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Abstract
Egocentric action anticipation consists in understand-

ing which objects the camera wearer will interact with in

the near future and which actions they will perform. We

tackle the problem proposing an architecture able to antici-

pate actions at multiple temporal scales using two LSTMs to

1) summarize the past, and 2) formulate predictions about

the future. The input video is processed considering three

complimentary modalities: appearance (RGB), motion (op-

tical flow) and objects (object-based features). Modality-

specific predictions are fused using a novel Modality AT-

Tention (MATT) mechanism which learns to weigh modal-

ities in an adaptive fashion. Extensive evaluations on two

large-scale benchmark datasets show that our method out-

performs prior art by up to +7% on the challenging EPIC-

Kitchens dataset including more than 2500 actions, and

generalizes to EGTEA Gaze+. Our approach is also shown

to generalize to the tasks of early action recognition and

action recognition. Our method is ranked first in the public

leaderboard of the EPIC-Kitchens egocentric action antici-

pation challenge 2019. Please see the project web page for

code and additional details: http://iplab.dmi.unict.it/rulstm.

1. Introduction

Anticipating the near future is a natural task for humans

and a fundamental one for intelligent systems when it is

necessary to react before an action is completed (e.g., to an-

ticipate a pedestrian crossing the street from an autonomous

vehicle [9]) or even before it starts (e.g., to notify a user who

is performing the wrong action in a known workflow [49]).

Additionally, tasks such as action anticipation [18, 29, 54]

and early action recognition [2, 9, 36] pose a series of key

challenges from a computational perspective. Indeed, meth-

ods addressing these tasks need to model the relationships

between past, future events and incomplete observations.

First Person (Egocentric) Vision [26], in particular, offers an

interesting scenario to study anticipation problems. On one

hand, whilst being a natural task for humans, anticipating
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Figure 1. Egocentric Action Anticipation. See text for notation.

the future from egocentric video is computationally chal-

lenging due to the ability of wearable cameras to acquire

long videos of complex activities involving many objects

and actions performed by a user from their unique point of

view. On the other hand, investigating these tasks is funda-

mental for the construction of intelligent wearable systems

able to anticipate the user’s goal and assist them [26].

In this paper, we address the problem of egocentric ac-

tion anticipation. As defined in [8] and illustrated in Fig-

ure 1, the task consists in recognizing an action starting at

time τs by observing a video segment preceding the action

starting at time τs − (τo + τa) and ending at time τs − τa,

where the “observation time” τo indicates the length of the

observed segment, whereas the “anticipation time” τa de-

notes how many seconds in advance actions are to be antic-

ipated. While action anticipation has been investigated in

classic third person vision [1, 18, 22, 29, 54, 25], less atten-

tion has been devoted to the egocentric scenario [8, 16, 43].

We observe that egocentric action anticipation meth-

ods need to address two sub-tasks: 1) summarizing what

has been observed in the past (e.g., “a container has been

washed” in the observed segment in Figure 1), and 2) mak-

ing hypotheses about what will happen in the future (e.g.,
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“put-down container”, “close tap”, “take spoon” in Fig-

ure 1). While previous approaches attempted to address

these two sub-tasks jointly [2, 8, 36, 54], our method dis-

entangles them using two separate LSTMs. The “Rolling”

LSTM (R-LSTM) is responsible for continuously encoding

streaming observations to summarize the past. When the

method is required to anticipate actions, the “Unrolling”

LSTM (U-LSTM) takes over the current hidden and cell

states of the R-LSTM and makes predictions about the fu-

ture. Differently from previous works which considered a

fixed anticipation time [8, 16, 54], the proposed method can

anticipate an action at multiple anticipation times, e.g., 2s,

1.5s, 1s and 0.5s before it occurs. The network is pre-

trained with a novel “Sequence Completion Pre-training”

(SCP) technique, which encourages the disentanglement of

the two sub-tasks. To take advantage of the complementary

nature of different input modalities, the proposed Rolling-

Unrolling LSTM (RU) processes spatial observations (RGB

frames), motion (optical flow), as well as object-based

features. Multimodal predictions are fused with a novel

“Modality ATTention” mechanism (MATT), which adap-

tively estimates optimal fusion weights for each modal-

ity by considering the outputs of the modality-specific

R-LSTM components. Experiments on two large-scale

datasets of egocentric videos, EPIC-KTICHENS [8] and

EGTEA Gaze+ [33], show that the proposed method out-

performs several state-of-the-art approaches and baselines

in the task of egocentric action anticipation and generalizes

to the tasks of early action recognition and action recogni-

tion.

The contributions of this work are as follows: 1) we are

the first to systematically investigate the problem of ego-

centric action anticipation within the framework of the chal-

lenge proposed in [8]; 2) our investigation benchmarks pop-

ular ideas and approaches to action anticipation and leads to

the definition of RU, an architecture able to anticipate ego-

centric actions at multiple temporal scales; 3) the proposed

model is shown to benefit from two techniques specific to

the investigated problem, i.e., i) “Sequence Completion Pre-

training” and ii) adaptive fusion of multi-modal predictions

through Modality ATTention; 4) extensive evaluations high-

light the limits of previous approaches and show significant

improvements of the proposed method over the state of the

art. To support future research, the code implementing the

proposed method will be released upon publication.

2. Related Work

Action Recognition Our work is related to previous re-

search on action recognition from third person vision [7,

13, 14, 27, 31, 32, 45, 53, 55, 56, 57, 62] and first person

vision [11, 12, 33, 34, 35, 40, 44, 48, 50, 51, 52]. Specifi-

cally, we build on previous ideas investigated in the context

of action recognition such as the use of multiple modali-

ties for video analysis [45], the use of Temporal Segment

Networks [57] as a principled way to train CNNs for action

recognition, as well as the explicit encoding of object-based

features [11, 35, 40, 47, 52] to analyze egocentric video.

However, in contrast with the aforementioned works, we

address the problem of egocentric action anticipation and

show that approaches designed for action recognition, such

as TSN [57] and early/late fusion to merge multi-modal pre-

dictions [45] are not directly applicable to the problem of

egocentric action anticipation.

Early Action Recognition in Third Person Vision Early

action recognition consists in recognizing an ongoing ac-

tion as early as possible from partial observations [9]. The

problem has been widely investigated in the domain of third

person vision [2, 4, 6, 9, 19, 20, 21, 36, 42]. Differently

from these works, we address the task of anticipating ac-

tions from egocentric video, i.e., the action should be rec-

ognized before it starts, hence it cannot even be partially

observed at the time of prediction. Given the similarity be-

tween early recognition and anticipation, we consider and

evaluate some ideas investigated in the context of early

action recognition, such as the use of LSTMs to process

streaming video [2, 19, 36], and the use of dedicated loss

functions [36]. Moreover, we show that the proposed archi-

tecture also generalizes to the problem of early egocentric

action recognition, achieving state-of-the-art performances.

Action Anticipation in Third Person Vision Action an-

ticipation is the task of predicting an action before it oc-

curs [18]. Previous works investigated different forms of

action and activity anticipation from third person video [1,

15, 18, 22, 24, 25, 28, 29, 30, 37, 54, 59]. While we consider

the problem of action anticipation from egocentric visual

data, our work builds on some ideas explored in past works

such as the use of LSTMs to anticipate actions [1, 18, 25],

the use of the encoder-decoder framework to encode past

observations and produce hypotheses of future actions [18],

and the use of object specific features [37] to determine

which objects are present in the scene. Additionally, we

show that other approaches, such as the direct regression of

future representations [18, 54], do not achieve satisfactory

performance in the considered scenario.

Anticipation in First Person Vision Past works on an-

ticipation from egocentric visual data have investigated dif-

ferent problems and considered different evaluation frame-

works [5, 10, 17, 39, 41, 43, 46, 49, 60, 63]. Instead,

we tackle the egocentric action anticipation challenge re-

cently proposed in [8], which has been little investigated

so far [16]. While a direct comparison of the proposed ap-

proach with the aforementioned works is unfeasible due to

the lack of a common framework, our method incorporates

some ideas from past approaches, such as the analysis of

past actions [43] and the detection of the objects present in
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Figure 2. Video processing scheme of the proposed method with

Senc = 6 and Sant = 8.

the scene to infer future actions [17].

3. Proposed Approach

Processing Strategy Figure 2 illustrates the processing

strategy adopted by the proposed method. The video is

processed in an on-line fashion, with a short video snippet

Vt consumed every α seconds, where t indexes the current

time-step. Specifically, an action occurring at time τs is an-

ticipated by processing a video segment of length l starting

at time τs − l − α and ending at time τs − α. The input

video ends at time τs − α as our method aims at anticipat-

ing actions at least α seconds before they occur. The pro-

cessing is performed in two stages: an “encoding” stage,

which is carried out for Senc time-steps, and an “anticipa-

tion” stage, which is carried out for Sant time-steps. In the

encoding stage, the model summarizes the semantic con-

tent of the Senc input video snippets without producing any

prediction, whereas in the anticipation stage the model con-

tinues to encode the semantics of the Sant input video snip-

pets and outputs Sant action scores st which can be used to

perform action anticipation. This scheme effectively allows

to formulate Sant predictions for a single action at multiple

anticipation times. In our experiments, we set α = 0.25s,

Senc = 6 and Sant = 8. In these settings, the model an-

alyzes video segments of length l = α(Senc + Sant) =
3.5s and outputs 8 predictions at the following anticipation

times: τa ∈ {2s, 1.75s, 1.5s, 1.25s, 1s, 0.75s, 0.5s, 0.25s}.

It should be noted that, since the predictions are produced

while processing the video, at time step t the effective ob-

servation time will be equal to α·t. Hence, the 8 predictions

are performed at the following effective observation times:

τo ∈ {1.75s, 2s, 2.25s, 2.5s, 2.75s, 3s, 3.25s, 3.5s}. Our

formulation generalizes the one proposed in [8], which is

illustrated in Figure 1. For instance, at time-step t = 11,

our model will anticipate actions with an effective observa-

tion time equal to τo = α · t = 2.75s and an anticipation

time equal to τa = α(Sant + Senc + 1− t) = 1s, as in [8].

Rolling-Unrolling LSTM The proposed method uses two

separate LSTMs to encode past observations and formu-

late predictions about the future. Following previous lit-

erature [45], we include multiple identical branches which
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Figure 3. Example of RU modality-specific branch with Senc = 1
and Sant = 3.

analyze the video according to different modalities. Specif-

ically, at each time-step t, the input video snippet Vt is

represented using different modality-specific representation

functions ϕ1, . . . , ϕM depending on learnable parameters

θϕ1 , . . . , θϕM . This process allows to obtain the modality-

specific feature vectors f1,t = ϕ1(Vt), . . . , fM,t =
ϕM (Vt), where M is the total number of modalities (i.e.,

the total number of branches in our architecture), and fm,t

is the feature vector computed at time-step t for the modal-

ity m. The feature vector fm,t is fed to the mth branch

of the architecture. While our model can easily incorpo-

rate different modalities, in this work we consider M = 3
modalities, i.e., RGB frames (spatial branch), optical flow

(motion branch) and object-based features (object branch).

Figure 3 illustrates the processing taking place in a single

branch m of the proposed RU model. For illustration pur-

poses only, the figure shows an example in which Senc = 1
and Sant = 3. At time step t, the feature vector fm,t is fed

to the Rolling LSTM (R-LSTM), which encodes its seman-

tic content recursively, as follows:

(hR
m,t, c

R
m,t) = LSTMθRm

(fm,t, h
R
m,t−1, c

R
m,t−1) (1)

where LSTMθR
m

denotes the R-LSTM of branch m, de-

pending on the learnable parameters θRm, whereas hR
m,t and

cRm,t are the hidden and cell states computed at time t in

the modality m. The initial hidden and cell states of the

R-LSTM are initialized with zeros: hR
m,0 = 0, cRm,0 = 0.

In the anticipation stage, at time step t, the Unrolling

LSTM (U-LSTM) is used to make predictions about the fu-

ture. The U-LSTM takes over the hidden and cell vectors of

the R-LSTM at the current time-step (i.e., hR
m,t and cRm,t)

and iterates over the representation of the current video

snippet fm,t for a number of times nt equal to the number

of time-steps required to reach the beginning of the action,

i.e., nt = Sant+Senc− t+1. Hidden and cell states of the

U-LSTM are computed as follows at the jth iteration:

(hU
m,j , c

U
m,j) = LSTMθUm

(fm,t, h
U
m,j−1, c

U
m,j−1) (2)

where LSTMθU
m

is the U-LSTM of branch m, depending

on the learnable parameters θUm, and hU
m,t, c

U
m,t are the hid-

den and cell states computed at iteration j for the modality
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m. The initial hidden and cell states of the U-LSTM are

initialized from the current hidden and cell states computed

by the R-LSTM: hU
m,0 = hR

m,t, cUm,0 = cRm,t. Note that

the input fm,t of the U-LSTM does not depend on j (see

eq. (2)) because it is fixed during the “unrolling” procedure.

The main rationale of “unrolling” the U-LSTM for a differ-

ent number of times at each time-step is to encourage it to

differentiate predictions at different anticipation times.

Modality-specific action scores sm,t are computed at

time-step t by processing the last hidden vector of the U-

LSTM with a linear transformation with learnable parame-

ters θWm and θbm: sm,t = θWm hU
m,nt

+ θbm.

Sequence Completion Pre-Training (SCP) The two

LSTMs composing the RU architecture are designed to ad-

dress two specific sub-tasks: the R-LSTM is responsible for

encoding past observations and summarizing what has hap-

pened up to a given time-step, whereas the U-LSTM focuses

on anticipating future actions conditioned on the hidden and

cell vectors of the R-LSTM. To encourage the two LSTMs

to specialize on the two different sub-tasks, we propose to

train the architecture using a novel Sequence Completion

Pre-training (SCP) procedure. During SCP, the connections

of the U-LSTM are modified to allow it to process future

representations, rather than iterating on the current one. In

practice, the U-LSTM hidden and cell states are computed

as follows during SCP:

(hU
m,j , c

U
m,j) = LSTMθUm

(fm,t+j−1, h
U
m,j−1, c

U
m,j−1) (3)

where the input representations fm,t+j−1 are sampled from

future time-steps t+j−1. Figure 4 illustrates an example of

the connection scheme used during SCP for time-step t = 2.

The main goal of pre-training the RU with SCP is to allow

the R-LSTM to focus on summarizing past representations

without trying to anticipate the future.

Modality ATTention (MATT) Coherently with past work

on egocentric action anticipation [8], we found it sub-

optimal to fuse multi-modal predictions with classic ap-

proaches such as early and late fusion. This is probably

due to the fact that, when anticipating egocentric actions,
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Figure 5. Example of the complete RU architecture with two

modalities and the Modality ATTention mechanism (MATT).

one modality might be more useful than another (e.g., ap-

pearance over motion), depending on the processed sam-

ple. Inspired by previous work on attention [3, 58] and

multi-modal fusion [38], we introduce a Modality ATTen-

tion (MATT) module which computes a set of attention

scores indicating the relative importance of each modality

for the final prediction. At a given time-step t, such scores

are obtained by processing the concatenation of the hidden

and cell vectors of the R-LSTM networks belonging to all

branches m = 1, . . . ,M with a deep neural network D de-

pending on the learnable parameters θMATT :

λt = DθMATT (⊕
M
m=1(h

R
m,t ⊕ c

R
m,t)) (4)

where ⊕ denotes the concatenation operator and

⊕M
m=1(h

R
m,t ⊕ cUm,t) is the concatenation of the hid-

den and cell vectors produced by the R-LSTM at time-step

t across all modalities. Late fusion weights can be obtained

normalizing the score vector λt with the softmax function

in order to make sure that fusion weights sum to one:

wm,t =
exp(λt,m)∑
k exp(λt,k)

, where λt,m is the mth component

of the score vector λt. The final set of fusion weights is

obtained at time-step t by merging the modality-specific

predictions produced by the different branches with a linear

combination as follows: st =
∑

m wm,t · sm,t. Figure 5

illustrates an example of a complete RU with two modal-

ities and the MATT fusion mechanism. For illustration

purposes, the figure shows only three anticipation steps.

Branches and Representation Functions We instantiate

the proposed architecture with 3 branches: a spatial branch

which processes RGB frames, a motion branch which pro-

cesses optical flow, and an object branch which processes

object-based features. Our architecture analyzes video snip-

pets of 5 frames Vt = {It,1, It,2, . . . , It,5}, where It,i is the

ith frame of the video snippet. The representation function

ϕ1 of the spatial branch computes the feature vector f1,t by

extracting features from the last frame It,5 of the video snip-

pet using a Batch Normalized Inception CNN [23] trained
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for action recognition. The representation function ϕ2 of

the motion branch extracts optical flow from the 5 frames

of the current video snippet as proposed in [57]. The com-

puted x and y optical flow form a tensor with 10 channels,

which is fed to a Batch Normalized Inception CNN trained

for action recognition to obtain the feature vector f2,t. Note

that ϕ1 and ϕ2 allow to obtain “action-centric” representa-

tions of the input frame which can be used by the R-LSTM

to summarize what has happened in the past. The represen-

tation function ϕ3 of the object branch extracts objects from

the last frame It,5 of the input snippet Vt using an object

detector. A fixed-length representation f3,t is obtained by

accumulating the confidence scores of all bounding boxes

predicted for each object class. Specifically, let bt,i be the

ith bounding box detected in image It,5, let bct,i be its class

and let bst,i be its detection confidence score. The jth com-

ponent of the output representation vector f3,t is obtained

by summing the confidence scores of all detected objects

of class j, i.e., f3,t,j =
∑

i[b
c
t,i = j]bst,i, where [·] de-

notes the Iverson bracket. This representation only encodes

the presence of an object in the scene, discarding its posi-

tion in the frame, similarly to the representation proposed

in [40] for egocentric activity recognition. We found this

holistic representation to be sufficient in the case of ego-

centric action anticipation. Differently from ϕ1 and ϕ2, ϕ3

produces object-centric features, which carry information

on what objects are present in the scene and hence could be

interacted next.1

4. Experimental Settings

Datasets We perform experiments on two large-scale

datasets of egocentric videos: EPIC-Kitchens [8] and

EGTEA Gaze+ [33]. EPIC-Kitchens contains 39, 596 ac-

tion annotations, 125 verbs, and 352 nouns. We split

the public training set of EPIC-Kitchens (28, 472 action

segments) into training (23, 493 segments) and validation

(4, 979 segments) sets by randomly choosing 232 videos

for training and 40 videos for validation. We considered

all unique (verb, noun) pairs in the public training set, thus

obtaining 2, 513 unique actions. EGTEA Gaze+ contains

10, 325 action annotations, 19 verbs, 51 nouns and 106
unique actions. Methods are evaluated on EGTEA Gaze+

reporting the average performance across the three splits

provided by the authors of the dataset [33].

Evaluation Measures Methods are evaluated using Top-k

evaluation measures, i.e., we deem a prediction correct if

the ground truth action falls in the top-k predictions. As ob-

served in previous works [16, 29], this evaluation scheme is

appropriate given the uncertainty of future predictions (i.e.,

many plausible actions can follow an observation). Specif-

ically, we use the Top-5 accuracy as a class-agnostic mea-

1See supp. for details on implementation and training of our method.

sure and Mean Top-5 Recall as a class aware metric. Top-5

recall [16] for a given class c is defined as the fraction of

samples of ground truth class c for which the class c is in

the list of the top-5 anticipated actions. Mean Top-5 Recall

averages Top-5 recall values over classes. When evaluating

on EPIC-Kitchens, Top-5 Recall is averaged over the pro-

vided list of many-shot verbs, nouns and actions. Results

on the EPIC-Kitchens official test set are reported using the

suggested evaluation measures, i.e., Top-1 accuracy, Top-5

accuracy, Precision and Recall.

To assess the timeliness of anticipations, we design a

new evaluation measure inspired by the AMOC curve [20].

Let st be the score anticipated at time-step t for an action of

ground truth class c, let τt be the anticipation time at time-

step t, and let tk(st) be the set of top-k actions as ranked

by the scores st. We define as “time to action” at rank k

the largest anticipation time (i.e., the time of earliest antic-

ipation) in which a correct prediction has been made ac-

cording to the top-k criterion: TtA(k) = max{τ(st)|c ∈
tk(st), ∀t}. If an action is not correctly anticipated in any

of the time-steps, we set TtA(k) = 0. The mean time to ac-

tion over the whole test set mTtA(k) indicates how early,

in average, a method can anticipate actions.

Performances are evaluated for verb, noun and action

predictions on the EPIC-Kitchens dataset. We obtain verb

and noun scores by marginalization over action scores for

all methods except the one proposed in [8], which predicts

verb and noun scores directly.

Compared Methods We compare the proposed method

with respect to 7 state-of-the approaches and baselines.

Specifically, we consider the Deep Multimodal Regressor

(DMR) proposed in [54], the Anticipation Temporal Seg-

ment Network (ATSN) of [8], the anticipation Temporal

Segment Network trained with verb-noun Marginal Cross

Entropy Loss (MCE) described in [16], and the Encoder-

Decoder LSTM (ED) introduced in [18]. We also consider

baselines obtained adapting approaches proposed for early

action recognition to the problem of egocentric action an-

ticipation: the Feedback Network LSTM (FN) proposed

in [19], a single LSTM architecture (we use the same pa-

rameters of our R-LSTM) trained using the Ranking Loss

on Detection Score proposed in [36] (RL), and an LSTM

trained using the Exponential Anticipation Loss proposed

in [25] (EL). These baselines adopt the video processing

scheme illustrated in Figure 2 and are implemented as two

stream networks with a spatial and a temporal branch whose

predictions are fused by late fusion.2

5. Results

Anticipation Results on EPIC-KITCHES Table 1 com-

pares RU with respect to the state-of-the-art on our EPIC-

2See supp. for implementation details of the considered methods.
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Top-5 ACTION Accuracy% @ different τa(s) Top-5 Acc.% @1s M. Top-5 Rec.% @1s Mean TtA(5)
2 1.75 1.5 1.25 1.0 0.75 0.5 0.25 VERB NOUN ACT. VERB NOUN ACT. VERB NOUN ACT.

DMR [54] / / / / 16.86 / / / 73.66 29.99 16.86 24.50 20.89 03.23 / / /

ATSN [8] / / / / 16.29 / / / 77.30 39.93 16.29 33.08 32.77 07.60 / / /

MCE [16] / / / / 26.11 / / / 73.35 38.86 26.11 34.62 32.59 06.50 / / /

ED [18] 21.53 22.22 23.20 24.78 25.75 26.69 27.66 29.74 75.46 42.96 25.75 41.77 42.59 10.97 01.60 01.02 00.63

FN [19] 23.47 24.07 24.68 25.66 26.27 26.87 27.88 28.96 74.84 40.87 26.27 35.30 37.77 06.64 01.52 00.86 00.56

RL [36] 25.95 26.49 27.15 28.48 29.61 30.81 31.86 32.84 76.79 44.53 29.61 40.80 40.87 10.64 01.57 00.94 00.62

EL [25] 24.68 25.68 26.41 27.35 28.56 30.27 31.50 33.55 75.66 43.72 28.56 38.70 40.32 08.62 01.55 00.94 00.62

RU 29.44 30.73 32.24 33.41 35.32 36.34 37.37 38.98 79.55 51.79 35.32 43.72 49.90 15.10 01.62 01.11 00.76

Improv. +3.49 +4.24 +5.09 +4.93 +5.71 +5.53 +5.51 +5.43 +2.25 +7.26 +5.71 +1.95 +7.31 +4.13 +0.02 +0.09 +0.13

Table 1. Egocentric action anticipation results on the EPIC-KITCHENS dataset

Kitchens validation set. The left part of the table reports

Top-5 action accuracy for the 8 anticipation times. Note

that some methods [8, 16, 54] can anticipate actions only at

a fixed anticipation time. The right part of the table breaks

down Top-5 accuracy and Mean Top-5 Recall for verbs,

nouns and actions, for anticipation time τa = 1s, and re-

ports mean TtA(5) scores. Best results are in bold, whereas

second-best results are underlined. The last row reports the

improvement of RU with respect to second best results.

The proposed approach outperforms all competitors by

consistent margins according to all evaluation measures,

reporting an average improvement over prior art of about

5% on Top-5 action accuracy with respect to all anticipa-

tion times. Note that this margin is significant given the

large number of 2, 513 action classes present in the dataset.

Methods based on TSN (ATSN and MCE) generally achieve

low performance, which suggests that simply adapting ac-

tion recognition methods to the problem of anticipation is

insufficient. Interestingly, DMR and ED, which are ex-

plicitly trained to anticipate future representations, achieve

sub-optimal Top-5 action accuracy as compared to methods

trained to predict future actions directly from input images

(e.g., compare DMR with MCE, and ED with FN/RL/EL).

This might be due to the fact that anticipating future rep-

resentations is particularly challenging in the case of ego-

centric video, where the visual content changes continu-

ously because of the mobility of the camera. RL consis-

tently achieves second best results with respect to all antici-

pation times, except τa = 0.25, where it is outperformed by

EL. RU is particularly strong on nouns, achieving a Top-

5 noun accuracy of 51.79% and a mean Top-5 noun re-

call of 49.90%, which improves over prior art by +7.26%
and +7.31%. The small drop in performance when pass-

ing from class-agnostic measures to class-aware measures

(i.e., 51.79% to 49.90%) suggests that our method does not

over-fit to the distribution of nouns of the training set. It

is worth noting that mean Top-5 Recall values are averaged

over fairly large sets of 26 many-shot verbs, 71 many-shot

nouns, and 819 many-shot actions, as specified in [8]. Dif-

ferently, all compared methods exhibit large drops in verb

and action performance when passing from class-agnostic

to class-aware measures. Our insight into this different pat-

tern is that anticipating the next object which will be used

Top-1 Accuracy% Top-5 Accuracy%

VERB NOUN ACT. VERB NOUN ACT.

S
1

2SCNN [8] 29.76 15.15 04.32 76.03 38.56 15.21

ATSN [8] 31.81 16.22 06.00 76.56 42.15 28.21

MCE [16] 27.92 16.09 10.76 73.59 39.32 25.28

RU 33.04 22.78 14.39 79.55 50.95 33.73

Improvement +1.23 +6.56 +3.63 +2.99 +8.80 +5.52

S
2

2SCNN [8] 25.23 09.97 02.29 68.66 27.38 09.35

ATSN [8] 25.30 10.41 02.39 68.32 29.50 06.63

MCE [16] 21.27 09.90 05.57 63.33 25.50 15.71

RU 27.01 15.19 08.16 69.55 34.38 21.10

Improvement +1.71 +4.78 +2.59 +0.89 +4.88 +5.39

Table 2. Anticipation results on the EPIC-KITCHENS test sets.

(i.e., anticipating nouns) is much less ambiguous than an-

ticipating the way in which the object will be used (i.e., an-

ticipating verbs and actions). It is worth noting that sec-

ond best Top-5 verb and noun accuracy are achieved by

different methods (i.e., ATSN in the case of verbs and RL

in the case of nouns), while both are outperformed by the

proposed RU. Despite its low performance with respect to

class-agnostic measures, ED systematically achieves sec-

ond best results with respect to mean Top-5 recall and mean

TtA(5). This highlights that there is no clear second-best

performing method. Finally, mean TtA(k) highlights that

the proposed method can anticipate verbs, nouns and ac-

tions 1.62, 1.11 and 0.76 seconds in advance respectively.

Table 2 assesses the performance of the proposed method

on the official test sets of EPIC-Kitchens dataset.3 RU out-

performs all competitors by consistent margins on both the

“seen” test, which includes scenes appearing in the training

set (S1) and the “unseen” test set, with scenes not appear-

ing in the training set (S2). Also in this case, RU is strong

on nouns, obtaining +6.56% and +8.8% in S1, as well as

+4.78% and +4.88 in S2. Improvements in terms of ac-

tions are also significant: +3.63% and +5.52% in S1, as

well as +2.59% and +5.39% on S2.

Anticipation Results on EGTEA Gaze+ Table 3 reports

Top-5 action accuracy scores achieved by the compared

methods on EGTEA Gaze+ with respect to the 8 consid-

ered anticipation times. The table also reports mean TtA(5)
action scores, denoted as TtA. The proposed method out-

performs all competitors at all anticipation times. Note that

the margins of improvement are smaller on EGTEA Gaze+

3See supp. for precision and recall results.
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Top-5 ACTION Accuracy% @ different τa(s) TtA

2 1.75 1.5 1.25 1.0 0.75 0.5 0.25
DMR [54] / / / / 55.70 / / / /

ATSN [8] / / / / 40.53 / / / /

MCE [16] / / / / 56.29 / / / /

ED [18] 45.03 46.22 46.86 48.36 50.22 51.86 49.99 49.17 1.24

FN [19] 54.06 54.94 56.75 58.34 60.12 62.03 63.96 66.45 1.26

RL [36] 55.18 56.31 58.22 60.35 62.56 64.65 67.35 70.42 1.29

EL [25] 55.62 57.56 59.77 61.58 64.62 66.89 69.60 72.38 1.32

RU 56.82 59.13 61.42 63.53 66.40 68.41 71.84 74.28 1.41

Imp +1.20 +1.57 +1.65 +1.95 +1.78 +1.52 +2.24 +1.89 +0.09

Table 3. Anticipation results on EGTEA Gaze+.

due to its smaller-scale (106 actions in vs 2, 513 actions in

EPIC-KITCHENS). Differently from Table 1, EL systemat-

ically achieves second best performance on EGTEA Gaze+,

which highlights again that there is no clear second best

competitor to RU in our evaluations.

Ablation Study on EPIC-Kitchens To assess the role of

rolling-unrolling, we consider a strong baseline composed

of a single LSTM (same configuration as R-LSTM) and

three branches (RGB, Flow, OBJ) with late fusion (BL). To

tear apart the influence of rolling-unrolling and MATT, Ta-

ble 4(a) compares this baseline with the proposed RU ar-

chitecture, where MATT has been replaced with late fu-

sion. The proposed RU approach brings systematic im-

provements over the baseline for all anticipation times, with

larger improvements in the case of the object branch.

Table 4(b) reports the performances of the single

branches of RU and compares MATT with respect to late

fusion (i.e., averaging predictions) and early fusion (i.e.,

feeding the model with the concatenation of the modality-

specific representations). MATT always outperforms late

fusion, which consistently achieves second best results.

Early fusion always leads to sub-optimal results. All fusion

schemes always improve over the single branches. Figure 6

shows regression plots of modality attention weights com-

puted on all samples of the validation set. RGB and OBJ

weights are characterized by a strong and steep correlation.

A similar pattern applies to Flow and OBJ weights, whereas

Flow and RGB weights are characterized by a small positive

correlation. This suggests that MATT gives more credit to

OBJ when RGB and Flow are less informative, whereas the

it relies on RGB and Flow when objects are not necessary.

Table 4(c) assesses the role of pre-training the proposed

architecture with sequence completion. As can be noted, the

proposed pre-training procedure brings small but consistent

improvements for most anticipation times. Table 4(d) com-

pares RU with the strong baseline of Table 4(a). The com-

parison highlights the cumulative effect of all the proposed

procedures/component with respect to a strong baseline us-

ing three modalities. It is worth noting that the proposed

architecture brings improvements for all anticipation times,

ranging from +1.53% to +4.08%.

Qualitative Results Figure 7 reports two examples of an-

ticipations made by the proposed method at four anticipa-

Top-5 ACTION Accuracy% @ different τa(s) TtA

2 1.75 1.5 1.25 1.0 0.75 0.5 0.25
BL (Late) 27.96 28.76 29.99 31.09 32.02 33.09 34.13 34.92 0.66

RU (Late) 29.10 29.77 31.72 33.09 34.23 35.28 36.10 37.61 0.73

Imp. +1.14 +1.01 +1.73 +2.00 +2.21 +2.19 +1.97 +2.69 +0.07

(a) Rolling-Unrolling Mechanism.

RU (RGB) 25.44 26.89 28.32 29.42 30.83 32.00 33.31 34.47 0.69

RU (Flow) 17.38 18.04 18.91 19.97 21.42 22.37 23.49 24.18 0.51

RU (OBJ) 24.56 25.60 26.61 28.32 29.89 30.85 31.82 33.39 0.67

Early Fusion 25.58 27.25 28.58 29.59 31.88 32.78 33.99 35.62 0.72

Late Fusion 29.10 29.77 31.72 33.09 34.23 35.28 36.10 37.61 0.73

MATT 29.44 30.73 32.24 33.41 35.32 36.34 37.37 38.98 0.76

Imp. +0.34 +0.96 +0.52 +0.32 +1.09 +1.06 +1.27 +1.37 +0.03

(b) Modality Attention Fusion Mechanism.

w/o SCP 29.22 30.43 32.34 33.37 34.75 35.84 36.79 37.93 0.75

with SCP 29.44 30.73 32.24 33.41 35.32 36.34 37.37 38.98 0.76

Imp. of SCP +0.22 +0.30 -0.10 +0.04 +0.57 +0.50 +0.58 +1.05 +0.01

(c) Sequence-Completion Pre-training.
BL (Fusion) 27.96 28.76 29.99 31.09 32.02 33.09 34.13 34.92 0.66

RU (Fusion) 29.44 30.73 32.24 33.41 35.32 36.34 37.37 38.98 0.76

Imp. (Fusion) +1.48 +1.97 +2.25 +2.32 +3.30 +3.25 +3.24 +4.06 +0.1

(d) Overall comparison wrt strong baseline.

Table 4. Ablation study on EPIC-KITCHENS.

Figure 6. Correlations between modality attention weights

tion times. Under each frame we report top-4 predictions,

whereas modality weights computed by MATT are reported

in percentage on the right. Green bounding boxes are shown

around the detected objects and the optical flow is illustrated

in orange. In the first example (top), the model can predict

“close door” based on context and past actions (e.g., taking

objects out of the cupboard), hence it assigns large weights

to RGB and Flow and low weights to OBJ. In the second ex-

ample (bottom), the model initially predicts “squeeze lime”

at τa = 2s. Later, the prediction is corrected to “squeeze

lemon” as soon as the lemon can be reliably detected. Note

that in this case the network assigns larger weights to OBJ

as compared to the previous example.4

Early Action Recognition We also observe that the pro-

posed method generalizes to the task of early action recog-

nition. We adapt our processing scheme by sampling 8
video snippets from each action segment uniformly in time

and set Senc = 0, Sant = 8. The snippets are fed to the

model, which produces predictions at each time-step, corre-

sponding to the following observation rates: 12.5%, 25%,

37.5%, 50%, 62.5%, 75%, 87.5%, 100%. Branches are

fused by late fusion in this case. We compare the proposed

method with respect to FN, EL and RL.

4See supp. and https://iplab.dmi.unict.it/rulstm/ for additional exam-

ples and videos.
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Ground truth action: close door RGB Flow OBJ

55

29

16
close door; take plate
open oven; move tray

a = 2.0s

56

30

14
close door; take plate
put plate; open door

a = 1.5s

55

31

14
close door; take plate
put plate; open door

a = 1.0s

54

29

17

close door; take plate
put plate; open door

a = 0.5s

Ground truth action: squeeze lemon RGB Flow OBJ

46

20

34

open bag : cereal; wash spoon
take coffee; squeeze lime

a = 2.0s

46

20

34

squeeze lemon; wash spoon
cut slice : lemon; open bag : cereal

a = 1.5s

47

19

34

squeeze lemon; cut slice : lemon
wash spoon; open bag : cereal

a = 1.0s

48

19

33

squeeze lemon; cut slice : lemon
take coffee; wash spoon

a = 0.5s

Figure 7. Qualitative examples (best seen on screen). Legend for attention weights: blue - RGB, orange - Flow, green - objects.

Top-1 ACTION Accuracy% @ different observation rates

12.5% 25.0% 37.5% 50.0% 62.5% 75.0% 87.5% 100%
FN [19] 19.61 23.85 25.66 26.85 27.47 28.34 28.26 28.38

EL [25] 19.69 23.27 26.03 27.49 29.06 29.97 30.91 31.46

RL [36] 22.53 25.08 27.19 28.64 29.57 30.13 30.45 30.47

RU 24.48 27.63 29.44 30.93 32.16 33.09 33.63 34.07

Imp. +1.95 +2.55 +2.25 +2.29 +2.59 +2.96 +2.72 +2.61

Table 5. Early recognition results on EPIC-KITCHENS.
Top-1 ACTION Accuracy% @ different observation rates

12.5% 25.0% 37.5% 50.0% 62.5% 75.0% 87.5% 100%
FN [19] 44.02 50.32 53.34 55.10 56.58 57.31 57.95 57.72

EL [25] 40.31 48.08 51.84 54.71 56.93 58.45 59.55 60.18

RL [36] 45.42 51.00 54.20 56.54 58.09 58.93 59.29 59.50

RU 45.94 51.84 54.39 57.05 58.15 59.31 60.10 60.20

Imp. +0.51 +0.84 +0.20 +0.51 +0.06 +0.38 +0.55 +0.02

Table 6. Early recognition results on EGTEA Gaze+.

Table 5 reports Top-1 early action recognition accuracy

results obtained by the compared methods on our validation

set of EPIC-Kitchens. The proposed method consistently

outperforms the competitors at all observation rates. Inter-

estingly, RU achieves an early action recognition accuracy

of 33.09% when observing only 75% of the action, which

is already comparable to the accuracy of 34.07% achieved

when the full action is observed. This indicates that RU

can timely recognize actions before they are completed. RL

achieves second best results up to observation rate 75%,

whereas EL achieves second best results when more than

75% of the action is observed, which confirms the lack of a

clear second-best performer. Table 6 reports Top-1 accuracy

results obtained on EGTEA Gaze+. The proposed RU out-

performs the competitors for all observation rates by small

but consistent margins. Coherently with Table 5, second

best results are obtained by RL and EL.

Egocentric Action Recognition Results The proposed

method can be used to perform egocentric action recogni-

tion by considering the predictions obtained for the obser-

vation rate of 100%. Table 7 compares the performance

of the proposed method with other egocentric action recog-

nition methods on the two test sets of EPIC-Kitchens.5

5See supp. for precision and recall results.

Top-1 Accuracy% Top-5 Accuracy%

VERB NOUN ACTION VERB NOUN ACTION

S
1

2SCNN [8] 42.16 29.14 13.23 80.58 53.70 30.36

TSN [8] 48.23 36.71 20.54 84.09 62.32 39.79

LSTA [51] 59.55 38.35 30.33 85.77 61.49 49.97

MCE [16] 54.22 38.85 29.00 85.22 61.80 49.62

RU 56.93 43.05 33.06 85.68 67.12 55.32

Imp. -2.62 +4.20 +2.73 -0.09 +4.80 +5.35

S
2

2SCNN [8] 36.16 18.03 07.31 71.97 38.41 19.49

TSN [8] 39.40 22.70 10.89 74.29 45.72 25.26

LSTA [51] 47.32 22.16 16.63 77.02 43.15 30.93

MCE [16] 40.90 23.46 16.39 72.11 43.05 31.34

RU 43.67 26.77 19.49 73.30 48.28 37.15

Imp. -3.65 +3.31 +2.86 -3.72 +2.56 +5.81

Table 7. Recognition results on the EPIC-KITCHENS test sets.

Our RU outperforms all competitors in recognizing actions

and nouns on both sets by significant margins, whereas it

achieves second-best results in most cases for verb recogni-

tion. RU obtains an action recognition accuracy of 60.2%
on EGTEA Gaze+. Despite being designed for action an-

ticipation, RU outperforms recent approaches, such as Li et

al. [33] (+6.9% wrt 53.3%) and Zhang et al. [61] (+3.19%
wrt 57.01% - reported from [51]), and obtaining perfor-

mances comparable to state-of-the-art approaches such as

Sudhakaran and Lanz [52] (−0.56% wrt 60.76) and Sud-

hakaran et al. [51] (−1.66% wrt 61.86%).6

6. Conclusion

We presented RU-LSTM, a learning architecture which

processes RGB, optical flow and object-based features us-

ing two LSTMs and a modality attention mechanism to an-

ticipate actions from egocentric video. Experiments on two

datasets show the superiority of the approach with respect

to prior art and highlight generalization over datasets and

tasks: anticipation, early recognition, and recognition.
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