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Abstract

The quality of solution sets generated by decomposition-based evolutionary multi-
objective optimisation (EMO) algorithms depends heavily on the consistency between
a given problem’s Pareto front shape and the specified weights’ distribution. A set
of weights distributed uniformly in a simplex often lead to a set of well-distributed
solutions on a Pareto front with a simplex-like shape, but may fail on other Pareto
front shapes. It is an open problem on how to specify a set of appropriate weights
without the information of the problem’s Pareto front beforehand. In this paper, we
propose an approach to adapt weights during the evolutionary process (called AdaW).
AdaW progressively seeks a suitable distribution of weights for the given problem
by elaborating several key parts in weight adaptation — weight generation, weight
addition, weight deletion, and weight update frequency. Experimental results have
shown the effectiveness of the proposed approach. AdaW works well for Pareto fronts
with very different shapes: 1) the simplex-like, 2) the inverted simplex-like, 3) the
highly nonlinear, 4) the disconnect, 5) the degenerate, 6) the scaled, and 7) the high-
dimensional.

Keywords

Multi-objective optimisation, many-objective optimisation, evolutionary algorithms,
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1 Introduction

Decomposition-based evolutionary multi-objective optimisation (EMO), crystallised
in Zhang and Li (2007), is a general-purpose algorithm framework (termed as
MOEA/D). It decomposes a multi-objective optimisation problem (MOP) into a num-
ber of single-objective (or multi-objective (Liu et al., 2014)) optimisation sub-problems
on the basis of a set of weights (or called weight vectors) and then uses a search heuris-
tic to optimise these sub-problems simultaneously and cooperatively. Compared with
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Figure 1: An example that uniformly distributed weights may lead to different distri-
butions of optimal solutions. (a) Solutions s1 to s7 are the optimal solutions of weights
w1 to w7, respectively. (b) Solutions s1, s2, s3, s6 and s7 are the optimal solutions of
w1, w2, w3, w6 and w7, respectively, while solution s5 is the optimal solution of w4 and
w5.

conventional Pareto-based EMO, decomposition-based EMO has clear strengths, e.g.,
providing high selection pressure toward the Pareto front (Hughes, 2005; Li et al.,
2014a), being easy to work with local search operators (Ishibuchi et al., 2003; Martı́nez
and Coello, 2012; Derbel et al., 2016), owning high search ability for combinatorial
MOPs (Ishibuchi and Murata, 1998; Mei et al., 2011; Shim et al., 2012; Almeida et al.,
2012; Cai et al., 2015), and being capable of dealing with MOPs with many objectives
(Asafuddoula et al., 2015b; Li et al., 2015c; Yuan et al., 2016) and MOPs with a compli-
cated Pareto set (Li and Zhang, 2009; Liu et al., 2014; Zhou and Zhang, 2016).

A key feature in MOEA/D is that the diversity of the evolutionary population is
controlled explicitly by a set of weights (or a set of reference directions/points deter-
mined by this weight set). Each weight corresponds to one subproblem, ideally asso-
ciated with one solution in the population; thus, diverse weights may lead to different
Pareto optimal solutions. In general, a well-distributed solution set can be obtained if
the set of weights and the Pareto front of a given problem share the same/similar dis-
tribution shape. In many existing studies, the weights are predefined and distributed
uniformly in a unit simplex. This specification can make decomposition-based algo-
rithms well-suited to MOPs with a “regular” (i.e., simplex-like) Pareto front, e.g., a tri-
angle plane or a sphere. Figure 1(a) shows such an example, where a set of uniformly-
distributed weights correspond to a set of uniformly-distributed Pareto optimal solu-
tions.

However, when the shape of an MOP’s Pareto front is far from the standard sim-
plex, a set of uniformly distributed weights may not result in a uniform distribution
of Pareto optimal solutions. On MOPs with an “irregular” Pareto front (e.g., discon-
nected, degenerate, inverted simplex-like or scaled), decomposition-based algorithms
appear to struggle (Qi et al., 2014; Li et al., 2016; Ishibuchi et al., 2017b; Li et al., 2018). In
such MOPs, some weights may have no intersection with the Pareto front. This could
lead to several weights corresponding to one Pareto optimal solution. In addition, there
may exist a big difference of distance between adjacent Pareto optimal solutions (ob-
tained by adjacent weights) in different parts of the Pareto front. This is due to the
inconsistency between the shape of the Pareto front and the shape of the weight distri-
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bution. Overall, no intersection between some weights and the Pareto front may cause
the number of obtained Pareto optimal solutions to be smaller than that of weights,
while the distance difference with adjacent solutions in different parts of the Pareto
front can result in a non-uniform distribution of solutions.

Figure 1(b) gives an example that a set of Pareto optimal solutions are obtained by
a set of uniformly-distributed weights on an “irregular” Pareto front. As can be seen,
weights w3 and w4 have no intersection with the Pareto front, and weights w4 and w5

correspond to only one Pareto optimal solution (s5). In addition, the obtained Pareto
optimal solutions are far from being uniformly distributed, e.g., the distance between
s1 and s2 being considerably greater than that between other adjacent solutions.

The above example illustrates the difficulties of predefining weights in MOEA/D.
It could be very challenging (or even impossible) to find a set of optimal weights be-
forehand for any MOP, especially in real-world scenarios where the information of a
problem’s Pareto front is often unknown.

A potential solution to this problem is to seek adaptation approaches that can pro-
gressively modify the weights during the evolutionary process. Several interesting at-
tempts have been made along this line (Trivedi et al., 2017). A detail review of these
adaptation approaches will be presented in next section.

Despite the potential advantages of these adaptation approaches for “irregular”
Pareto fronts, the problem is far from being fully resolved. On one hand, varying the
weights which are pre-set and ideal for problems with “regular” Pareto fronts may
compromise the performance of an algorithm on these problems themselves. On the
other hand, varying the weights materially changes the subproblems over the course
of the optimisation, which could significantly deteriorate the convergence of the algo-
rithm (Giagkiozis et al., 2013b). Overall, as pointed out in Li et al. (2015a); Ishibuchi
et al. (2017b), how to set the weights is still an open question; the need for effective
methods is pressing.

In this paper, we present an adaptation method (called AdaW) to progressively
adjust the weights during the evolutionary process. AdaW updates the weights peri-
odically based on the information produced by the evolving population itself, and then
in turn guides the population by these weights which are of a suitable distribution for
the given problem. AdaW focuses on several key parts in the weight adaptation pro-
cess, namely, weight generation, weight addition, weight deletion, and weight update
frequency. The main contributions of this work can be summarised as follows.

• An approach to find out potential undeveloped, but promising weights is pre-
sented, with the aid of a well-maintained archive set.

• An approach to delete unpromising weights is presented, taking into account both
the number of solutions associated with the weight and the crowding degree in
the space.

• A design to make several parts in the weight adaptation process cohere as a whole
is developed, enabling the algorithm to strike a balance between convergence and
diversity on various problems.

The rest of the paper is organised as follows. Section 2 reviews related work. Sec-
tion 3 is devoted to the proposed adaptation method, including the basic idea and the
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five key issues of this adaptation. Experimental results are presented in Section 4. Fi-
nally, Section 5 concludes the paper.

2 Related Work

A basic assumption in MOEA/D is that the diversity of the weights will result in the
diversity of the Pareto optimal solutions. This motivates several studies on how to
generate a set of uniformly distributed weights (see Trivedi et al. (2017)), such as the
simplex-lattice design (Das and Dennis, 1998), two-layer simplex lattice design (Deb
and Jain, 2014), multi-layer simplex lattice design (Jiang and Yang, 2017), uniform de-
sign (Tan et al., 2013), and a combination of the simplex-lattice design and uniform
design (Ma et al., 2014). A weakness of such systematic weight generators is that the
number of generated weights is not flexible. This contrasts with the uniform random
sampling method (Murata et al., 2001; Jaszkiewicz, 2002) which can generate an arbi-
trary number of weights for any dimension. In addition, some work has shown that
if the geometry of the problem is known in priori then the optimal distribution of the
weights for a specific scalarising function can be readily identified (Giagkiozis et al.,
2013a; Wang et al., 2016b).

The variety of weight generators gives us ample options in initialising the weights,
each of which provides an explicit way of specifying a set of particular search directions
in decomposition-based optimisation. However, the precondition that these weight
generators work well is the Pareto front of the problem sharing the simplex-like regular
shape. An “irregular” Pareto front (e.g., disconnected, degenerate, inverted simplex-
like and scaled) may make these weight generators struggle, in which multiple weights
may correspond to one single point. This leads to a waste of computational resources,
and more importantly renders the algorithm’s performance inferior.

An intuitive solution to this problem is to adaptively update the weights during
the optimisation process. Several interesting attempts have been made along this line.
Table 1, on the basis of some previous studies (Asafuddoula et al., 2017), summarises
existing works of considering weight adaptation in decomposition-based EMO. These
works have represented significant progress made in weight adaptation, with various
features incorporated (see Table 1) and clear advantage exhibited (over the weight pre-
setting method) on many irregular Pareto fronts. In addition, it is worth mentioning
that some researchers also introduced weights into non-decomposition-based EMO,
and conducted weight adaptation for Pareto-based search (Wang et al., 2013, 2015) and
indicator-based search (Tian et al., 2017a). And some other researchers adaptively ad-
justed the search directions according to the distribution of the evolutionary popula-
tion, which in a sense can also be seen as a weight adaptation (Xiang et al., 2017b,a).

However, it is still far from weight adaptation being a mature method in the sense
that it is able to deal with a wide variety of MOPs as effectively as the weight pre-
setting method dealing with simplex-like Pareto fronts. Some challenges/limitations
facing are outlined as follows.

• Difficulties in obtaining/generating new weights; i.e., where to find promis-
ing weights. Many adaptation methods introduce new weights from a set of
systematically-generated weights, such as EMOSA (Li and Landa-Silva, 2011), A-
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Table 1: Summary of existing works that consider weight adaptation in MOEA/D.

Method Features/characteristics, strengths Weaknesses/limitations
Random weights (Ishibuchi
and Murata, 1998; Jin et al.,
2001; Jaszkiewicz, 2002)

More computational cost allocated around the
nondominated solutions; helpful for irregular
Pareto fronts (Li et al., 2015b).

Unable to maintain solutions’ uniformity;
poor convergence.

EMOSA (Li and Landa-
Silva, 2011)

Adapting the weights to diversify the pop-
ulation towards the unexplored parts of the
Pareto front.

Systematic weight generation for adaptation,
thus likely to struggle on irregular Pareto
fronts.

paλ-MOEA/D (Jiang et al.,
2011)

Sampling the regression curve of the weights
on the basis of an external archive.

Assuming symmetry and continuity of the
Pareto front (Asafuddoula et al., 2017).

DMOEA/D (Gu et al., 2012) Equidistant interpolation to update the
weights; working well on bi-objective prob-
lems.

Hard to maintain uniformity of solutions on
problems with more than two objectives.

A-NSGA-III (Jain and Deb,
2014)

An (m − 1)-simplex of reference points cen-
tred around a crowded reference point being
added.

Systematic weight generation for adaptation;
struggling on disconnected and degenerate
Pareto fronts.

MOEA/D-AWA (Qi et al.,
2014)

Generating new weights by particular solu-
tions in the archive; able to tackle problems
with “sharp peak” and “low tail”.

Updating weights in the ending stage of evo-
lution; not performing very well in uniformity
maintenance.

RVEA (Cheng et al., 2015,
2016)

Two weight adaptations being conducted to
deal with scaled Pareto fronts and irregular
fronts respectively.

Failing to maintain diversity of solutions on
highly nonlinear Pareto fronts.

MOEA/D-AM2M (Liu
et al., 2016, 2017)

An adaptive weight update for MOEA/D-
M2M (Liu et al., 2014) for degenerate Pareto
fronts according to the angle among solutions
(as a similarity measure).

Less global competition in finding multiple re-
gions on the Pareto front (Liu et al., 2017).

SOM for weight adapta-
tion (Gu and Cheung, 2018)

Updating weights via training a self-
organising map (SOM); effective for de-
generate Pareto fronts.

Still difficult to maintain a good uniformity of
solutions through limited training vectors.

MOEA/D-ABD (Zhang
et al., 2017)

Linear interpolation to update weights for dis-
continuous Pareto fronts.

Restricted to bi-objective problems.

MOEA/D-MR (Wang et al.,
2017b)

Updating weights via considering both ideal
and nadir points.

Potentially struggling on problems with irreg-
ular Pareto fronts, e.g., degenerate and discon-
tinuous.

MaOEA/D-2ADV (Cai
et al., 2017)

Two types of weight adjustments: one for the
number of weights and the other for the posi-
tion of weights; achieving a good balance be-
tween convergence and diversity.

Designed for many-objective problems; only
being evaluated on the DTLZ test problems
most of which have regular Pareto fronts.

g-DBEA (Asafuddoula
et al., 2017)

An adaptive weight update for DBEA (Asa-
fuddoula et al., 2015a) via a “learning period”;
storing the removed weights for the future
use; capable of obtaining diversified solutions
over the front.

Not performing very well in maintaining uni-
formity of solutions.

NSGA-III (Jain and Deb, 2014) and RVEA (Cheng et al., 2016). However, such
weights may still have no intersection with the problem’s Pareto front, thus failing
to guarantee the uniformity of the final solution set. Determining new weights
by promising solutions produced previously during the evolutionary search may
alleviate this issue. Yet this requires an additional archive to store these solutions,
and how to maintain the archive is of high importance as it essentially determines
the search directions of decomposition-based evolution.

• Difficulties of deleting/adding weights. It is not easy to find current unpromising
weights. Even when each weight is solely associated with one individual, the pop-
ulation may still not have good uniformity, e.g., in a highly convex Pareto front.
In addition, where to add weights is also a trick question, as we do not know if
the sparsely-distributed weights represent undeveloped regions that need to be
explored or unpromising regions that have no intersection with the Pareto front.

• Difficulties of setting weight update frequency. Varying the weights essentially
changes the subproblems. If the update is not frequent enough, there are lots of
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computational resources wasted on unpromising search directions (Asafuddoula
et al., 2017). If the update is too frequent, individuals are likely to wander around
the search space, which significantly affects the convergence of the algorithm (Gi-
agkiozis et al., 2013b; Qi et al., 2014). Especially when the algorithm approaches the
end of the search process, a change of weights may lead to the algorithm ending
up returning a well-diversified but poorly-converged population.

• Challenges to adapt weights for different Pareto fronts. Many adaptation meth-
ods are designed or suitable for certain types of Pareto fronts; for example,
paλ-MOEA/D (Jiang et al., 2011) for connected Pareto fronts, DMOEA/D (Gu
et al., 2012) and MOEA/D-ABD (Zhang et al., 2017) for bi-objective MOPs, and
MOEA/D-AM2M (Liu et al., 2017) and SOM-based weight adaptation (Gu and
Cheung, 2018) for degenerate Pareto fronts. In addition, some methods designed
for many-objective problems may not perform very well on problems with two or
three objectives, especially in maintaining uniformity of solutions (Cai et al., 2017;
Asafuddoula et al., 2017).

The above discussions motivate our work. In this paper, we propose a weight
adaptation method via elaborating several key parts in weight adaptation — weight
generation, weight deletion, weight addition and weight update frequency. Our goal
is to present a decomposition-based algorithm which is able to handle various Pareto
fronts, the regular and irregular.

3 The Proposed Algorithm

3.1 Basic Idea

When optimising an MOP, the current nondominated solutions (i.e., the best solutions
found so far) during the evolutionary process can indicate the evolutionary status (Li
et al., 2014b; Liu et al., 2016, 2017). The nondominated solution set, with the progress
of the evolution, gradually approximates the Pareto front, thus being likely to reflect
the shape of the Pareto front when it is well maintained. Despite that such a set prob-
ably evolves slowly in comparison with the evolutionary population which is driven
by the scalarising function in decomposition-based evolution, the set may be able to
provide new search directions that are unexplored by the scalarising function-driven
population.

Figure 2 gives an illustration of updating the search directions (weights) of the
population by the aid of a well-maintained archive set of nondominated solutions. As
can be seen, before the update a set of uniformly distributed weights correspond to a
poorly distributed population along the Pareto front. After the update, the two solu-
tions from the archive (a3 and a7) whose areas are not explored well in the population
are added (Figure 2(c)) and their corresponding weights are considered as new search
directions to guide the evolution (w7 and w8). In contrast, the weights that are as-
sociated with crowded solutions (s3 and s4) in the population are deleted. Then, a
new population is formed with unevenly-distributed weights but well-distributed so-
lutions.

The above is the basic idea of the weight adaptation in our proposed work. How-
ever, materialising it requires a proper handling of several important issues. They are
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Figure 2: An illustration of updating the weights of the population by the aid of a well-
maintained archive set of nondominated solutions.

• How to maintain the archive?

• Which solutions from the archive should enter the evolutionary population to gen-
erate new weights?

• How to generate weights on the basis of these newly-entered solutions?

• Which old weights in the population should be deleted?

• What is the frequency of updating the weights? i.e., how long should we allow the
population to evolve by the current weights?

In next several subsections, we will describe in sequence how we handle these issues,
followed by the main framework of the algorithm.

3.2 Archive Maintenance

In AdaW, an archive with a pre-set capacity is to only store the nondominated solu-
tions produced during the evolutionary process. When the number of solutions in the
archive exceeds the capacity, a maintenance mechanism is used to remove some solu-
tions with poor distribution. Here, we consider the population maintenance method in
Li et al. (2016) due to its efficiency and effectiveness. This method is able to maintain
a set of representative individuals for various problems, i.e., being independent of the
problem properties (e.g., the number of objectives and the shape of the Pareto front) (Li
et al., 2016). The method iteratively deletes the solution having the biggest crowding
degree in the set. The crowding degree of a solution is estimated by considering both
the number and location of its neighbours in a niche. Formally, the crowding degree of
a solution p in the set A is defined as

D(p) = 1−
∏

q∈A,q 6=p

R(p, q) (1)

R(p, q) =

{

d(p, q)/r , if d(p, q) ≤ r
1, otherwise

(2)

where d(p, q) denotes the Euclidean distance between solutions p and q, and r is the
radius of the niche, set to be the median of the distances from all the solutions to their
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kth nearest solution in the set. Note that similar to Li et al. (2016) all the objectives
are normalised with respect to their minimum and maximum in the considered set in
AdaW.

It is worth mentioning that there are two slight differences of the settings from
that in Li et al. (2016). First, parameter k for the kth nearest neighbour was set to 3 in
Li et al. (2016), while here k is set to the number of objectives of the problem. There are
two reasons for this change. The first is that as shown in Li et al. (2016), k is not very
sensitive to the performance of the maintenance operation; it works fairly well within
a big range like [2, 10]. The second reason is that a larger k may be more suitable for
many-objective optimisation as it can lead to more emphases put on boundary solu-
tions, which are important points to tell problem characteristics. The second difference
is that the median, instead of the average in Li et al. (2016), of the distances from all the
solutions to their kth nearest neighbour is considered. This could alleviate the effect of
the dominance resistant solutions (DRS), i.e., the solutions with a quite poor value in
some objectives but with (near) optimal values in some other objectives (Ikeda et al.,
2001).

3.3 Weight Addition

In AdaW, we aim to add weights (into the evolutionary population) whose search di-
rections/areas are undeveloped and promising. Both criteria are measured by contrasting
the evolutionary population with the archive set. For the former, if the niche in which
a solution of the archive is located has no solution in the evolutionary population, it
is likely that niche is undeveloped. For the latter, if a solution of the archive performs
better on its search direction (weight) than any solution of the evolutionary population,
it is likely that the niche of that solution is promising.

Specifically, to find out the solutions whose niche is undeveloped by the evolu-
tionary population, we consider the niche size which is determined by the archive it-
self. That is, the radius of the niche is set to the median of the distances from all the
solutions to their closest solution in the archive. After finding out these candidate so-
lutions whose niche is undeveloped by the evolutionary population, we then consider
whether they are promising or not. First, we obtain their corresponding weights (which
will be detailed in next section). Then for each of these weights, we find its neighbour-
ing weights1 in the evolutionary population, and further determine the solutions as-
sociated with the neighbouring weights. Finally we compare these solutions with the
candidate solution on the basis of the candidate solution’s weight. Formally, let q be a
candidate solution in the archive and wq be its corresponding weight. Let wp be one of
the neighbouring weights of wq in the evolutionary population, and p be the solution
associated with wp in the evolutionary population. We define that q outperforms p on
the basis of wq , if

g(q, wq) < g(p, wq) (3)

or

g(q, wq) = g(p, wq) and
m
∑

i=1

fi(q) <
m
∑

i=1

fi(p) (4)

where g() denotes the considered scalarising function, fi() denotes the value of the ith

1The definition of neighbouring weights is based on that in MOEA/D (i.e., the Euclidean distance between
weights).
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objective, and m is the number of objectives. If q outperforms all of the neighbour-
ing solutions on the basis of its weight, then q will enter the evolutionary population,
along with its search direction (weight). After that, the neighbouring information of q’s
weight in the evolutionary population (i.e., the solutions that the neighbouring weights
corresponding to) is updated by q. Note that there is no restriction for the number of
neighbouring solutions that can be replaced by q.

3.4 Weight Generation

Given a reference point, the optimal weight to a solution (e.g., w7 to a3 in Figure 2(c))
with respect to the Tchebycheff scalarising function can be easily generated. This is
already a frequently used approach in the weight adaptation (Gu et al., 2012; Qi et al.,
2014).

Formally, let z∗ = (z∗
1
, z∗

2
, ..., z∗m) be the reference point2 and w = (λ1, λ2, ..., λm) be

the optimal weight to a solution q in the Tchebycheff scalarising function. Then it holds
that

f1(q)− z∗
1

λ1

=
f2(q)− z∗

2

λ2

= · · · =
fm(q)− z∗m

λm

(5)

Since λ1 + λ2 + ...+ λm = 1, we have

w = (λ1, ..., λm) = (
f1(q)− z∗

1
∑m

i=1
fi(q)− z∗i

, ...,
fm(q)− z∗m

∑m

i=1
fi(q)− z∗i

) (6)

3.5 Weight Deletion

After the weight addition operation, AdaW needs to delete some weights in the evo-
lutionary population to keep the number of the weights unchanged (i.e., back to the
predefined population size N ). In view of that ideally each weight is associated with
one distinct solution in decomposition-based EMO, we deal with weights that share
one solution (e.g., weights w4 and w5 sharing solution s5 in Figure 1(b)). Specifically,
we find out the solution who is shared by the most weights in the population. In these
weights, we delete the one whose scalarising function value is the worst. Formally, let
p be the solution shared by the most weights w1, w2, ..., wn out of the population. Then
the weight to be deleted is

argmax
1≤i≤n

g(p, wi) (7)

In addition, there may exist several solutions in the population corresponding to the
same largest number of weights. For this case, we compare their worst weights — the
weight having the highest (worst) scalarising function value will be deleted.

The above deletion operation is repeated until the number of the weights restores
(i.e., back to N ). However, there may exist one situation that even when every solu-
tion in the population corresponds to only one weight, the number of the weights still
exceeds N . In this situation, we use the same diversity maintenance method of Sec-
tion 3.2 to iteratively delete the most crowded solution (along with its weight) in the
population until the number of the weights reduces to N .

2The reference point in decomposition-based algorithms is often set to be equal to or slightly smaller than
the best value found so far (Wang et al., 2016a; Qi et al., 2014); here we set it to 10

−4 smaller than the best
value throughout the method, following the suggestions in Wang et al. (2017a). This setting is also adopted
in the calculation of the scalarising function.
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3.6 Weight Update Frequency

The timing and frequency of updating the weights of the evolutionary population play
an important role in weight adaptation methods. Since varying the weights essentially
changes the subproblems to be optimised, a frequent change can significantly affect the
convergence of the algorithm (Giagkiozis et al., 2013b). In AdaW, the weight update
operation is conducted every 5% of the total generations/evaluations. In addition,
when the algorithm approaches the end of the optimisation process, a change of the
weights may lead to the solutions evolving insufficiently along those specified search
directions (weights). Therefore, AdaW does not change the weights during the last 10%
generations/evaluations.

3.7 Algorithm Framework

Algorithm 1 gives the main procedure of AdaW. As can be seen, apart from the weight
update (Steps 21–25) and archive operations (Steps 5, 13–16 and 18–20), the remaining
steps are the common steps in a generic decomposition-based algorithm. Here, we im-
plemented them by a widely-used MOEA/D version in Li and Zhang (2009), and the
Tchebycheff scalarising function was used despite the fact that AdaW can be imple-
mented by other scalarising functions with respect to its weight addition and deletion.
That is, the steps of the initialisation (Steps 1–4), mating selection (Step 9), variation
operation (Step 10), reference point update (Step 11) and population update (Step 12)
follow the practice in Li and Zhang (2009).

Additional computational costs of AdaW (in comparison with the basic MOEA/D)
are from the archiving operations and weight update. In one generation of AdaW,
updating the archive (Steps 13–16) requires O(mNNA) comparisons, where m is the
number of the problem’s objectives, N is the population size, and NA is the archive
size. Maintaining the archive (Steps 18–20) requires O(mN2

A) comparisons (Li et al.,
2016). The computational cost of the weight update is governed by three operations,
weight addition (Step 22), weight deletion (Step 23), and neighbouring weight update
(Step 24). In the weight addition, undeveloped solutions are first determined. This
includes calculating the niche radius and finding out undeveloped solutions, which
require O(mN2

A) and O(mNNA) comparisons, respectively. After L undeveloped solu-
tions are found, we check if they are promising by comparing them with the solutions
that their neighbouring weights corresponding to. The computational complexity of
finding the neighbours of the L weights is bounded by O(mLN) or O(TLN) (T de-
notes the neighbourhood size), whichever is greater. Then, checking if these L solu-
tions are promising requires O(mTL) comparisons. In the weight deletion, considering
the situation that one solution shared by multiple weights requires O(LN) compar-
isons and removing the weights which are associated with crowded solutions requires
O(m(L+N)2) comparisons (Li et al., 2016). Finally, after the weight deletion completes,
updating the neighbours of each weight in the population requires O(mN2) or O(TN2)
comparisons, whichever is greater.

To sum up, since O(N) = O(NA) and 0 6 L 6 NA, the additional computational
cost of AdaW is bounded by O(mN2) or O(TN2) whichever is greater, where m is
the number of objectives and T is the neighbourhood size. This governs the proposed
algorithm, given a lower time complexity (O(mTN)) required in the basic MOEA/D
(Zhang and Li, 2007).

10



Algorithm 1 The Algorithm AdaW

Require: N (size of the evolutionary population P , i.e., size of the weight set W ), NA (size of the
archive set A), T (neighbourhood size), Genmax (maximum generations in the evolution).

1: Initialise the population P and a set of weights W .
2: Calculate the reference point according to P .
3: Determine the neighbours of each weight of W .
4: Associate the weights with solutions in the population randomly.
5: Place the nondominated solutions of P into the archive A.
6: Gen← 1.
7: while Gen < Genmax do
8: for each subproblem (weight) w ∈W do
9: Mating selection for w.

10: Generate a new solution p by using variation operators on the solutions in the mating
pool.

11: Reference point update by p.
12: Population update by p.
13: if ∄q ∈ A, q ≺ p then
14: A← A ∪ p
15: A← A/{q ∈ A | p ≺ q}
16: end if
17: end for
18: if |A| > NA then
19: Maintain the archive A (Section 3.2).
20: end if
21: if Gen = Genmax × 5% ∧Gen < Genmax × 90% then
22: Generate and find the promising, undeveloped weights, and add them into W (Sec-

tion 3.3 and Section 3.4).
23: Delete the poorly-performed weights until the size of W is reduced to N (Section 3.5).
24: Update the neighbours of each weight of W .
25: end if
26: Gen← Gen+ 1.
27: end while

28: return P

4 Results

Three state-of-the-art weight adaptation approaches, A-NSGA-III (Jain and Deb, 2014),
RVEA (Cheng et al., 2016) and MOEA/D-AWA (Qi et al., 2014), along with the baseline
MOEA/D (Li and Zhang, 2009), were considered as peer algorithms3 to evaluate the
proposed AdaW. These adaptations had been demonstrated to be competitive on MOPs
with various Pareto fronts. In MOEA/D, the Tchebycheff scalarising function was used
in which “multiplying the weight” was replaced with “dividing the weight” in order
to obtain more uniform solutions (Qi et al., 2014; Deb and Jain, 2014).

In view of the goal of the proposed work, we selected 17 test problems with a va-
riety of representative Pareto fronts from the existing problem suites (Van Veldhuizen,
1999; Zitzler et al., 2000; Deb et al., 2005; Deb and Saxena, 2005; Deb and Jain, 2014; Jain
and Deb, 2014; Cheng et al., 2017). According to the properties of their Pareto fronts,
we categorised the problems into seven groups to challenge the algorithms in balancing
the convergence and diversity of solutions. They are

1. problems with a simple-like Pareto front: DTLZ1, DTLZ2 and convex DTLZ2

3The codes of all the peer algorithms were from http://bimk.ahu.edu.cn/index.php?s=/Index/

Software/index.html (Tian et al., 2017b).
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Table 2: Settings and properties of test problems. m and d denote the number of objec-
tives and decision variables, respectively

Problem m d Properties Problem m d Properties
DTLZ1 3 7 Simplex-like, Linear, Multimodals DTLZ5 3 12 Degenerate, Concave
DTLZ2 3 12 Simplex-like, Concave VNT2 3 2 Degenerate, Convex

CDTLZ2 3 12 Simplex-like, Convex SDTLZ1 3 7 Scaled, Simplex-like, Linear, Multimodals
IDTLZ1 3 7 Inverted simplex-like, Linear, Multimodals SDTLZ2 3 12 Scaled, Simplex-like, Concave
IDTLZ2 3 12 Inverted simplex-like, Concave SCH2 2 1 Scaled, Discontinuous, Convex
SCH1 2 1 Highly nonlinear, Convex DTLZ2-10 10 19 Many-objective, Simplex-like, Concave
FON 2 2 Highly nonlinear, Concave IDTLZ1-10 10 19 Many-objective, Inverted simplex-like, Linear, Multimodals
ZDT3 2 30 Disconnected, Mixed DTLZ5(2,10) 10 19 Many-objective, Degenerate, Concave

DTLZ7 3 22 Disconnected, Mixed, Multimodal

(CDTLZ2).

2. problems with an inverted simple-like Pareto front: inverted DTLZ1 (IDTLZ1) and
inverted DTLZ2 (IDTLZ2).

3. problems with a highly nonlinear Pareto front: SCH1 and FON.

4. problems with a disconnect Pareto front: ZDT3 and DTLZ7.

5. problems with a degenerate Pareto front: DTLZ5 and VNT2.

6. problems with a scaled Pareto front: scaled DTLZ1 (SDTLZ1), scaled DTLZ2
(SDTLZ2) and SCH2.

7. problems with a high-dimensional Pareto front: 10-objective DTLZ2 (DTLZ2-10),
10-objective inverted DTLZ1 (IDTLZ1-10) and DTLZ5(2,10).

All the problems were configured as described in their original papers (Van Veldhuizen,
1999; Zitzler et al., 2000; Deb et al., 2005; Deb and Saxena, 2005; Deb and Jain, 2014; Jain
and Deb, 2014; Cheng et al., 2017).

To compare the performance of the algorithms, the inverted generational distance
(IGD) (Coello and Sierra, 2004) and hypervolume (Zitzler and Thiele, 1999) were used.
IGD, which measures the average distance from uniformly distributed points along the
Pareto front to their closest solution in a set, can provide a comprehensive assessment
of the convergence and diversity of the set. To calculate IGD, we need a reference set
that well represents the problem’s Pareto front, and the assessment result may heavily
depend on the specification of the reference set (Ishibuchi et al., 2018b). In most of the
test problems used in our study, their Pareto fronts are known (e.g., the ZDT and DTLZ
suites and the variants of the DTLZ problems). For them, we considered around 10,000
evenly-distributed points along the Pareto front as the reference set. For remaining
test problems, their reference sets were obtained at the website http://delta.cs.
cinvestav.mx/˜ccoello/EMOO/.

However, IGD is not Pareto-compliant in the sense that it does not certainly pre-
fer a Pareto-dominating set to a Pareto-dominated set. So we also used the Pareto-
complaint indicator hypervolume. Hypervolume measures the volume of the objective
space enclosed by a solution set and a reference point. Following the practice in Li et al.
(2014c), the reference point of DTLZ1, DTLZ2, SCH1, FON, ZDT3, DTLZ7, DTLZ5,
VNT2 and SCH2 was set to (1, 1, 1), (2, 2, 2), (5, 5), (2, 2), (2, 2, 7), (2, 2, 2), (5, 16, 12)
and (2, 17), respectively. For the remaining problems, we considered common settings,

12



i.e., (2, 2, 2) for CDTLZ2 and IDTLZ2, (1, 1, 1) for IDTLZ1, (2, 2, ..., 2) for DTLZ2-10 and
DTLZ5(2,10), (1, 1, ..., 1) for IDLTZ1, (0.55, 5.5, 55) for SDTLZ1, and (1.1, 11, 110) for
SDTLZ2. Note that it is not necessary to normalise the solution set when measuring
the hypervolume value for scaled problems, provided that the range of the Pareto front
is taken into account in setting the reference point (Li and Yao, 2018).

In addition, for a visual understanding of the search behaviour of the five algo-
rithms, we also plotted their final solution set in a single run on all the test problems.
This particular run was associated with the solution set which obtained the median of
the IGD values out of all the runs.

All the algorithms were given real-valued variables. Simulated binary crossover
(SBX) (Agrawal et al., 1995) and polynomial mutation (PM) (Deb, 2001) (with the distri-
bution indexes 20) were used to perform the variation. The crossover probability was
set to pc = 1.0 and mutation probability to pm = 1/d, where d is the number of variables
in the decision space.

In decomposition-based EMO, the population size which correlates with the num-
ber of the weights cannot be set arbitrarily. For a set of uniformly-distributed weights
in a simplex, we set 100, 105 and 220 for the 2-, 3- and 10-objective problems, respec-
tively. Like many existing studies, the number of function evaluations was set to 25,000,
30,000 and 100,000 for 2-, 3- and 10-objective problems, respectively. Each algorithm
was executed 30 independent runs on each problem.

Parameters of the peer algorithms were set as specified/recommended in their
original papers. In MOEA/D, the neighbourhood size, the probability of parent solu-
tions selected from the neighbours, and the maximum number of replaced solutions
were set to 10% of the population size, 0.9, and 1% of the population size, respectively.
In RVEA, the rate of changing the penalty function and the frequency to conduct the
reference vector adaptation were set to 2 and 0.1, respectively. In MOEA/D-AWA, the
maximal number of adjusting subproblems and the computational resources for the
weight adaptation were set to 0.05N and 20%, respectively. In addition, the size of the
external population in MOEA/D-AWA was set to 1.5N .

Several specific parameters are required in the proposed AdaW. As stated in Sec-
tion 3.6, the time of updating the weights and the time of not allowing the update were
every 5% of the total generations and the last 10% generations, respectively. Finally, the
maximum capacity of the archive was set to 2N .

Tables 3 and 4 give the IGD and hypervolume results (mean and standard devi-
ation) of the five algorithms on all the 17 problems, respectively. The better mean for
each problem was highlighted in boldface. To have statistically sound conclusions, the
Wilcoxon’s rank sum test (Zitzler et al., 2008) at a 0.05 significance level was used to
test the significance of the differences between the results obtained by AdaW and the
four peer algorithms.

4.1 On Simplex-like Pareto Fronts

On MOPs with a simplex-like Pareto front, decomposition-based algorithms are ex-
pected to perform well. Figures 3–5 plot the final solution set of the five algorithms
on DTLZ1, DTLZ2 and CDTLZ2, respectively. As can be seen, MOEA/D, RVEA,
MOEA/D-AWA and AdaW can all obtain a well-distributed solution set, despite the
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Table 3: IGD results (mean and SD) of the five algorithms. The best mean for each case
is highlighted in boldface.

Property Problem MOEA/D A-NSGA-III RVEA MOEA/D-AWA AdaW

Simplex-like
DTLZ1 1.909E–02(3.1E–04)† 2.463E–02(8.0E–03)† 1.974E–02(2.2E–03) 1.941E–02(6.1E–04) 1.944E–02(3.1E–04)

DTLZ2 5.124E–02(4.6E–04) 5.222E–02(1.4E–03)† 5.020E–02(7.3E–05)† 5.070E–02(3.8E–04)† 5.126E–02(6.0E–04)

CDTLZ2 4.388E–02(1.0E–04)† 8.766E–02(2.8E–02)† 4.198E–02(1.4E–03)† 3.879E–02(3.2E–03)† 2.852E–02(5.9E–04)

Inverted simplex-like
IDTLZ1 3.175E–02(7.9E–04)† 2.091E–02(1.5E–03)† 6.404E–02(4.6E–02)† 2.698E–02(6.2E–04)† 1.961E–02(4.8E–04)

IDTLZ2 9.010E–02(1.5E–04)† 7.200E–02(6.7E–03)† 7.736E–02(1.7E–03)† 7.166E–02(5.2E–03)† 5.037E–02(6.2E–04)

Highly nonlinear
SCH1 4.835E–02(1.7E–03)† 5.411E–02(9.7E–03)† 4.643E–02(4.1E–03)† 2.604E–02(3.6E–03)† 1.703E–02(1.5E–04)

FON 4.596E–03(1.6E–05)† 5.333E–03(4.5E–04)† 5.161E–03(1.8E–04)† 4.739E–03(5.2E–05)† 4.632E–03(8.3E–05)

Disconnect
ZDT3 1.107E–02(5.1E–04)† 3.735E–02(4.1E–02)† 9.128E–02(4.2E–02)† 3.125E–02(5.1E–02)† 4.840E–03(5.6E–04)

DTLZ7 1.297E–01(1.1E–03)† 7.079E–02(2.3E–03)† 1.012E–01(4.6E–03)† 1.318E–01(9.0E–02)† 5.275E–02(6.0E–04)

Degenerate
DTLZ5 1.811E–02(1.0E–05)† 9.759E–03(1.2E–03)† 6.816E–02(5.3E–03)† 9.584E–03(2.9E–04)† 3.976E–03(2.4E–04)

VNT2 4.651E–02(2.7E–04)† 2.143E–02(3.2E–03)† 3.492E–02(4.6E–03)† 1.961E–02(7.4E–04)† 1.155E–02(2.3E–04)

Scaled
SDTLZ1 5.584E+00(2.0E+00)†7.426E–01(4.2E–02)† 1.522E+00(2.0E+00)†2.988E+00(5.0E–01)†6.571E–01(6.0E–02)

SDTLZ2 6.071E+00(2.0E+00)†1.357E+00(4.7E–02)†1.295E+00(1.7E–02)† 4.176E+00(5.7E–01)†1.244E+00(5.2E–02)

SCH2 1.049E–01(2.6E–04)† 5.109E–02(4.4E–02)† 4.488E–02(3.6E–04)† 5.538E–02(3.0E–03)† 2.097E–02(3.1E–04)

Many objectives
DTLZ2-10 5.172E–01(1.4E–02) 5.314E–01(6.2E–02)† 4.924E–01(2.6E–05)† 5.234E–01(3.1E–02) 5.202E–01(1.4E–02)

IDTLZ1-10 2.721E–01(7.7E–03)† 1.507E–01(6.5E–03)† 2.461E–01(9.0E–03)† 2.421E–01(9.0E–03)† 1.071E–01(3.3E–03)

DTLZ5(2,10)1.708E–01(1.6E–03)† 4.431E–01(1.0E–01)† 1.520E–01(2.3E–02)† 3.830E–02(1.3E–02)† 2.150E–03(1.8E–05)

“†” indicates that the result of the peer algorithm is significantly different from that of AdaW at a 0.05 level by the Wilcoxon’s
rank sum test.

Table 4: Hypervolume results (mean and SD) of the five algorithms. The best mean for
each case is highlighted in boldface.

Property Problem MOEA/D A-NSGA-III RVEA MOEA/D-AWA AdaW

Simplex-like
DTLZ1 9.738E-01(1.8E-04)† 9.710E-01(3.5E-03)† 9.733E-01(1.1E-03) 9.734E-01(7.2E-04) 9.735E-01(2.7E-04)

DTLZ2 7.418E+00(1.2E-04)† 7.412E+00(4.6E-03) 7.418E+00(5.1E-04)† 7.420E+00(1.1E-03)† 7.412E+00(6.7E-03)

CDTLZ2 7.947E+00(7.9E-05)† 7.937E+00(7.0E-03)† 7.944E+00(1.6E-03)† 7.949E+00(4.5E-04)† 7.952E+00(1.7E-04)

Inverted simplex-like
IDTLZ1 6.808E-01(1.4E-03)† 6.646E-01(4.1E-03)† 6.159E-01(5.7E-02)† 6.844E-01(1.1E-03) 6.839E-01(2.1E-03)

IDTLZ2 6.557E+00(2.1E-03)† 6.617E+00(3.4E-02)† 6.615E+00(7.0E-03)† 6.687E+00(1.4E-02)† 6.728E+00(3.7E-03)

Highly nonlinear
SCH1 2.224E+01(2.7E-03)† 2.223E+01(1.9E-02)† 2.225E+01(1.4E-02)† 2.227E+01(3.5E-03) 2.227E+01(8.2E-04)

FON 3.062E+00(2.1E-04)† 3.057E+00(7.3E-03)† 3.060E+00(3.4E-04)† 3.062E+00(8.4E-04) 3.061E+00(3.2E-03)

Disconnect
ZDT3 4.808E+00(4.4E-03)† 4.517E+00(3.2E-01)† 4.299E+00(3.3E-01)† 4.632E+00(3.3E-01)† 4.812E+00(5.0E-03)

DTLZ7 1.341E+01(1.4E-03)† 1.328E+01(6.3E-02)† 1.310E+01(5.5E-02)† 1.303E+01(1.1E+00)†1.347E+01(2.7E-02)

Degenerate
DTLZ5 6.076E+00(1.8E-05)† 6.056E+00(3.4E-02)† 5.936E+00(2.4E-02)† 6.091E+00(8.9E-04)† 6.102E+00(6.0E-03)

VNT2 1.878E+00(2.0E-04)† 1.905E+00(3.0E-03)† 1.882E+00(5.9E-03)† 1.912E+00(6.7E-04)† 1.916E+00(2.8E-04)

Scaled
SDTLZ1 1.084E+02(8.2E+00)†1.392E+02(6.5E-01) 1.283E+02(2.4E+01)†1.216E+02(3.0E+00)†1.393E+02(1.1E+00)

SDTLZ2 5.736E+02(1.6E+01)†7.400E+02(1.8E+00)†7.437E+02(2.6E+00)†6.353E+02(2.6E+01)†7.483E+02(1.2E+00)

SCH2 3.794E+01(1.1E-03)† 3.815E+01(1.8E-01)† 3.814E+01(6.9E-03)† 3.813E+01(1.1E-02)† 3.825E+01(4.2E-03)

Many objectives
DTLZ2-10 1.024E+03(6.5E-02) 1.023E+03(8.9E-01)† 1.024E+03(1.2E-02)† 1.023E+03(7.4E-01)† 1.024E+03(2.1E-02)

IDTLZ1-10 6.351E-03(1.8E-04)† 1.159E-02(7.9E-04)† 4.505E-03(3.6E-04)† 9.189E-03(5.6E-04)† 2.631E-02(1.2E-03)

DTLZ5(2,10)6.365E+02(5.9E+00)†5.444E+02(7.8E+01)†6.362E+02(5.9E+01)†6.800E+02(1.1E+01)†7.067E+02(4.6E-01)

“†” indicates that the result of the peer algorithm is significantly different from that of AdaW at a 0.05 level by the Wilcoxon’s
rank sum test.
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(a) MOEA/D (b) A-NSGA-III (c) RVEA (d) MOEA/D-AWA (e) AdaW

Figure 3: The final solution set of the five algorithms on DTLZ1.

(a) MOEA/D (b) A-NSGA-III (c) RVEA (d) MOEA/D-AWA (e) AdaW

Figure 4: The final solution set of the five algorithms on DTLZ2.

set of AdaW not being so “regular” as that of the other three algorithms. An inter-
esting observation is that A-NSGA-III (adapting the weights in NSGA-III) appears
to struggle in maintaining the uniformity of the solutions, especially for DTLZ1 and
CDTLZ2. This indicates that adapting the weights may compromise the performance
of decomposition-based approach on simplex-like Pareto fronts, as NSGA-III had been
demonstrated to work very well on these three MOPs (Deb and Jain, 2014). In addition,
it is worth mentioning that on the convex DTLZ2 there is an interval between the outer
and inner solutions in the solution sets of MOEA/D, RVEA and MOEA/D-AWA. In
contrast, the proposed AdaW has no such interval, thereby returning better IGD and
hypervolume results as shown in Tables 3 and 4. Another note is on the preservation
of the extreme solutions (e.g., (1, 0, 0), (0, 1, 0) and (0, 0, 1) for DTLZ2) in AdaW. Pre-
serving the extreme solutions is not an trivial task in a weight adaptation process, as
their corresponding extreme weights can be easily discarded, particularly after the nor-
malisation of the weights (Ishibuchi et al., 2017a). Interestingly, as shown in the three
figures, AdaW is doing well in preserve the extreme solutions. This occurrence is due
to the fact that the extreme weights can be seen to be located in relatively sparse regions
(as not many weights around them), and thus they are unlikely to be eliminated during
the weight deletion process. But they are not certainly preserved — they do be missing
in some situation.

4.2 On Inverted Simplex-like Pareto Fronts

The proposed AdaW has shown a clear advantage over its competitors on this group.
Figures 6–7 plot the final solution set of the five algorithms on IDTLZ1 and IDTLZ2,
respectively. As shown, many solutions of MOEA/D and MOEA/D-AWA concentrate
on the boundary of the Pareto front. The solutions of A-NSGA-III have a good cover-
age but are not distributed very uniformly, while the solutions of RVEA are distributed
uniformly but their number is apparently less than the population size. For AdaW, an
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(a) MOEA/D (b) A-NSGA-III (c) RVEA (d) MOEA/D-AWA (e) AdaW

Figure 5: The final solution set of the five algorithms on the convex DTLZ1.

(a) MOEA/D (b) A-NSGA-III (c) RVEA (d) MOEA/D-AWA (e) AdaW

Figure 6: The final solution set of the five algorithms on the inverted DTLZ1.

inverted simple-like Pareto front has no effect on the algorithm’s performance, and the
obtained solution set has a good coverage and uniformity over the whole front. How-
ever, an interesting observation is that when looking at the hypervolume results on
IDTLZ1 in Table 4, MOEA/D-AWA is preferred to AdaW. This is because the optimal
distribution of solutions for hypervolume maximisation may not be even, as shown in
Ishibuchi et al. (2018a); Li et al. (2015d).

(a) MOEA/D (b) A-NSGA-III (c) RVEA (d) MOEA/D-AWA (e) AdaW

Figure 7: The final solution set of the five algorithms on the inverted DTLZ2.
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Figure 8: The final solution set of the five algorithms on SCH1.
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Figure 9: The final solution set of the five algorithms on FON.
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Figure 10: The final solution set of the five algorithms on ZDT3.

4.3 On Highly Nonlinear Pareto Fronts

The peer algorithms perform differently on the two instances of this group. On the
problem with a concave Pareto front (i.e., FON), all the algorithms work well (Figure 9),
despite A-NSGA-II and RVEA performing slightly worse than the other three. In con-
trast, on the problem with a convex Pareto front (i.e., SCH1), only the proposed AdaW
can obtain a well-distributed solution set, and the others fail to extend their solutions to
the boundary of the Pareto front (Figure 8). This indicates that the convex Pareto front
still poses a challenge to decomposition-based approach even if some weight adapta-
tions are introduced.

4.4 On Disconnected Pareto Fronts

Figures 10 and 11 plot the final solution set of the five algorithms on ZDT3 and DTLZ7,
respectively. On ZDT3, only AdaW and A-NSGA-III can maintain a good distribu-
tion of the solution set. MOEA/D and MOEA/D-AWA show a similar pattern, with
their solutions distributed sparsely on the upper-left part of the Pareto front. The set
obtained by RVEA has many dominated solutions. On DTLZ7, only the proposed al-
gorithm works well. The peer algorithms either fail to lead their solutions to cover the
Pareto front ( MOEA/D and MOEA/D-AWA), or struggle to maintain the uniformity
(A-NSGA-III), or produce some dominated solutions (RVEA).

4.5 On Degenerate Pareto Fronts

Problems with a degenerate Pareto front poses a big challenge to decomposition-based
approaches since the ideal weight set is located in a lower-dimensional manifold than
its initial setting (Li et al., 2018). On this group of problems, the proposed algorithm
has shown a significant advantage over its competitors (see Figures 12 and 13). It is
worth noting that VNT2 has a mixed Pareto front, with both ends degenerating into two
curves and the middle part being a triangle-like plane. As can be seen from Figure 13,

17



(a) MOEA/D (b) A-NSGA-III (c) RVEA (d) MOEA/D-AWA (e) AdaW

Figure 11: The final solution set of the five algorithms on DTLZ7.

(a) MOEA/D (b) A-NSGA-III (c) RVEA (d) MOEA/D-AWA (e) AdaW

Figure 12: The final solution set of the five algorithms on DTLZ5.

(a) MOEA/D (b) A-NSGA-III (c) RVEA (d) MOEA/D-AWA (e) AdaW

Figure 13: The final solution set of the five algorithms on VNT2.

the solution set of AdaW has a good distribution over the whole Pareto front.

4.6 On Scaled Pareto Fronts

Figures 14–16 plot the final solution set of the five algorithms on SDTLZ1, SDTLZ2
and SCH2, respectively. For the first two problems, AdaW, A-NSGA-III and RVEA
work fairly well, but the solutions obtained by RVEA are not so uniform as those ob-
tained by the other two algorithms on SDTLZ1. For SCH2 which also has a discon-
nected Pareto front, AdaW significantly outperforms its competitors, with the solution
set being uniformly distributed over the two parts of the Pareto front. In fact, all the
competitors, except the original MOEA/D, use the normalisation operation in their
calculation. However, as pointed out in Ishibuchi et al. (2017a), the normalisation in
decomposition-based algorithms may cause the degradation of the diversity of solu-
tions in the population. So, the normalisation may not work on all scaled problems.
Interestingly, our algorithm performs well on all the scaled problems. One probable
explanation is that AdaW not only considers the normalisation of the current popu-
lation, but also the normalisation of the archive which stores a set of well-distributed
nondominated solutions, and then use the archive to guide the weight update (via a
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(a) MOEA/D (b) A-NSGA-III (c) RVEA (d) MOEA/D-AWA (e) AdaW

Figure 14: The final solution set of the five algorithms on the scaled DTLZ1.

(a) MOEA/D (b) A-NSGA-III (c) RVEA (d) MOEA/D-AWA (e) AdaW

Figure 15: The final solution set of the five algorithms on the scaled DTLZ2.
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Figure 16: The final solution set of the five algorithms on SCH2.

comparison between the population and archive). This could avoid the diversity loss
of solutions (and their associated weights) during the normalisation process.

4.7 On Many-Objective Problems

This section evaluates the performance of the proposed AdaW on many-objective prob-
lems by considering three instances, the 10-objective DTLZ2, 10-objective IDTLZ1, and
DTLZ5(2,10) where the number of objectives is 10 and the true Pareto front’s dimen-
sionality is 2.

For the 10-objective DTLZ2 which has a simplex-like Pareto front, all the five al-
gorithms appear to work well (Figure 17) despite that there exist several solutions of
AdaW not fully converging into the Pareto front. We may not be able to conclude
the distribution difference of the algorithms by the parallel coordinates plots (Li et al.,
2017), but all the algorithms seem to perform similarly according to the IGD and hy-
pervolume results in Tables 3 and 4.

For the many-objective problems whose Pareto front is far from the standard sim-
plex, a clear advantage of AdaW over its competitors is shown (Figures 18 and 19). The
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Figure 17: The final solution set of the five algorithms on the 10-objective DTLZ2.
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Figure 18: The final solution set of the five algorithms on the 10-objective inverted
DTLZ1.
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Figure 19: The final solution set of the five algorithms on the DTLZ5(2,10).

peer algorithms either fail to cover the whole Pareto front (i.e., MOEA/D, A-NSGA-III
and MOEA/D-AWA on the 10-objective IDTLZ1 and MOEA/D and MOEA/D-AWA
on DTLZ5(2,10)), or struggle to converge into the front (i.e., RVEA on the 10-objective
IDTLZ1 and A-NSGA-III and RVEA on DTLZ5(2,10)). In contrast, the proposed AdaW
has shown its ability in dealing with irregular Pareto fronts in the high-dimensional
space, by which a spread of solutions over the whole Pareto front is obtained.

4.8 Discussions

Methods involving weight update need a parameter of controlling the update fre-
quency, except those which change weights every generation, e.g., A-NSGA-III (Jain
and Deb, 2014). However, a frequent weight change may lead to the solutions to wan-
der around the search space (Giagkiozis et al., 2013b). Like in MOEA/D-AWA (Qi et al.,
2014), we used a percentage value (5%) of the maximum generations/evaluations as the
update frequency. And also the algorithm does not allow to change the weights in the
last 10% generations/evaluations. In a situation where the maximum generation num-
ber is not applicable (i.e., the total number of generations being not as the termination
condition of the algorithm, for example, in particular real-world scenarios), we recom-
mend to update the weights every 5×m generations, where m denotes the number of
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objectives.

The test problems considered in our experimental studies all are unconstrained.
However, constrained MOPs are widely seen in real-world scenarios. There exist sev-
eral constraint-handling techniques used in decomposition-based EMO, such as the
feasibility-first scheme (Fonseca and Fleming, 1998) used in NSGA-III (Deb and Jain,
2014) and RVEA (Cheng et al., 2016), and the epsilon level comparison (Asafuddoula
et al., 2012) used in DBEA (Asafuddoula et al., 2015a) and g-DBEA (Asafuddoula et al.,
2017). The proposed AdaW can easily incorporate these constraint-handling techniques
via slightly modifying the selection operation of the algorithm.

Finally, it is worth pointing out that since AdaW adopts a Pareto nondominated
archive set for weight generation, the algorithm may struggle if the archive set cannot
well represent the whole Pareto front. The problems proposed in Liu et al. (2014) chal-
lenge EMO algorithms in such a way. The nondominated solutions in those problems
lie on a very small area of the search space. Once the extremities of the Pareto front are
achieved by the algorithm, all other solutions will be dominated. This makes it very
difficult to obtain the central part of the front. This difficulty applies to all algorithms
that use Pareto dominance as the primary selection criterion (e.g., Pareto-based algo-
rithms) or use a criterion providing higher selection pressure than Pareto dominance
(e.g., most indicator-based and decomposition-based algorithms), We leave addressing
this issue as an important topic of our future study.

5 Conclusions

Adaptation of the weights during the optimisation process provides a viable approach
to enhance existing decomposition-based EMO. This paper proposed an adaptation
method to periodically update the weights by contrasting the current evolutionary
population with a well-maintained archive set. From experimental studies on seven
categories of problems with various properties, the proposed algorithm has shown its
high performance over a wide variety of different Pareto fronts.

However, it is worth noting that the proposed algorithm needs more computa-
tional resources than the basic MOEA/D. The time complexity of AdaW is bounded
by O(mN2) or O(TN2) whichever is greater (where m is the number of objectives and
T is the neighbourhood size), in contrast to O(mTN) of MOEA/D. In addition, AdaW
also incorporates several parameters, such as the maximum capacity of the archive and
the time of updating the weights. Although these parameters were fixed on all test
problems in our study, customised settings for specific problems may lead to better
performance. For example, a longer duration allowing the weights evolving along the
constant weights is expected to achieve better convergence on problems with many ob-
jectives. Another potential improvement is from the weight deletion operation, where
one may consider to delete the weight that has the biggest angle from the solution (in-
stead of the one who has the worst scalarising function value), as the ideal case is to see
solutions exactly lie on the search directions determined by the weights.
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