org/10.1088/1742-5468/ab40a0
https://arXiv.org/abs/2112.08978
https://doi.org/10.1103/PhysRevX.11.041047
https://doi.org/10.1103/PhysRevX.11.041047
https://doi.org/10.1038/s41467-021-27286-5
https://doi.org/10.1038/s41467-021-27286-5
https://doi.org/10.1021/acs.jpcb.8b07768
https://doi.org/10.1088/1367-2630/15/10/105003
https://doi.org/10.1103/PhysRevE.93.052123
https://doi.org/10.1016/j.compbiomed.2018.12.010
https://doi.org/10.1016/j.compbiomed.2018.12.010
https://doi.org/10.1109/87.486338
https://doi.org/10.1109/87.486338
https://doi.org/10.1016/j.sysconle.2007.03.006
https://doi.org/10.1016/j.sysconle.2007.03.006
https://doi.org/10.1007/BF02055574
https://doi.org/10.1007/BF02055574
https://doi.org/10.1198/jasa.2011.ap10323
https://doi.org/10.1198/jasa.2011.ap10323
https://doi.org/10.1038/nature05452
https://doi.org/10.1038/nature05452
https://doi.org/10.1088/1367-2630/17/5/055014
https://doi.org/10.1088/1367-2630/17/5/055014
https://doi.org/10.1103/PhysRevE.91.012145
https://doi.org/10.1103/PhysRevLett.110.040601
https://doi.org/10.1103/PhysRevLett.110.040601
https://doi.org/10.1073/pnas.85.9.2879
https://doi.org/10.1073/pnas.85.9.2879
https://doi.org/10.1088/0953-8984/25/37/374104
https://doi.org/10.1103/PhysRevE.69.066138
https://doi.org/10.1103/PhysRevE.69.066138
https://doi.org/10.1088/1751-8113/41/20/202001

