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Abstract

We present a novel framework for motion segmentation that
combines the concepts of layer-based methods and feature-
based motion estimation. We estimate the initial corre-
spondences by comparing vectors of filter outputs at inter-
est points, from which we compute candidate scene rela-
tions via random sampling of minimal subsets of correspon-
dences. We achieve a dense, piecewise smooth assignment
of pixels to motion layers using a fast approximate graph-
cut algorithm based on a Markov random field formulation.
We demonstrate our approach on image pairs containing
large inter-frame motion and partial occlusion. The ap-
proach is efficient and it successfully segments scenes with
inter-frame disparities previously beyond the scope of layer-
based motion segmentation methods.

1. Introduction
The problem of motion segmentation consists of (1) find-
ing groups of pixels in two or more frames that move to-
gether, and (2) recovering the motion fields associated with
each group. Motion segmentation has wide applicability in
areas such as video coding, content-based video retrieval,
and mosaicking. In its full generality, the problem cannot
be solved since infinitely many constituent motions can ex-
plain the changes from one frame to another. Fortunately,
in real scenes the problem is simplified by the observation
that objects are usually composed of spatially contiguous
regions and the number of independent motions is signif-
icantly smaller than the number of pixels. Operating un-
der these assumptions, we propose a new motion segmenta-
tion algorithm for scenes containing objects with large inter-
frame motion. The algorithm operates in two stages, start-
ing with robust estimation of the underlying motion fields
and concluding with dense assignment of pixels to motion
fields. This work is the first dense motion segmentation
method to operationalize the layer-based formulation for
multiple discrete motions.

The structure of the paper is as follows. We will begin

in section 2 with an overview of related work. In section
3, we detail the components of our approach. We discuss
experimental results in section 4. The paper concludes with
discussion in section 5.

2. Related Work
Early approaches to motion segmentation were based on
estimating dense optical flow. The optical flow field was
assumed to be piecewise smooth to account for disconti-
nuities due to occlusion and object boundaries. Wang &
Adelson introduced the idea of decomposing the image se-
quence into multiple overlapping layers, where each layer
is a smooth motion field [13].

Optical flow based methods are limited in their ability to
handle large inter-frame motion or objects with overlapping
motion fields. Coarse-to-fine methods are able to solve the
problem of large motion to a certain extent but the degree
of sub-sampling required to make the motion differential
places an upper bound on the maximum allowable motion
between two frames and limits it to about 15% of the di-
mensions of the image. Also in cases where the order of
objects along any line in the scene is reversed and their mo-
tion fields overlap, the coarse to fine processing ends up
blurring the two motions into a single motion before optical
flow can be calculated.

In this paper we are interested in the case of discrete
motion, i.e. where optical flow based methods break down.
Most closely related to our work is that of Torr [11]. Torr
uses sparse correspondences obtained by running a feature
detector and matching them using normalized cross correla-
tion. He then processes the correspondences in a RANSAC
framework to sequentially cover the the set of motions in
the scene. Each iteration of his algorithm finds the domi-
nant motion model that best explains the data and is sim-
plest according to a complexity measure. The set of models
and the associated correspondences are then used as the ini-
tial guess for the estimation of a mixture model using the
Expectation Maximization (EM) algorithm. Spurious mod-
els are pruned and the resulting segmentation is smoothed

1

Proceedings of the 2003 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’03) 
1063-6919/03 $17.00 © 2003 IEEE 



using morphological operations.
In a more recent work [12], the authors extend the model

to 3D layers in which points in the layer have an associ-
ated disparity. This allows for scenes in which the planarity
assumption is violated and/or a significant amount of paral-
lax is present. The pixel correspondences are found using
a multiscale differential optical flow algorithm, from which
the layers are estimated in a Bayesian framework using EM.
Piecewise smoothness is ensured by using a Markov ran-
dom field prior.

Neither of the above works demonstrate the ability to
perform dense motion segmentation on a pair of images
with large inter-frame motion. In both of the above works
the grouping is performed in a Bayesian framework. While
the formulation is optimal and strong results can be proved
about the optimality of the Maximum Likelihood solution,
actually solving for it is an extremely hard non-linear op-
timization problem. The use of EM only guarantees a lo-
cally optimal solution and says nothing about the quality
of the solution. As the authors point out, the key to get-
ting a good segmentation using their algorithm is to start
with a good guess of the solution and they devote a signif-
icant amount of effort to finding such a guess. However it
is not clear from their result how much the EM algorithm
improves upon their initial solution.

3. Our Approach

Our approach is based on a two stage process the first of
which is responsible for motion field estimation and the sec-
ond of which is responsible for motion layer assignment.
As a preliminary step we detect interest points in the two
images and match them by comparing filter responses. We
then use a RANSAC based procedure for detecting the mo-
tion fields relating the frames. Based on the detected mo-
tion fields, the correspondences detected in the first stage
are partitioned into groups corresponding to a single mo-
tion field and the resulting motion fields are re-estimated.
Finally, we use a fast approximate graph cut based method
to densely assign pixels to their respective motion fields.
We now describe each of these steps in detail.

3.1. Interest point detection and matching

Many pixels in real images are redundant so it is beneficial
to find a set of points that reduce some of this redundancy.
To achieve this, we detect interest points using the Förstner
operator [4]. To describe each interest point, we apply a set
of 76 filters (3 scales and 12 orientations with even and odd
phase and an elongation ratio of 3:1, plus 4 spot filters) to
each image. The filters, which are at most 31× 31 pixels in
size, are evenly spaced in orientation at intervals of 15◦ and
the changes in scale are half octave. For each of the scales

Figure 1: Phantom motion fields. (Row 1) Scene that con-
sists of two squares translating away from each other. (Row
2) Under an affine model, triplets of points that span the
two squares will propose a global stretching motion. This
motion is likely to have many inliers since all points on the
inner edges of the squares will fit this motion exactly. If we
then delete all points that agree with this transformation, we
will be unable to detect the true motions of the squares in
the scene (Rows 3 & 4).

and orientations, there is a quadrature pair of derivative-of-
Gaussian filters corresponding to edge and bar-detectors re-
spectively, as in [7, 5].

To obtain some degree of rotational invariance, the filter
response vectors may be reordered so that the order of ori-
entations is cyclically shifted. This is equivalent to filtering
a rotated version of the image patch that is within the sup-
port of the filter. We perform three such rotations in each
direction to obtain rotational invariance up to ±45◦.

We find correspondences by comparing filter response
vectors using the L1 distance. We compare each interest
point in the first image to those in the second image and
assign correspondence between points with minimal error.
Since matching is difficult for image pairs with large inter-
frame disparity, the remainder of our approach must take
into account that the estimated correspondences can be ex-
tremely noisy.

3.2. Estimating Motion Fields
Robust estimation methods such as RANSAC [3] have been
shown to provide very good results in the presence of noise
when estimating a single, global transformation between
images. Why can’t we simply apply these methods to multi-
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ple motions directly? It turns out that this is not as straight-
forward as one might imagine. Methods in this vein work by
iteratively repeating the estimation process where each time
a dominant motion is detected, all correspondences that are
deemed inliers for this motion are removed [11].

There are a number of issues that need to be addressed
before RANSAC can be used for the purpose of detecting
and estimating multiple motions. The first issue is that com-
binations of correspondences – not individual correspon-
dences – are what promote a given transformation. Thus
when “phantom motion fields” are present, i.e. transforma-
tions arising from the relative motion between two or more
objects, it is possible that the deletion of correspondences
could prevent the detection of the true independent motions;
see Figure 1. Our approach does not perform sequential
deletion of correspondences and thus circumvents this prob-
lem.

Another consideration arises from the fact that the
RANSAC estimation procedure is based on correspon-
dences between interest points in the two images. This
makes the procedure biased towards texture rich regions,
which have a large number of interest points associate with
them, and against small objects in the scene, which in turn
have a small number of interest points. In the case where
there is only one global transformation relating the two im-
ages, this bias does not pose a problem. However it be-
comes apparent when searching for multiple independent
motions. To correct for this bias we introduce “perturbed
interest points” and a method for feature crowdedness com-
pensation.

3.2.1. Perturbed Interest Points

If an object is only represented by a small number of in-
terest points, it is unlikely that many samples will fall en-
tirely within the object. One approach for boosting the ef-
fect of correct correspondences without boosting that of the
incorrect correspondences is to appeal to the idea of a sta-
ble system. According to the principle of perturbation, a
stable system will remain at or near equilibrium even as it is
slightly modified. The same holds true for stable matches.
To take advantage of this principle, we dilate the interest
points to be disks with a radius of rp, where each pixel in
the disk is added to the list of interest points. This allows the
correct matches to get support from the points surrounding
a given feature while incorrect matches will tend to have al-
most random matches estimated for their immediate neigh-
bors, which will not likely contribute to a widely-supported
warp. In this way, while the density around a valid motion
is increased, we do not see the same increase in the case of
an invalid motion; see Figure 2.

Figure 2: Perturbed Interest Points. Correspondences are
represented by point-line pairs where the point specifies an
interest point in the image and the line segment ends at the
location of the corresponding point in the other image. (1)
We see one correct correspondence and one incorrect corre-
spondence that is the result of an occlusion junction forming
a white wedge. (2) The points around the correct point have
matches that are near the corresponding point, but the points
around the incorrect correspondence do not.

3.2.2. Feature Crowdedness

Textured regions often have significant representation in the
set of interest points. This means that a highly textured ob-
ject will have a much larger representation in the set of inter-
est points than an object of the same size with less texture.
To mitigate this effect, we bias the sampling. We calculate
a measure of crowdedness for each interest point and the
probability of choosing a given point is inversely propor-
tional to this crowdedness score. The crowdedness score is
the number of interest points that fall into a disk of radius
rc.

3.2.3. Partitioning and Motion Estimation

Having perturbed the interest points and established a sam-
pling distribution on them, we are now in a position to de-
tect the motions present in the frames. We do so using a
two step variant of RANSAC, where multiple independent
motions are explicitly handled, as duplicate transformations
are detected and pruned in a greedy manner. The first step
provides a rough partitioning of the set of correspondences
(motion identification) and the second takes this partition-
ing and estimates the motion of each group.

First, a set of planar warps is estimated by a round of
standard RANSAC and inlier counts (using an inlier thresh-
old of τ ) are recorded for each transformation. In our
case, we use planar homography which requires 4 corre-
spondences to estimate, however similarity or affinity may
be used (requiring 2 and 3 correspondences, respectively).
The estimated list of transformations is then sorted by inlier
count and we keep the first nt transformations, where nt is
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some large number (e.g. 300).
We expect that the motions in the scene will likely be

detected multiple times and we would like to detect these
duplicate transformations. Comparing transformations in
the space of parameters is difficult for all but the simplest
of transformations, so we compare transformations by com-
paring the set of inliers associated with each transformation.
If there is a large overlap in the set of inliers (more than
75%) the transformation with the larger set of inliers is kept
and the other is pruned.

Now that we have our partitioning of the set of corre-
spondences, we would like to estimate the planar motion
represented in each group. This is done with a second round
of RANSAC on each group with only 100 iterations. This
round has a tighter threshold to find a better estimate. We
then prune duplicate warps a second time to account for
slightly different inlier sets that converged to the same trans-
formation during the second round of RANSAC with the
tighter threshold.

The result of this stage is a set of proposed transforma-
tions and we are now faced with the problem of assigning
each pixel to a candidate motion field.

3.3. Layer Assignment
The problem of assigning each pixel to a candidate mo-
tion field can be formulated as finding a function l : I →
{1, . . . ,m}, that maps each pixel to an integer in the range
1, . . . ,m, where m is the total number of of motion fields,
such that the reconstruction error∑

i

[I(i) − I ′(M(l(i), i))]2

is minimized. Here M(p, q) returns the position of pixel q
under the influence of the motion field p.

A naı̈ve approach to solving this problem is to use a
greedy algorithm that assigns each pixel the motion field
for which it has the least reconstruction error, i.e.

l(i) = argmin
1≤p≤m

[I(i) − I ′(M(p, i))]2 (1)

The biggest disadvantage of this method as can be seen
in Figure 3 is that for flat regions it can produce unstable
labellings, in that neighboring pixels that have the same
brightness and are part of the same moving object can get
assigned to different warps. What we would like instead is
to have a labelling that is piecewise constant with the occa-
sional discontinuity to account for genuine changes in mo-
tion fields.

The most common way this problem is solved (see e.g.
[14]) is by imposing a smoothness prior over the set of so-
lutions, i.e. an ordering that prefers piecewise constant la-
bellings over highly unstable ones. It is important that the
prior be sensitive to true discontinuites present in the image.

In [1], for example, Boykov, Veksler and Zabih have shown
that discontinuity preserving smoothing can be performed
by adding a penalty of the following form to the objective
function ∑

i

∑
j∈N (i)

sij [1 − δl(i)l(j)]

Given a measure of similarity sij between pixels i and j,
it penalizes pixel pairs that have been assigned different la-
bels. The penalty should only be applicable for pixels that
are near each other. Hence the second sum is over a fixed
neighborhood N (i). The final objective function we mini-
mize is∑

i

[I(i) − I ′(M(l(i), i))]2 + λ
∑

i

∑
j∈N (i)

sij [1 − δl(i)l(j)]

where λ is the tradeoff between the data and the smoothness
prior.

An optimization problem of this form is known as a Gen-
eralized Potts model which in turn is special case of a class
of problems known as metric labelling problems. Klein-
berg & Tardos demonstrate that the metric labelling prob-
lems corresponds to finding the maximum a posteriori la-
belling of a class of Markov random field [8]. The problem
is known to be NP-complete, and the best one can hope for
in polynomial time is an approximation.

Recently Boykov, Veksler and Zabih have developed a
polynomial time algorithm that finds a solution with error
at most two times that of the optimal solution [2]. Each
iteration of the algorithm constructs a graph and finds a new
labelling of the pixels corresponding to the minimum cut
partition in the graph. The algorithm is deterministic and
guaranteed to terminate in O(m) iterations.

Besides the motion fields and the image pair, the algo-
rithm takes as input a similarity measure sij between every
pair of pixels i, j within a fixed distance of one another and
two parameters, k the size of the neighborhood around each
pixel, and λ the tradeoff between the data and the smooth-
ness term. We use a Gaussian weighted measure of the

Figure 3: Example of naı̈ve pixel assignment as in Equa-
tion 1 for the second motion layer in Figure 5. Notice there
are many pixels that are erratically assigned. This is why
smoothing is needed.
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squared difference between the intensities of pixels i and
j,

sij = exp
[
−d(i, j)2

2k2
− (I(i) − I(j))2

]

where d(i, j) is the distance between pixel i and pixel j.
We run the above algorithm twice, once to assign the

pixels in the image I to the forward motion field and again
to assign the pixels in image I ′ to the inverse motion fields
relating I ′ and I . If a point in the scene occurs in both
frames, we expect that its position and appearance will be
related as:

M(l(p), p) = p′

M(l′(p′), p′) = p

I(M(l(p), p)) = I ′(p)

Here, the unprimed symbols refer to image I and the primed
symbols refer to image I ′. Assuming that the appearance
of the object remains the same across the images, the fi-
nal assignment is obtained by intersecting the forward and
backward assignments.

1. Detect interest points in I
2. Perturb each interest point
3. Find the matching points in I′

4. For i = 1:Ns

Pick tuples of correspondences
Estimate the warp
Store inlier count

5. Prune the list of warps
6. Refine each warp using its inliers
7. Perform dense pixel assignment

Figure 4: Algorithm Summary

4. Experimental Results
We now illustrate our algorithm, which is summarized in
Figure 4, on several pairs of images containing objects un-
dergoing independent motions. We performed all of the ex-
periments on grayscale images with the same parameters1.

Our first example is shown in Figure 5. In this figure
we show the two images, I and I ′, and the assignments for
each pixel to a motion layer (one of the three detected mo-
tion fields). The rows represent the different motion fields
and the columns represent the portions of each image that
are assigned to a given motion layer. The motions are made
explicit in that the pixel support from frame to frame is re-
lated exactly by a planar homography. Notice that the por-
tions of the background and the dumpsters that were visible
in both frames were segmented correctly, as was the man.
This example shows that in the presence of occlusion and
when visual correspondence is difficult (i.e. matching the

1Ns = 104, nt = 300, rp = 2, rc = 25, τ = 10, k = 2, λ = .285

Figure 5: Notting Hill sequence. (1) Original image pair of
size 311 × 552, (2-4) Pixels assigned to warp layers 1-3 in
I and I ′.

dumpsters correctly), our method provides good segmenta-
tion. Another thing to note is that the motion of the man is
only approximately planar.

Figure 6 shows a scene consisting of two fish swimming
past a fairly complicated reef scene. The segmentation is
shown as in Figure 5 and we see that three motions were de-
tected, one for the background and one for each of the two
fish. In this scene, the fish are small, feature-impoverished
objects in front of a large feature-rich background, thus
making the identification of the motion of the fish difficult.
In fact, when this example was run without using the per-
turbed interest points, we were unable to recover the motion
of either of the fish.

Figure 7 shows two frames from a sequence that has been
a benchmark for motion segmentation approaches for some
time. Previously, only optical flow-based techniques were
able to get good motion segmentation results for this scene,
however producing a segmentation of the motion between
the two frames shown (1 and 30) would require using all (or
at least most) of the intermediate frames. Here the only in-
put to the system was the frames shown. Notice that the por-
tions of the house and the garden that were visible in both
frames were segmented accurately as was the tree. This ex-
ample shows the discriminative power of our filterbank as
we were unable to detect the motion field correctly using
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Figure 6: Fish sequence. (1) Original image pair of size
162×319, (2-4) Pixels assigned to warp layers 1-3 in I and
I ′.

correspondences found using the standard technique of nor-
malized cross correlation.

In Figure 8, a moving car passes behind a tree as the
camera pans. Here, only two motion layers were recovered
and they correspond to the static background and to the car.
Since a camera rotating around its optical axis produces no
parallax for a static scene, the tree is in the same motion
layer as the fence in the background, whereas the motion of
the car requires its own layer. The slight rotation in depth
of the car does not present a problem here.

As a final experiment, we demonstrate an application of
our algorithm to the problem of video object deletion in the
spirit of [6, 13]; see Figure 9. The idea of using motion seg-
mentation information to fill in occluded regions is not new,
however previous approaches require a high frame rate to
ensure that inter-frame disparities are small enough for dif-
ferential optical flow to work properly. Here the interframe
disparities are as much as a third of the image width.

5. Discussion

In this paper we have presented a new method for per-
forming dense motion segmentation in the presence of large
inter-frame motion. Like any system, our system is limited
by the assumptions it makes. We make three assumptions
about the scenes: 1) identifiability, 2) constant appearance,
3) planar motion.

Figure 7: Flower Garden sequence. (1) Original image pair
of size 240 × 360, (2-4) Pixels assigned to warp layers 1-3
in I and I ′.

A system is identifiable if its internal parameters can be
estimated given the data. In the case of motion segmenta-
tion it implies that given a pair of images it is possible to
recover the underlying motion. The minimal requirement
under our chosen motion model is that each object present
in the two scenes should be uniquely identifiable. Consider
Figure 10; in this display, several motions can relate the two
frames, and unless we make additional assumptions about
the underlying problem, it is ill posed and cannot be solved.

Our second assumption is that the appearance of an ob-
ject across the two frames remains the same. While we
do not believe that this assumption can be done away with
completely, it can be relaxed. Our feature extraction, de-
scription, and matching is based on a fixed set of filters.
This gives us a limited degree of rotation and scale invari-
ance. We believe that the matching stage of our algorithm
can benefit from the work on affine invariant feature point
description [10] and feature matching algorithms based on
spatial propagation of good matches [9].

The third assumption of a planar motion model is not a
serious limitation, and preliminary experiments show that
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Figure 8: VW sequence. (1) Original image pair of size
240×320, (2-3) Pixels assigned to warp layers 1-2 in I and
I ′.

extensions to non-planar motion are straightforward.
Finally, in some of the examples we can see that while

the segments closely match the individual objects in the
scene, some of the background bleeds into each layer. Mo-
tion is just one of several cues used by the human vision
system in perceptual grouping and we cannot expect a sys-
tem based purely on the cues of motion and brightness to be
able to do the job. Incorporation of the various Gestalt cues
and priors on object appearance will be the subject of future
research.

• • • • • •

Figure 10: Ternus Display. The motion of the dots is am-
biguous; additional assumptions are needed to recover their
true motion.
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Figure 9: Illustration of video object deletion. (1) Original frames of size 180 × 240. (2) Segmented layer corresponding to
the motion of the hand. (3) Reconstruction without the hand layer using the recovered motion of the keyboard. Note that no
additional frames beyond the three shown were used as input.
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