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Abstract
A new generation of genetic studies of diabetes is underway. Following from initial genome-wide
association (GWA) studies, more recent approaches have used genotyping arrays of more densely
spaced markers, imputation of ungenotyped variants based on improved reference haplotype
panels, and sequencing of protein-coding exomes and whole genomes. Experimental and statistical
advances make possible the identification of novel variants and loci contributing to trait variation
and disease risk. Integration of sequence variants with functional analysis is critical to interpreting
the consequences of identified variants. We briefly review these methods and technologies and
describe how they will continue to expand our understanding of the genetic risk factors and
underlying biology of diabetes.
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Introduction
GWA studies have made progress toward understanding the inherited basis of type 1 and
type 2 diabetes by detecting disease-associated DNA variants, usually with allele
frequencies greater than 5%. More than 50 genome-wide-significant (P < 5 × 10−8) loci have
been described in European, East Asian and South Asian populations [1–5]. The next
generation of genome-wide studies is underway, identifying additional variants at both
known and novel loci. These newer studies consist of more detailed studies based on high-
density genotyping arrays, fine-mapping of known loci, sequencing of whole genomes and
whole exomes, and integrating sequence results with functional studies.

The decreasing costs of sequencing both exomes and genomes are enabling lower frequency
DNA variants to be identified and tested for association with diabetes and related traits such
as fasting glucose. Typically, low frequency refers to minor allele frequencies equal to or
greater than 0.5% and less than 5%, and rare refers to allele frequencies less than 0.5%. As
more individuals are sequenced, more of these lower frequency and rare variants can be
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detected. The least frequent variants are private to a family or an individual, and sequencing
all individuals in large population-based studies to find more of the rarest variants remains
cost-prohibitive. The power to detect the association of a lower frequency variant with a
disease or trait depends on the magnitude of its effect. Relative to more common variants in
a fixed sample size, low frequency variants need to have stronger effects to be detected.

The 1000 Genomes Project demonstrated the characteristics of variants that will be
identified by sequencing genomes [6]. This project was the first to provide a comprehensive
resource of human genetic variation based on the genomes of hundreds of people. The data
generated include the genome position, allele frequency and local haplotype structure of
more than 15 million single nucleotide polymorphisms (SNPs), more than 1 million short
insertions and deletions, and more than 20,000 structural variants, most of which had not
been described previously. A pilot project focused on exons of 1,000 genes in ~700 samples
identified >12,000 SNPs, 70% of which were newly discovered. Of these coding SNPs, 74%
had a frequency <1%; this work confirmed that many rare coding variants are population-
specific and enriched for functional variants [7]. Sequencing also finds copy number
variants that are largely missing from early genome-wide genotyping arrays. Sequencing of
185 genomes identified 22,025 deletions and 6,000 additional structural variants, including
insertions and tandem duplications [8]. Based on sequence data, human genomes typically
contain approximately 100 genuine loss-of-function variants and ~20 genes that are
completely inactivated [9].

Extending work from the HapMap consortium [10], the 1000 Genomes Project provides the
best resource to date for reference information on the patterns of linkage disequilibrium in
the human genome [6]. Two variants exhibit linkage disequilibrium when genotypes of one
variant are partially or fully correlated with the genotypes of a second variant, usually
because the variants are located close enough to each other on a chromosome that no or
limited recombination has taken place between them. Two variants exhibit perfect linkage
disequilibrium when the genotypes of one variant perfectly predict the genotypes of the
second variant, as shown by SNPs with asterisks in Figure 1. Due to linkage disequilibrium,
contiguous sets of SNPs exist in many fewer unique haplotypes than randomly assorted
alleles. The presence of limited numbers of haplotypes enables ungenotyped alleles to be
predicted using imputation methods. Genotype array-based association studies of
approximately 300,000 to 1 million variants can represent 61–89% of the common variation
in the genome based on a correlation of at least .8 with European ancestry HapMap SNPs.
Using imputation, coverage can be extended to 82–95% of the common variation [11].

For any given cohort, practical considerations influence the choice to genotype and/or
sequence the available samples (Table 1). As genotyping and sequencing reagents and
technologies become less expensive and more widely available, samples may be subjected to
multiple genotyping and sequencing analyses, yielding ever more complete data.
Genotyping usually costs less per sample and currently involves easier data processing than
sequencing, although data is generated only for variants that were known and included on
the genotyping array. The data generated by genome-wide genotyping arrays can be
extended to include a much larger set of variants by performing genotype imputation (Fig. 1)
[12]. Imputation requires no reagents and thus relatively little cost other than computational
time. Sequencing of sample genomes or exomes allows discovery of increasingly less
frequent SNPs, insertions and deletions, but is currently expensive both in terms of
producing and processing the data. Examples of the next generation of genome-wide studies
are described in the following sections.
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Dense genotyping arrays
New results are being generated through use of several types of dense genotyping arrays.
Variants were selected for these arrays with different strategies or specific goals: more
complete coverage of variants across the genome, content focused on candidate genes,
follow up of metabolic or autoimmune and inflammatory trait GWA studies, or known
variants in the exome. The more focused arrays allow genotyping of 10’s to 100’s of
thousands of samples at relatively low cost per sample. They can provide data on known low
frequency and rare variants that were not genotyped or able to be imputed with confidence
from the original GWA genotype arrays.

One type of higher density genotyping array includes those designed to provide broad
coverage of the common and less frequent variation in the genome. Compared to previously
available genome-wide arrays, these arrays include more SNPs (>1 million) and greatly
increased coverage of low frequency variants. The HumanOmni2.5 BeadChip, for example,
includes common and low frequency variants discovered by the sequencing of the 1000
Genomes Project [13].

Other genotyping arrays focus on specific genes or regions of interest. The IBC array
contains ~50,000 SNPs focused on ~2,000 cardiovascular, inflammatory and metabolic
genes and was designed to capture genetic diversity across populations [14]. A recent report
described IBC array variants associated with type 2 diabetes in ~87,000 multi-ethnic
population-based samples [15] and meta-analysis with existing GWA data from additional
samples. By analyzing larger sample sizes and including individuals with non-European
ancestry, two novel loci, GATAD2A/CILP2 and BCL2, were found to be associated with
type 2 diabetes at genome-wide significance, and three loci achieved a less stringent
threshold of study-wide significance. A low frequency variant (allele frequency 3%) in
HNF1A was confirmed to be associated with type 2 diabetes.

Two high-density arrays of ~200,000 SNPs each, termed the Metabochip (formally the
CardioMetabochip) and the Immunochip, were designed to cost-effectively test thousands of
suggestive GWA signals in additional samples and to enable detailed fine-mapping of
selected GWA loci [16–18]. The Metabochip focuses on cardiovascular and metabolic traits
and diseases, while the Immunochip focuses on major autoimmune and inflammatory traits
and diseases. A large-scale meta-analysis of Metabochip variants in primarily European
subjects were recently reported for type 2 diabetes [19]. New loci were identified in or near
six loci not previously reported for another metabolic trait (Table 2). Of these, the BCAR1
signal also is genome-wide significant for type 1 diabetes, although risk is conferred by the
opposite allele to type 2 diabetes [5]. The type 2 diabetes Metabochip analysis also
identified four loci harboring evidence of more than one independently associated variant,
near KCNQ1, CDKN2A, DGKB, and MC4R. Among 36 of the previously known GWA
loci, low-frequency alleles were found to be associated with a stronger risk of type 2
diabetes only at two loci, PROX1 and KLF14. These variants with frequencies of 2–3% may
be responsible for or contribute to the GWA signals at these loci. Although the Metabochip
does not contain all low-frequency and rare alleles, the data suggest that the underlying
functional variants at most previously discovered GWA loci are common (also see [20]).

A large-scale meta-analysis of Metabochip SNPs in European subjects was also recently
reported for glycemic traits [21]. This study identified 19 novel loci for fasting glucose, 15
for fasting insulin and four for glucose levels after an oral glucose load. Of these, 15 were
not previously reported for another metabolic trait (Table 2). The known GWA loci were
evaluated for more strongly associated variants, an analysis that identified a common
promoter SNP at GCK that may be driving the association signal. Further analysis of the
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high density SNPs is warranted to determine whether additional low-frequency variants can
be identified that either contribute to or are independent of the GWA signals.

A fourth type of newly available genotyping array has been designed to facilitate analysis of
coding variants in large numbers of subjects [22]. These ‘exome chips’ contain >200,000
SNPs, focused on variants that change the protein sequence. Many variants included on such
arrays were only recently identified by exome sequencing studies and have not yet been
analyzed for association with diabetes or related traits in very large samples. Analysis of
exome chip data from thousands of individuals may identify both novel variants at known
loci and novel loci. Compared to GWA analysis, identification of a locus via a low
frequency variant that changes the protein sequence offers the potential to jump directly to a
candidate variant for functional study.

Imputation
In genotype imputation, the genotypes at untested markers are predicted by inferring
haplotypes in the genotyped samples, matching those haplotypes to the most similar ones
from reference samples (e.g. from the HapMap [10] or 1000 Genomes Projects [6]), and
then recording the allele(s) present in the matching reference sample haplotypes (Fig. 1) [11,
23, 24]. Imputation was developed, in part, to enable combination of results from studies
genotyped on different platforms, and thus with different SNP sets (e.g. [25] and [1]).
Imputation is now performed using reference panels with ever increasing numbers of
variants and is currently being implemented in cross-ancestry meta-analyses.

Recently, imputation has been performed based on reference haplotypes from the 1000
Genomes Project. Using data from the Wellcome Trust Case Control Consortium phase I
study of seven diseases including type 1 and type 2 diabetes, 1000 Genomes imputation
identified association signals that were not found using the original genotype data or
HapMap-based imputation data, one signal within IL2RA for type 1 diabetes and one near
CDKN2A for type 2 diabetes [26]. Both signals had been identified by GWA before this
proof-of-principle study. This analysis also refined association signals near CUX2 for type 1
diabetes and in IL23R for Crohn’s disease. Subsequent larger type 2 diabetes meta-analyses
of data imputed using the 1000 Genomes reference panel [27] and larger reference panels
are underway.

Sequence genotype calling methods based on the principles of imputation can also be used
to increase accuracy and density of genotypes in individuals with low-depth sequence data
[11]. This approach uses genotype information from other sequenced individuals to increase
the accuracy of the genotype calls. More accurate calls can be obtained as the number of
sequenced individuals increases.

Sequencing of exomes and genomes
While high-density arrays and imputation will allow many low-frequency and rare variants
to be studied, the fixed-content chips and imputation reference panels are limited to
sequence variants that are already known. The goal of sequencing is to identify further
variants that may contribute to disease. Next-generation sequencing using highly parallel
technologies has been available for several years, and costs continue to decrease. Exome
sequencing currently costs about five-fold less than genome sequencing. However,
sequencing a sample still costs 10- to 100-fold more than genotyping a fixed-content array,
and substantially more data management is needed.

In recent years, exome sequencing has been used to discover the genes responsible for many
monogenic disorders [28]. The exome is enriched for variants with functional consequences
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that are frequently observed to be responsible for monogenic disorders. Exome sequencing
has been used to diagnose MODY in patients in whom disease variants have not yet been
identified [29–31]. In one study, three affected relatives and one unaffected relative from a
large family were sequenced. Of the 324 variants that were subsequently genotyped in
additional family members and controls, only one segregated with disease, Glu227Lys in
KCNJ11. These data implicated KCNJ11 as the 13th MODY gene [30].

Exome sequencing also can be used to discover coding variants contributing to complex
traits. Given the mutation rate in protein-coding genes, almost every gene is expected to
contain variants that affect function, even if the variants are rare [32]. Exome sequencing
can be expected to provide insights into complex traits because less comprehensive
candidate gene sequencing studies have successfully identified coding variants [33, 34].
Exon sequencing at a type 1 diabetes GWA locus identified four rare variants in IFIH1 that
independently lowered diabetes risk and are predicted to alter the expression or structure of
the protein [35]. At known MODY gene and GWA locus HNF4A, the low-frequency coding
variant HNF4A Thr130Ile shows suggestive evidence (P = 2.1 × 10−5) of influencing type 2
diabetes risk [36]. This variant has been shown to decrease the function of HNF4A in
cultured cells [37, 38].

Analysis of rare variants requires statistical methods that differ from methods used to test
association with common variants [32]. Typically, to obtain reasonable power, rare variants
need to be tested in groups aggregated by gene or other functional units. Several new
statistical tests have been designed for rare variants [39]; the tests differ in their power to
detect evidence of association based on the number of variants, number of causal variants,
allele frequency, effect sizes, and consistency of direction of effect relative to the less
common allele.

Whole genome sequencing offers the ultimate opportunity to identify genetic variants for
diabetes, including both coding and regulatory variants. High-depth coverage is needed to
identify the rarest variants accurately, but remains expensive for large sample sizes. Low-
depth coverage sequencing offers a less expensive strategy for identifying genetic variants in
larger numbers of individuals [40]. As more individuals are sequenced, more accurate
genotype calls can be generated for a given sequence depth. Sequencing 400 individuals at
30× (high) average read depth each requires similar sequencing capacity as sequencing 3000
individuals at 4× (low) average read depth. Both designs detect variants with frequency >
0.5%; the low-depth coverage design detects more variants with frequency 0.2%–0.5%, but
fewer of the variants with frequency < 0.2%. At the lower read-depths, genotype accuracy is
lower but still very good [40]. In the example of 4× coverage, genotype accuracy of variants
with frequencies > 0.1% remains >99.6%.

At least three large exome and genome sequencing projects are ongoing to discover variants
influencing type 2 diabetes and related traits. The Go-T2D study is performing low-coverage
whole-genome sequencing, deep exome sequencing, and 2.5M SNP array genotyping of
1,425 type 2 diabetes cases and 1,425 controls from Northern Europe [41]. The T2D-
GENES Project 1 study is performing exome sequencing of 5,000 type 2 diabetes cases and
5,000 controls from five ancestral groups, and the T2D-GENES Project 2 study is
performing deep whole genome sequencing of >500 individuals from 20 large Mexican
American pedigrees [42]. These projects will detect many novel low-frequency and rare
variants that, when analyzed in sufficiently large numbers of subjects, can be expected to
identify new insights into the genetic basis for disease.
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Integrating sequence variants with functional studies
Although thousands of variants are being identified by sequencing, many of them novel,
determining which variants alter protein or regulatory function remains challenging.
Sequencing an individual to understand disease pathophysiology may lead to multiple
apparently equivalent putative disease variants. Gene-based tests of association that
simultaneously evaluate multiple variants likely will provide sets of variants but not
specifically identify the functional variants. Computational approaches to assess
deleteriousness are improving, but remain imperfect [43]. Two recent studies functionally
tested variants identified by exon sequencing and identified rare variants with strong
biological effects and potential clinical significance [44, 45].

In one study, sequencing the exons of melatonin receptor 1B (MTNR1B) in >7,600
individuals identified 40 nonsynonymous variants that change the protein sequence [44].
GWA studies had identified common variants near MTNR1B associated with fasting
glucose levels and type 2 diabetes [46, 47]. The 40 variants identified by sequencing
included 36 that were very rare, with minor allele frequency less than 0.1%, and not yet
present in SNP databases. A pooled analysis of these 36 rare variants showed evidence of
association with type 2 diabetes (P = 1.6 × 10−4). Proteins containing each of these variants
were individually expressed in human HEK293 cells and evaluated for melatonin binding
and three measures of signaling activity. Fourteen of the variants showed a partial or total
loss of function, and subsequent tests of association demonstrated that compared to the
variants with neutral effects on function, the loss-of-function variants were much more
strongly associated with type 2 diabetes. Comparison of experimental results to a
bioinformatics prediction of functional consequence showed only 60% concordance,
confirming the need for such functional studies of individual variants.

In another recent study, sequencing the exons of glucokinase regulatory protein (GCKR) in
800 individuals identified 19 nonsynonymous variants [45]. GCKR variants have been
associated with several metabolic traits, and GCKR is known to play a role in glucose
homeostasis [48]. The 19 variants identified include the common Pro446Leu substitution,
which has been shown to increase active cytosolic glucokinase [49]. The proteins containing
each of the variants were individually evaluated for cellular localization, ability to interact
with glucokinase, and kinetic activity. Most of the variants had functional effects consistent
with loss-of-function, although two exhibited a potential gain-of-function. Experimental
analysis of function will continue to be critical to interpretation of the role of variants
identified by sequencing.

Conclusions
How will sequencing genomes influence the health of people at risk for or affected with
diabetes? The more complete understanding of the biological mechanisms underlying
diabetes derived from these studies may lead to identification of novel drug targets.
Individuals with variants in genes responsible for MODY or neonatal diabetes respond
better to specific drugs [50, 51], and sequencing may identify small numbers of individuals
with combinations of rarer, more highly penetrant variants that respond better to specific
therapeutic options. Although sets of known variants for type 2 diabetes do not add
substantially to prediction of type 2 diabetes development in the overall population [52, 53],
identification of individuals at greater or lower genetic risk for diabetes within the overall
population or in specific subgroups, such as younger onset or leaner individuals [54, 55]
could lead to better targeted health information and also allow identification of higher risk
individuals for more efficient design of clinical trials for disease prevention.

Mohlke and Scott Page 6

Curr Diab Rep. Author manuscript; available in PMC 2013 December 01.

$w
aterm

ark-text
$w

aterm
ark-text

$w
aterm

ark-text



Hundreds if not thousands of additional diabetes loci likely will be identified in the future.
These loci will almost certainly be a combination of common variants with modest effects
and low frequency to rare variants with a range from very modest to strong effects, although
their contribution by frequency currently is not clear [56]. A variety of strategies will lead to
their discovery: analysis of increasingly larger numbers of subjects, identification of
successively rarer variants via sequencing and imputation, investigation of specialized
phenotypes that may provide new insights into diabetes, and improved analysis methods that
incorporate functional information. Identification of the underlying causal variants at these
loci remains challenging. Identification of new traits or sets of known traits that are
influenced by the same genetic variants may provide hints into the biology of specific
variants or loci [1, 2, 57]. Identification of overlap between diabetes-associated variants and
regulatory elements that influence gene expression, transcription factor binding and
methylation in relevant tissues may help narrow the possible sets of causal variants [58–61].
Likewise, tests for association that can directly incorporate functional information by
upweighting or advantaging the contribution of specified variants may help identify loci
[62–64]. Informed by association results, experimental work in vitro, in cells and with
model organisms will be necessary to understand the underlying biological mechanisms and
pathophysiology.
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Figure 1.
The top sequences represent the observed genotypes of two individuals from different
studies that used different genome-wide arrays. Different markers are available on the
arrays, and in this example, only one shared marker is available for the two individuals. The
reference haplotypes contain many more markers (SNPs, and, more recently, insertions or
deletions) than the genotyped samples. Reference haplotypes may be from the HapMap
Project, the 1000 Genomes Project, or other sequenced or densely genotyped samples.
Haplotypes from the reference samples that are consistent with the observed individual
haplotypes are highlighted. These reference haplotypes are used to fill in (impute) the
unobserved genotypes in the study individuals (bottom). More than one reference haplotype
can be consistent with an individual’s phased genotypes. To account for this, imputation
programs provide the probability of each genotype. Asterisks indicate markers that are in
perfect linkage disequilibrium within the reference panel; an ‘A’ at the first asterisk marker
is always observed with ‘G’ at the second asterisk marker and ‘G’ at the third asterisk
marker.
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Table 1

Characteristics of genotyping and sequencing technologies

Relative cost Coding variant coverage Regulatory variant coverage

Original GWA array + + +

Denser GWA arrays + ++ ++

 IBC array − selected selected

 Metabochip/Immunochip − selected selected

 Exome chip − ++ −

Imputation of untyped variants − ++ ++

Exome sequencing ++ +++ −

Low read depth genome sequencing ++ ++ ++

High read depth genome sequencing +++ +++ +++

Symbols indicate lower to higher cost and lower to better coverage: −, +, ++, +++.
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