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A Web template is a resource that implements the structure and format of a website, making it ready to

plugging content into already formatted and prepared pages. For this reason, templates are one of the main

development resources for website engineers because they increase productivity. Templates are also useful

for the �nal user because they provide uniformity and a common look and feel for all webpages. However,

from the point of view of crawlers and indexers, templates are an important problem, because templates

usually contain irrelevant information such as advertisements, menus, and banners. Processing and storing

this information leads to a waste of resources (storage space, bandwidth, etc.). It has been measured that

templates represent between 40% and 50% of data on the Web. Therefore, identifying templates is essential for

indexing tasks. There exist many techniques and tools for template extraction but, unfortunately, it is not

clear at all which template extractor should a user/system use, because they have never been compared, and

because they present di�erent (complementary) features such as precision, recall, and e�ciency. In this work,

we compare the most advanced template extractors. We implemented and evaluated 5 of the most advanced

template extractors in the literature. To compare all of them, we implemented a workbench, where they have

been integrated and evaluated. Thanks to this workbench, we can provide a fair empirical comparison of all

methods using the same benchmarks, technology, implementation language, and evaluation criteria.
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2 Julián Alarte, Josep Silva, and Salvador Tamarit

Fig. 1. Template (right) of ACM’s ‘about’ webpage (le�) extracted with the template extractor TemEx

1 INTRODUCTION

Web template extraction. A web template (in the following just “template”) is a predesigned
resource that implements the structure for the comprehensive layout and display features of a
website. It is often implemented with HTML and CSS and gives designers ways to plug content
(e.g., text and images) into prepared containers, providing a basis for composing new webpages
that share a common look and feel [4, 15] (see Figure 1).
Templates are good for web development because many tasks can be automated thanks to

the reuse of components [14, 15]. In fact, many websites are maintained automatically by code
generators that generate webpages using templates. Templates are also good for users, who can
bene�t from intuitive and uniform designs with a common vocabulary of coloured and formatted
visual elements [4, 53].

Besides, templates are also important for crawlers and indexers, because they usually judge the
relevance of a webpage according to the frequency and distribution of terms and hyperlinks (in the
following just “links”) [7, 54]. Since templates contain a considerable number of common terms and
links that are replicated in a large number of webpages, relevance may turn out to be inaccurate,
leading to incorrect results (see, e.g., [4, 54, 57]). Template extraction helps indexers to isolate the
main content. This allows for enhancing indexers by assigning higher weights to the really relevant
terms. Once templates have been extracted, they are processed for indexing—templates can be
analyzed only once for all webpages that share the same template—. Moreover, links in templates
allow indexers to discover the topology of a website (e.g., through navigational content such as
menus), thus identifying the main webpages. Gibson et al. [15] determined that templates represent
between 40% and 50% of data on the Web and that around 30% of the visible terms and links appear
in templates. This justi�es the importance of template removal [25, 49, 54, 57] in web mining and
search.
Other important �elds where template extraction is particularly useful are boilerplate removal

[12, 16, 46], wrapper generation [32, 43, 60], wrapper induction [40, 59], wrapper maintenance
[29, 39], and automated data extraction (see, e.g., [16, 27, 31]).
This article �lls a gap in the area of web template extraction: It surveys for the �rst time, and

from an empirical point of view, the main web template extractors. In particular, it uses concrete
measures and focussed experiments to compare the template extractors. The main objective of this
study is to help developers and researchers to choose one template extractor according to their
needs.

Motivation. The requirements of a template extractor depend on the speci�c use and system
where the template extractor will be inserted. Some systems require high precision, others require
high recall, and for others e�ciency is crucial. An analysis of the current literature about template
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extraction reveals that there are several di�erent approaches, and each technique presents its own
precision, recall, and runtime. Unfortunately, there does not exist a publicly available comparison of
template extractors. One could make an exercise of literature review and produce a table that collects
the precision, recall, e�ciency, time trendlines, asymptotic costs, etc. reported by the authors of
each technique; but, unfortunately, this information is mostly useless because this comparison
would be unfair, biased, imprecise, and inaccurate. The reason is that each technique has been
implemented with a di�erent language and with di�erent components that a�ect the e�ciency.
But also, they have been evaluated with di�erent evaluation criteria (e.g., counting retrieved words
[53, 54] vs. characters [25] vs. DOM nodes [2] vs. text blocks [47, 55]) and with a di�erent collection
of benchmarks. Using di�erent benchmarks to compare template extractors is unacceptable because
some techniques used arti�cial [6] (automatically generated webpages sharing exactly the same
template) and others used real webpages implemented by heterogenous designers [2, 54]. Similarly,
some used random webpages [26, 56, 57], possibly using di�erent templates, while others manually
provided webpages that implement exactly the same template [53, 54]. Other authors used the
CleanEval [5] benchmark suite [46, 55].
Currently, neither is there an objective evidence, empirical data, nor a widely accepted (subjec-

tive) consensus about the current state of template extraction tools (regarding precision, recall,
performance, scalability, and accepted technologies; i.e., HTML, Javascript, CSS, etc.). Moreover,
the results reported in the bibliography are incomparable.
We wanted to compare all techniques with the same benchmarks and with the same accuracy

measures, but we could not access the implementation of any tool even when they were reported
as free. We asked the authors of the most known and cited template extractors to provide us their
tools with very few positive answers. Unfortunately, very few systems are open-source, or even
otherwise (freely) available. In many papers, it is stated that a prototype was developed but we
were not able to access the tool.

To solve this, we reimplemented from scratch the main template extraction systems in the
literature [2, 53, 54, 56, 57]. All of them are now available as open-source at: http://www.dsic.upv.
es/~jsilva/retrieval/Web-TemEx/extractors.html. Actually, our implementation is not a template
extractor, but a workbench for template extraction that includes several extraction facilities, includ-
ing a set of template extractors. It is able to work o�ine (with a repository of websites) and online
(it is integrated into the Firefox browser as a toolbox that allows for automatically extracting the
template of a given website). One interesting property is that the loading of the webpages, the
transformation from HTML to DOM trees, the renderization, etc. is orthogonal to the analysis of
the webpages. Therefore, these features can be used by di�erent template extraction algorithms.
This is an important contribution because other researchers can now evaluate and compare their
work using a common evaluation criterion, but also a common workbench so that technology or
external factors such as loading time do not in�uence the comparison.

Our experiments reveal the algorithm that produces the best recall, F1, and accuracy1. Moreover,
our workbench solves one important problem of previous approaches: while previous algorithms
select a set of webpages from a given website randomly, the new workbench implements a novel
method to detect those webpages of a website that share the same template, thus increasing
precision.

1The F1 metric is computed as (2 ∗ P ∗ R)/(P + R) being P the precision and R the recall. The accuracy metric is computed

as the number of correct classi�cations (e.g., DOM nodes classi�ed either as template or not-template) divided by the total

number of classi�cations.
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4 Julián Alarte, Josep Silva, and Salvador Tamarit

Along the paper, we describe the process used to select, implement, and compare the template
extraction techniques, and the obtained results. In this process, we developed several tools that
contribute to the advance of the web template extraction research area.
The main contributions of our work are the following:

(1) A comparison and empirical evaluation of the main web template extraction tools.
(2) An open-source and publicly available implementation of �ve web template extraction tools.
(3) A workbench for web template extraction that includes:

• All necessary infrastructure to load webpages, analyze and transform DOM trees, and
visualize webpages.

• Interfaces to add new template extraction algorithms to the workbench.
• All necessary infrastructure to evaluate, test, and compare template extraction algorithms.

(4) A repository of benchmarks speci�c for template and content extraction.

Structure of the paper. The rest of the paper has been structured as follows: In Section 2, we
describe the tools that participate in our study. In Section 3, we describe our workbench and give
details about its implementation and about how it is being distributed. In Section 4, we compare all
the tools from di�erent perspectives, including recall, precision, computation time, scalability, and
asymptotic costs. The comparison of template extractors is done with a benchmark suite that we
speci�cally produced for this purpose. This suite is also described in this section. Finally, Section 5
concludes.

2 SELECTION AND DESCRIPTION OFWEB TEMPLATE EXTRACTORS

2.1 Methodology for the selection of template extractors

In this section we describe the process followed to identify and select the template extractors that
participate in the study. We �rst formulate research questions and de�ne inclusion and exclusion
criteria. Then, we describe the processes of search and screening of primary studies.

(1) Research questions. Two research questions were formulated to identify the current state of
the art in template detection and boilerplate removal methods:
• RQ1: What methods for template detection and boilerplate removal have been developed?
This research question intends to provide an overall perspective of the existing template
detection and boilerplate removal methods, with special emphasis on those that have been
developed over the last 15 years.

• RQ2: What are the main characteristics of each template detection and boilerplate removal
method? This question enhances the previous one, giving a deeper understanding of the
template detection and boilerplate removal methods.

(2) Search process. We conducted a search process to assess the body of knowledge related
to template extraction and to systematically deal with the research questions. This search
process was strict and unbiased, and it involved the most relevant databases in the computer
science area: Science Direct, Springer Computer Science, Web of Science, SCOPUS, IEEE
Explore, Citeseer X, ACM Digital Library, Arxiv, and Google Scholar.
For the search we created the following search string:

(template OR boilerplate OR noise)

AND (detection OR extraction OR removal OR cleaning)

AND ("web page" OR webpage)

The search string was based on the analysis of several keywords from relevant literature,
which was found by searching relevant articles and by analyzing their related bibliography.
This query turned out to be extremely wide. For instance, ScienceDirect returned more than
6000 documents, so we �ltered the results by re�ning the search string:
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(("template detection" OR "noise elimination") AND web) OR "cleaning web page" [Title/abstract/keywords]

As a result of the search process, 278 studies were identi�ed. Excluding unavailable, non-
related to the topic, and duplicated results, we obtained 40 papers.

(3) Inclusion and exclusion criteria. To address the research questions, the following inclusion
and exclusion criteria were de�ned:
• IC1: Those papers that use the DOM tree to represent the webpages.
• IC2: Those papers published in a conference rated with A in the GGS Conference Rating2.
• IC3: Those papers that describe a site-level technique.
• EC1: Those papers that have less than 15 cites.3

(4) Quality assessment. Each paper was evaluated using our own adaptation of a quality checklist
that can be used across multiple study types proposed in [22] (see Table 7.3). We used 6
quality assessment questions based on the original 11 questions proposed by the authors:

AC1 Is the paper based on research?

AC2 Is there a clear statement of the aims of the research?

AC3 Was the research design appropriate to address the aims of the research?

AC4 Was the data analysis su�ciently rigorous?

AC5 Is there a clear statement of �ndings?

AC6 Is the study of value for research or practice?

Table 1. Assessment criteria

Fig. 2. QUORUM flow chart

2http://gii-grin-scie-rating.scie.es/
3The number of cites was extracted from the corresponding editorial where the paper was published (e.g., ACM). If the

number of cites was not available, then it was extracted from Google Scholar.
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6 Julián Alarte, Josep Silva, and Salvador Tamarit

2.2 Search results

After the primary screening process, we selected a total of 40 papers and we excluded 238 from the
9 sources. The QUORUM �ow chart of the reviewing process is depicted in Figure 2. Table 2 shows
the list of selected papers with the metadata used in the selection process. We read in depth the
full text of each selected paper to decide whether to include this method in our study (and, thus,
implement it). The papers that met the inclusion criteria and did not meet the exclusion criteria
were selected. Finally, 4 papers were selected and, additionally, we included our template extraction
method, called TemEx [1]. The �nal selection are the rows with grey background in Table 2. All of
them are described below:

SST (2003) [57]: This algorithm introduces a data structure called Site Style Tree (SST) to
represent a collection of webpages. The SST can be seen as the union of all DOM trees it
represents. Each DOM node present in one webpage is represented in the SST in the same
position, and moreover, brotherhood relations are kept, so that groups of sibling nodes are
explicitly represented in the SST. Those groups of nodes repeated in more than one webpage
are represented in the SST with a counter. Hence, the SST provides information about the
repetition of groups of nodes. The most repeated groups of nodes are more likely to belong
to the template (a threshold is used to select them). Evaluation experiments were carried out
with 5 commercial websites producing an F1 of 75.1%. No information is provided about the
measure unit used.
• Main goal: Removing noisy blocks from webpages. They call ‘noisy blocks’ those that are
not main content (navigation pans, advertisements, copyright and privacy notices, etc.).

• Technologies used: The authors do not provide any information about the programming
language used, nor the di�erent technologies or layouts accepted by the tool (the use of
iframes, �ash, javascript, etc.).

• Benchmarks used in their evaluation: Real webpages from 5 commercial websites: Amazon,
CNet, PCMag, J&R, and ZDnet.

• Limitations/Problems: The main limitation of this technique is that it needs a large amount
of webpages (authors used 500) in order to build the SST of each website. Moreover, the
evaluation was done with homogeneous websites.

RTDM-TD (2006) [54]: This algorithm compares a set of webpages by identifying what parts
of their DOM trees are exactly equal in all webpages. Those DOM nodes repeated in all
webpages are the template. To compare a set of DOM trees, it uses a top-down variant of the
tree edit distance (TED) algorithm. Roughly, they randomly pick two webpages and compute
their TED. All mapped nodes represent the current template. Then, they iteratively compute
the TED between the current template and another random webpage until a prede�ned
number of webpages have been processed. Evaluation experiments were carried out with “a
few dozen” of manually selected webpages. The F1 reported with 10 websites is “higher than
95%” in 9 out of 10 websites, and “above 85%” in the other one. It was calculated by counting
the number of correctly retrieved words of the template.
• Main goal: Removing templates found in collections of webpages to enhance web IR and
web mining methods. First, the algorithm detects the template of a small set of sample
webpages. Then, it removes the derived template from the remaining pages in the collection.

• Technologies used: Not reported.
• Benchmarks used in their evaluation: Real webpages from 10 websites: the 5 websites used
in [57] (Amazon, CNet, PCMag, J&R, and ZDnet), and other 5 well-known websites (CNN,
E-Jazz, Encyclopedia Mythica, UBL, and Wikipedia).
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Article Year Venue Core LS MA JCR Cites DOM P-L/S-L

[4] 2002 WWW A++ A++ A++ - 387 No S-L

[57] 2003 SIGKDD A++ A++ A++ - 507 Yes S-L

[54] 2006 CIKM A A++ A+ - 95 Yes S-L

[33] 2006 CSCWD B B C - 4 No S-L

[30] 2006 DEXA B - B - 25 Yes S-L

[20] 2006 IKE C - - - 10 No S-L

[7] 2006 SAC B - - - 71 Yes S-L

[6] 2007 WWW A++ A++ A++ - 120 Yes P-L

[23] 2007 PKDD A A A+ - 10 No* S-L

[38] 2007 WAC5 - - - - 37 No P-L

[12] 2008 LREC C A A - 54 No P-L

[5] 2008 LREC C A A - 111 No N/A

[56] 2008 WWW A++ A++ A++ - 23 Yes S-L

[24] 2009 WWW A++ A++ A++ - 34 No P-L

[41] 2009 KSE B - - - 11 No S-L

[53] 2009 WWW A++ A++ A++ - 21 Yes S-L

[25] 2010 WSDM A++ A+ A+ - 484 No P-L

[14] 2011 IC3K C C - - 1 No S-L

[44] 2011 ICCSIT - - C - 1 Yes P-L

[21] 2011 IEEE TKDE - - - Q1 69 No S-L

[19] 2012 IJCSE - - - - 8 Yes S-L

[35] 2012 IJACR - - - - 1 Yes S-L

[3] 2013 Inf. sci. - - - Q1 15 Yes S-L

[52] 2013 Inf. proc. & man. - - - Q1 41 No P-L

[45] 2013 IJCA - - - - 4 No P-L

[42] 2013 IJRTE - - - - 11 Yes P-L

[36] 2013 ICGCE - - - - 2 Yes S-L

[28] 2014 App. mech. & mat. - - - Q4 0 Yes S-L

[48] 2014 Wir. per. comm. - - - Q3 6 No P-L

[13] 2014 ICDM A++ A++ A - 2 Yes S-L

[9] 2014 ICACNI - - - - 1 Yes S-L

[10] 2014 ICACCI - - - - 9 No S-L

[18] 2014 IJCA - - - - 3 Yes S-L

[50] 2015 IJCA - - - - 3 Yes S-L

[11] 2015 IJCA - - - 6 No P-L

[8] 2015 IJETCR - - - - 1 Yes S-L

[1] 2015 PSI B C C - 3 Yes S-L

[17] 2017 GJPAM - - - Q4 1 Yes S-L

[51] 2018 Clus. comp. - - - Q2 0 No P-L

[58] 2018 WISE A B B - 0 Yes P-L

Table 2. Selected papers that describe web template extraction tools

• Limitations/Problems: To achieve an F1 value near 95% they use 25 webpages. Computing a
top-down mapping between the DOM trees of 25 webpages can take a long time depending
on the amount of DOM nodes of the webpages. Furthermore, the evaluation was done with
only 10 websites.
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8 Julián Alarte, Josep Silva, and Salvador Tamarit

IWPTD (2008) [56]: This algorithm divides the DOM trees of the webpages into several sub-
trees whose roots are the DOM nodes associated with concrete HTML tags (i.e., DIV, TABLE,
UL, etc.). Then, it compares the text segments (DOM nodes of type #text) inside the subtrees
of all the webpages. If a text segment appears in 5 or more webpages, it is considered as a
template segment. Finally, a subtree is considered a template subtree if the ratio between the
length of all its template segments and all its text segments is higher than 0.7. Evaluation
experiments were carried out with 5 websites and 400 random webpages for each website,
producing a precision of 98% and a recall of 80%. The paper does not describe how these
measures are computed.
• Main goal: Crawling. Implementation of an incremental framework to detect templates in
which a page is processed as soon as it has been crawled.

• Technologies used: Not reported.
• Benchmarks used in their evaluation: Authors selected 5 webpages from the dataset used in
[34]. They do not provide any information about which webpages were selected.

• Limitations/Problems: The evaluation was done with only 5 websites.
RBM-TD (2009) [53]: This approach is similar to RTDM-TD, but they use a bottom-up variant

of the TED algorithm (instead of the top-down variant). During the comparison of DOM
trees, it introduces a restriction to classify a common subtree as template: those subtrees
repeated in all webpages must be exactly in the same position (i.e., the path from the root
to them must be the same in all webpages). Evaluation experiments were carried out with
24 manually selected webpages and ensuring that all of them implement the same template.
The F1 reported with 10 websites is close to 90%. It was calculated by counting the number
of correctly retrieved words of the template.
• Main goal: Template removal to improve webpage indexing and processing.
• Technologies used: Not reported.
• Benchmarks used in their evaluation: The same 10 real websites used in [54]: Amazon, CNet,
PCMag, J&R, ZDnet, CNN, E-Jazz, Encyclopedia Mythica, UBL, and Wikipedia.

• Limitations/Problems: The main limitation is that the evaluation was done with only 10
websites, and also the 24 webpages used were not randomly selected, but all of them
implementing the template (this scenario is easier for a template extractor).

TemEx (2015) [2]: As in RTDM-TD and RBM-TD, this algorithm also uses a mapping between
the DOM trees to determine what nodes belong to all webpages, but it does not force a node
to belong to all webpages, only to a subset, as in SST. In this respect, this algorithm is more
democratic, because it uses a number of votes to determine that a node has been repeated
in enough webpages to be considered as part of the template. This provides a degree of
tolerance, because we can classify a set of DOM nodes as part of the template even if there
exist webpages that do not contains these nodes. This can in some cases reduce precision,
but it often raises recall (which is the main problem of all techniques). The F1 reported with
75 websites is 86.94%. It was calculated by counting the number of correctly retrieved nodes
of the template.
• Main goal: Reusing templates by website developers.
• Technologies used: Implementation done with Javascript and distributed as a Firefox add-on.
• Benchmarks used in their evaluation: 100 real heterogeneous websites.
• Limitations/Problems: The execution time of the mapping is the bottleneck.

It is worth to note that the F1 values reported by each tool are incomparable, because they
were evaluated with di�erent evaluation sets. In Section 4, we provide a fair comparison of these
techniques.
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3 A WORKBENCH FOR TEMPLATE EXTRACTION

Our implementation is really a workbench with several features for template extraction. It is
available at: http://www.dsic.upv.es/~jsilva/retrieval/Web-TemEx/.

What is interesting for template extraction developers is that the workbench is parametric with
respect to the algorithm used for template extraction, and it provides an API so that a template
extraction algorithm can access all the workbench resources. We describe our workbench by using
the architecture shown in Figure 3.
In this �gure, each module is represented with a 3D white box, and the input and output of

the module is connected to it with dashed arrows. For instance, the Hyperlink Analysis module
inputs the URL of a website, and it outputs a data structure representing the domain’s hierarchy.
All modules have been organized in four grey areas that implement a particular functionality.

The areas are: Detection of candidates, HTML to DOM, Toggle View, and Evaluation. There is
one module coloured in black that implements the template extraction functionality. This black
module should be replaced with one concrete algorithm such as one of the �ve already implemented
and drawn at the top of the �gure. Each grey area is described separately:

Detection of candidates: In the general case, a template extractor inputs a webpage and it
outputs its template by comparing the webpage with other webpages that implement the
same template. Therefore, the template extraction process should be divided into two di�erent
phases: (1) Exploring the website to identify webpage candidates that probably implement
the template, and (2) comparing the webpage with the candidates.
Unfortunately, none of the described algorithms implement the �rst phase. In their exper-
iments, candidates were taken randomly from the website (IWPTD [56]), randomly from
a prede�ned set of webpages, all of them implementing the same template (SST [57]), or
manually; again, all of them implementing the same template (RBM-TD [54], RTDM-TD [53]).
Contrarily, our workbench uses a hyperlink analysis to automatically identify webpages
that very likely implement the web template. Compared to the random selection, this anal-
ysis highly improves the recall and precision of the second phase (for all algorithms), and
compared to the manual selection, it allows the system to work online (it just needs a URL

Fig. 3. Workbench architecture
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10 Julián Alarte, Josep Silva, and Salvador Tamarit

to automatically explore the website following links). Moreover, this phase signi�cantly
improves performance by reducing the number of webpage candidates needed to �nd the
template. According to our experiments (see Section 4), collecting the webpage candidates
takes less than 100ms in 90.67% of benchmarks. What is especially interesting is that it is
orthogonal to the second phase, and thus it can be used by all algorithms, thus the workbench
performs this phase for all template extraction algorithms.

HTML to DOM: One important problem to compare the results reported from the di�erent
tools was that they were evaluated with di�erent criteria, or the evaluation criterion was not
reported [56, 57]. Traditionally, the papers in the web template extraction literature measure
how good the template extractor is with two measures: text or DOM nodes retrieved. The
precision can be very di�erent if we measure the number of extracted template characters,
the number of words, the number of HTML tags, etc. Therefore, the evaluation criterion must
be �xed to compare the tools.
Those papers that use text in their measures (precision, recall...), can be further classi�ed:
those that measure paragraphs, those that measure words, and those that measure characters.
In principle, one could think that words are better than paragraphs and characters are
better than words because, e.g., by measuring words, one can detect that a word that should
have been retrieved is missing in a paragraph, but this would not be possible by measuring
paragraphs (the whole paragraph is marked as retrieved or not). The same happens with
words and characters.
However, in general, it does not make sense to only extract a subset of the characters in a word.
Moreover, measuring retrieved characters is strongly dependent on how many characters
have a word. That is, if a template word “computer” is not retrieved, this would produce a
penalty higher than if a word “hello” is not retrieved. Simply because it has more characters.
This may distort the measures.
All these problems related to text are often solved by using DOM nodes instead because
each individual block of text appearing in the HTML source code is represented with a DOM
node of type #text. Therefore, this measure is specially interesting for template extraction
because templates reuse HTML labels and their blocks of text. It is extremely rare to �nd a
template that only reuses a portion of a text in a DOM node. For these reasons, DOM nodes
are more appropriate to evaluate template extractors. Therefore, the workbench includes a
module to automatically transform every webpage to its associated DOM tree.

Toggle View: Once the template has been extracted, the workbench allows for graphically
showing it directly on the browser and toggling the view by swapping from the original
webpage to the extracted template and vice versa (in Figure 1, the “Toggle View” button is
the pink one located in the top right toolbox. Clicking this button makes the browser to swap
between the webpages on the left and right).

Evaluation: The workbench includes a module to evaluate the produced template (precision,
recall, F1, and extraction time). The algorithms only have to generate a template, and the
workbench compares this template with the gold standard and generates a report with the
results. For instance, the con�dence intervals in Tables 4 and 5 (they will be explained in
Section 4.2) were generated from the information obtained by the workbench.

4 EMPIRICAL EVALUATION

The empirical evaluation of template extractors can be done with our workbench because it has
been extended with evaluation features (e.g., it can monitor the time or memory used). Therefore,
it allows for comparing all algorithms: implemented in the same language, using the same webpage
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candidates and the same number of them,4 and with the same evaluation criterion. Of course, we
should also use the same benchmarks. Nevertheless, there does not exist a benchmark suite for
template extraction.
Each described system uses a di�erent benchmark suite. Unfortunately, these benchmarks are

not usable for comparison. The reason is that their webpages are in some cases arti�cial (generated
ad hoc to use the same template); but even if they are real websites, they are not heterogenous (e.g.,
in [54] all benchmarks were product description webpages) or outdated (i.e., using old versions
of HTML, frames, etc.). We consider that our comparison must be done with real online current
webpages that use heterogeneous technologies (<table>-based designs, <div>-based designs,
CSS, HTML 5, Javascript, etc.). Therefore, we produced a new benchmark suite for template
extraction. This benchmark suite was constructed before we implemented and compared the
template extractors.

4.1 The benchmark suite

We produced a dataset of 100 real and heterogeneous webpages (ikea.com, bbc.com, etc.) with
di�erent layouts and page structures, including di�erent languages (English, German, French, and
Spanish) to allow for the testing of language-independent features. Table 3 shows the benchmarks
classi�ed into �ve categories.

Category Number of pages

Companies / Shops 29

Forums / Social 16

Personal websites / Blogs 17

Media / Communication 17

Institutions / Associations 21

Table 3. Benchmark classification

The suite was constructed following this procedure:

(1) We selected from the CleanEval suite those webpages that are still maintained, thus, obsolete
benchmarks were discarded. 20 benchmarks come from CleanEval.

(2) We asked several researchers to select real webpages for us (hence, the engineers that
extracted the template did not select the benchmarks). Around 150 webpages were selected.

(3) From that set of webpages, we randomly selected a subset of 80 benchmarks.
(4) For each webpage (considered as the key page),
(a) we followed its links and collected all webpages in a maximum distance of three clicks, thus

forming a net where the center is the key page. This is useful for both page-level and site-
level techniques: page-level techniques only use the key page, and site-level techniques use
the key page and a set of webpages accessible from it. Collecting webpages not accessible
from the key page or further than 3 clicks would be useless for template extraction.

(b) Every single HTML tag of the webpages was manually classi�ed as mainContent, template,
notContent, and/or notTemplate. Therefore, the suite is useful for both content and template
extraction. This labelling was implemented with HTML classes so that it can be used by

4Phase 1 in our algorithm (i.e., detecting the webpage candidates to extract the template from them) has been integrated

into the workbench. Therefore, even though the other techniques select the candidates randomly (thus, producing worse

results on average), we made the comparison of all the techniques by sharing for all algorithms exactly the same candidates

produced by the workbench. Hence, the comparison is completely fair, because they all use the same webpages to compute

the template.
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Benchmark Recall Precision

X , 1 − α = 99% σ X , 1 − α = 99% σ

SST [40.69 44.80 48.92] 13.83 [46.71 54, 57 62.43] 26.42

RTDM-TD [5.96 15.67 25.38] 32.65 [95.43 97.86 100.00] 8.17

IWPTD [67.16 73.31 79.47] 20.70 [60.20 68.18 76.17] 26.84

RBM-TD [29.13 41.12 53.11] 40.31 [100.00 100.00 100.00] 0.00

TemEx [86.78 91.46 96.15] 15.76 [84.82 89.47 94.12] 15.63

Benchmark F1 Accuracy

X , 1 − α = 99% σ X , 1 − α = 99% σ

SST [40.12 45.21 50.30] 17.10 [41.81 45.58 49.36] 12.69

RTDM-TD [7.37 16.89 26.42] 32.02 [51.59 55.78 59.96] 14.07

IWPTD [58.97 66.03 73.08] 23.72 [60.95 65.08 69.22] 13.89

RBM-TD [33.32 46.18 59.04] 43.24 [62.04 67.46 72.89] 18.25

TemEx [84.38 88.46 92.54] 13.71 [82.10 85.87 89.63] 12.67

Table 4. Comparison of template extraction tools

Category RTDM-TD RBM-TD IWPTD

X , 1 − α = 99% σ X , 1 − α = 99% σ X , 1 − α = 99% σ

Companies / Shops [0.00 16.95 33.96] 32.36 [28.17 51.50 74.82] 44.36 [65.17 73.95 82.73] 16.70

Forums / Social [5.08 41.72 78.36] 47.18 [9.88 43.91 77.93] 43.81 [18.39 44.66 70.94] 33.84

Personal websites / Blogs [0.00 20.57 48.11] 37.04 [27.25 60.57 93.90] 44.81 [46.75 63.50 80.24] 22.52

Media / Communication [0.00 5.70 18.22] 16.84 [0.00 28.71 60.24] 42.41 [60.96 71.02 81.08] 13.53

Institutions / Associations [0.81 5.38 9.94] 7.09 [15.85 42.08 68.31] 40.73 [51.00 67.00 83.00] 24.85

Category TemEx SST

X , 1 − α = 99% σ X , 1 − α = 99% σ

Companies / Shops [81.28 88.52 95.77] 13.78 [41.22 48.98 56.74] 14.76

Forums / Social [83.14 92.82 100.00] 12.47 [21.62 40.15 58.67] 23.85

Personal websites / Blogs [75.34 87.09 98.84] 15.80 [33.19 42.10 51.01] 11.99

Media / Communication [67.32 79.53 91.74] 16.42 [32.83 43.96 55.08] 14.96

Institutions / Associations [88.58 93.09 97.59] 6.99 [33.30 46.31 59.32] 20.21

Table 5. Benchmark groups F1 comparison

any technique (not only DOM-based techniques). For instance, given a main content node,
it was labelled by including it in an HTML class called mainContent, so the node and all its
descendants are marked as main content nodes. Moreover, this labelling does not in�uence
the original aspect or structure of the webpages, and it is automatically processable. Finally,
the webpages and all their resources (images, media, CSS, Javascript, etc.) were localized
so that all links reference their local copy to ensure independency of the benchmark with
respect to the evolution of the online websites.

(c) This process was done by three engineers, that later put their results in common to avoid
errors and produce the �nal labelling.

With this suite, researchers can evaluate or compare their technique very easily thanks to the
labelling and because the suite also includes scripts to automate the analysis of webpages. It is
open-source, free, and publicly available at: http://www.dsic.upv.es/~jsilva/retrieval/teco/.
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Category RTDM-TD RBM-TD IWPTD

X , 1 − α = 99% σ X , 1 − α = 99% σ X , 1 − α = 99% σ

Companies / Shops [48.14 55.22 62.31] 13.48 [60.13 69.86 79.59] 18.50 [60.80 68.04 75.29] 13.78

Forums / Social [50.75 67.31 83.87] 21.33 [51.83 66.04 80.26] 18.30 [44.52 57.42 70.32] 16.61

Personal websites / Blogs [44.99 58.43 71.87] 18.08 [59.75 75.22 90.69] 20.81 [55.61 63.88 72.14] 11.11

Media / Communication [49.69 50.37 51.04] 0.91 [47.98 60.76 73.54] 17.19 [56.24 64.94 73.65] 11.71

Institutions / Associations [50.07 50.76 51.45] 1.07 [53.79 64.06 74.34] 15.96 [57.30 66.93 76.56] 14.95

Category TemEx SST

X , 1 − α = 99% σ X , 1 − α = 99% σ

Companies / Shops [78.57 85.34 92.11] 12.88 [40.93 47.63 54.33] 12.74

Forums / Social [82.03 91.60 100.00] 12.32 [32.13 45.79 59.44] 17.58

Personal websites / Blogs [75.47 85.17 94.87] 13.04 [32.56 40.84 49.12] 11.14

Media / Communication [62.28 78.18 88.08] 13.31 [34.27 40.60 46.93] 8.51

Institutions / Associations [82.60 89.00 95.40] 9.94 [42.26 49.68 57.09] 11.51

Table 6. Benchmark groups accuracy comparison

4.2 Evaluation of tools

Our evaluation dataset is composed of 75 benchmarks selected randomly from the benchmark suite.
We extracted the template from the evaluation dataset using all algorithms, and we compared their
e�cacy and performance. To evaluate the e�cacy of the methods we use the recall, the precision,
the F1 measure, and the accuracy. The use of these measures is explained and justi�ed in Section
8.3 of [37].
Recall, precision, F1, and accuracy. For each algorithm, we computed the 0.99 con�dence

interval across the arithmetic mean of the recall, precision, F1, and accuracy from the di�erent 75
benchmarks. In all the experiments, the evaluation unit was the DOM node. Therefore, Recall
shows the number of correctly retrieved nodes divided by the number of nodes in the gold standard;
Precision shows the number of correctly retrieved nodes divided by the number of retrieved
nodes; F1 shows the F1 metric; and accuracy shows the accuracy metric. The results obtained are
summarized in Table 4. In the table, we use the notation [a b c ] that represents a symmetric 0.99
con�dence interval between a and c with centre in b.
Several conclusions can be extracted from Table 4. First, we see that SST is strictly worst than

IWPTD, and IWPTD is, in turn, strictly worst than TemEx. Similarly, RTDM-TD is strictly worst
than RBM-TD. TemEx produced the best recall, accuracy, and F1; while RBM-TD produced the
best precision. In fact, the precision of RBM-TD is 100%. Thus, this algorithm should be selected
for those applications where precision must be maximized (e.g., in template removal one can use
RBM-TD with a high con�dence that no content will be removed). Nevertheless, RBM-TD is not the
best option when an application needs to maximize the amount of template that should be detected.
In this case, TemEx should be selected because it showed the best recall. TemEx also produced the
best F1, thus it has the best balance between precision and recall.
The range of the con�dence intervals reveals that all methods can be strongly in�uenced by

the concrete analyzed website. This is quanti�ed by the standard deviation computed for each
algorithm, which is between 14% and 43%. Websites that implement several templates or websites
that do not implement any template usually obtain the lowest metric values.
We observed that some of the template extractors are sensible to the type of webpages from

which they extract the template. This is logical because webpages of a particular type (e.g., forums)
often share some speci�c features. For instance, “forum” webpages usually contain a lot of text;
in “shops” there usually exist many images; in “blogs” many webpages have been generated with
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Phase X , 1 − α = 99% σ

Webpage Loading [0.00 1309.21 4000.40]ms 9048.11 ms

Hyperlink Analysis [0.00 91.69 203.68]ms 376.50 ms

CS Extraction [0.00 617.55 2164.86]ms 5202.26 ms

HTML to DOM [0.00 1403.52 4084.52]ms 9013.86 ms

Template extractor X , 1 − α = 99% σ

SST [63.58 144.25 224.93]s 271.24 s

RTDM-TD [39.37 127.34 215.31]s 295.77 s

IWPTD [1.04 2.22 3.40]s 3.98 s

RBM-TD [17.31 116.70 216.09]s 334.15 s

TemEx [0.00 42.83 89.38]s 156.50 s

Table 7. Benchmark classification

a content management system (CMS) and, thus, the template is often rigid; etc. To study this
phenomenon, we analyzed the performance of the algorithms with di�erent types of webpages
following the classi�cation in Table 3. This is shown in Table 5, which presents the mean F1 of
the di�erent benchmark categories for each algorithm. On the one hand, RTDM-TD and RBM-TD
vary signi�cantly depending on the evaluated benchmark category. On the other hand, IWPTD
and SST are fairly constant and their F1 does not seem to depend on the benchmark category. The
highest value in the table corresponds to TemEx in the “Institutions / Associations” category. In
this particular category, TemEx is about 91% F1. Contrarily, in category “Media / Communication”
the F1 is about 78%.
Computation time. Regarding the computation time, the webpage loading, hyperlink analysis,

CS extraction, and HTML to DOM times are the same in all tools because they use the same
workbench. The algorithm computation time is completely di�erent in all tools. While IWPTD and
TemEx are the quickest algorithms, the others are signi�cantly slower. Table 7 shows the mean of
the execution time of each algorithm for the 75 evaluation benchmarks. IWPTD is extremely quick,
it only takes an average of about 2 seconds per benchmark. TemEx is not as quick as IWPTD, it
takes an average of about 42 seconds for each benchmark. However, 73% of the benchmarks take
less than 10 seconds. SST, RBM-TD and RTDM-TD are relatively slow algorithms, their computation
time is signi�cantly higher, and above one minute.
Scalability. Scalability has been empirically evaluated by measuring the evolution of the com-

putation time with regards to the growth of the DOM trees (i.e., their number of nodes). Here
again, IWPTD and TemEx are signi�cantly better than SST, RBM-TD, and RTDM-TD. This is shown
in Figure 4, which draws the computation time trendline of each algorithm with respect to the
number of nodes of the key page. While the trendlines of RTDM-TD, RBM-TD, and specially SST
are quadratic, the trendlines of IWPTD and TemEx are linear with a gentle incline. Therefore, in
terms of scalability, IWPTD and TemEx are better than the other algorithms.
Asymptotic costs. Thanks to the fact that we reimplemented the algorithms, we can also study

their scalability from a theoretical perspective. Concretely, we analyzed their asymptotic costs
based on their source codes. The following measures were obtained:

• SST ∈ O(W ∗ (n2 +T )), being n the number of nodes in the key page,W the maximum width
of the Site Style Tree and T the size of the Site Style Tree.

• RTDM-TD ∈ O(n2), being n the number of nodes in the key page.
• IWPTD ∈ O(n +T logT ), being n the number of nodes in the key page and T the number of
text segments obtained.
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Fig. 4. Time trendlines associated with DOM sizes

• RBM-TD ∈ O(n2), being n the number of nodes in the key page.
• TemEx ∈ O(n ∗W ), being n the number of nodes in the key page andW the maximum width
of the DOM tree.

The asymptotic cost analysis con�rms the empirical results. IWPTD and TemEx have linear growth
while RTDM-TD, RBM-TD, and SST have quadratic growth. The cost of IWPTD is the best. It is
practically O(n) because the number of text segments is always signi�cantly lower than the number
of nodes. TemEx also has a linear growth. The other 3 algorithms (RTDM-TD, RBM-TD, and SST)
have a quadratic cost, being RTDM-TD and RBM-TD asymptotic cost O(n2), which is better than
the cost of SST.

5 CONCLUSIONS

This work presents a comparison of template extractors in terms of precision, recall, F1, accuracy,
e�ciency, and scalability. The motivation of this work is that current template extractors were
incomparable from an empirical point of view due to the di�erent benchmarks and measures used
in the articles/webpages/reports where they were described. To compare them, we reimplemented
from scratch the �ve most important tools in the bibliography. For the comparison, we implemented
a workbench with all the necessary infrastructure to load, analyze, and process online webpages,
so that all algorithms can work now online and with modern webpages.
The workbench includes a new analysis able to automatically select the webpage candidates

to be processed by the template extractors. This is especially useful because it allows the process
to be completely automatic (the workbench itself navigates the website to �nd the candidates).
Moreover, because it is independent of the selected algorithm, all present and future template
extractors can use this phase. In addition, we produced a collection of benchmarks to perform the
comparison of all tools with the same suite (our study revealed that no current benchmark suite
was adequate, modern, and fair). After the comparison, we have an empirical evidence about the
precision and recall of all tools, and also about their runtimes and scalability. TemEx produced
the best average recall, accuracy, and F1. Meanwhile, the RBM-TD algorithm produced the best
precision. The scalabilities of the tools are very di�erent. IWPTD is the most scalable algorithm
with a linear growth. TemEx also showed a linear growth, while the other algorithms showed to be
quadratic.
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In consequence, we have now enough information to decide which template extractor to use
according to our speci�c needs: if time is crucial, e.g., because we want no analyze thousands or
millions of webpages, then IWPTD is the best candidate due to its linear growth. However, this
algorithm has a F1 of 66%. If time is not crucial, TemEx should be selected, because its scalability is
similar but it has a F1 of more than 88%. If time is not crucial and we are interested in retrieving
only template elements (this is useful in �ltering and boilerplate removal techniques), then RBM-TD
should be selected, because it has the best precision (100% with all the benchmarks of our suite). In
any other case, i.e., if recall, accuracy, or F1 should be maximized, then TemEx is the best option
(91.46% recall and 88.46% F1).

The comparison of the tools has been also performed considering di�erent types of websites
(forums, companies, etc.), so that one can decide which template extractor to use depending on the
type of website considered. This has also been done in the design of TemEx, so that the internal
ponderations used by TemEx can be also parameterized for a speci�c kind of website. The design
and evaluation of TemEx has produced several side results such as an empirical evaluation of how
di�erent are the templates of two webpages when they are pointed or not from the main menu,
when they have a speci�c distance in the directory tree of the website, and when they are pointed
from links located at a speci�c distance in the key page’s DOM tree.
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