
What You See Is What You Meant: direct knowledge
editing with natural language feedback

Richard Power and Donia Scott and Roger Evans1
Abstract. Many kinds of knowledge-based system would be easier
to develop and maintain if domain experts (as opposed to knowledge
engineers) were in a position to define and edit the knowledge. From
the viewpoint of domain experts, the best medium for definingthe
knowledge would be a text in natural language; however, natural lan-
guage input cannot be decoded reliably unless written in controlled
languages, which are difficult for domain experts to learn and use.
WYSIWYM editing is an alternative solution in which the texts em-
ployed to view and edit the knowledge are generated not by theuser
but by the system. The user can add knowledge by clicking on ‘an-
chors’ in the text and choosing from a list of semantic alternatives;
each choice directly updates the knowledge base, from whicha new
text is then generated.

1 KNOWLEDGE EDITING

Many applications require editing of information expressed in a knowl-
edge representation formalism. Expert systems are an obvious ex-
ample; others are systems for generating documents [4, 8] and for
encoding design specifications [5]. With currently available support
tools, knowledge editing has to be performed by knowledge engi-
neers who are familiar with the representation formalism; the knowl-
edge cannot be directly inspected and modified by domain experts
or other interested parties. Much recent research has sought to sim-
plify knowledge editing, e.g. by graphical browsers, or by input in
controlled languages.

We propose here a new knowledge-editing method called ‘WYSI-
WYM editing’. WYSIWYM editing allows a domain expert to edit a
knowledge base reliably by interacting with afeedback text, gener-
ated by the system, which presents both the knowledge already de-
fined and the options for extending it. Knowledge is added by menu-
based choices which directly extend the knowledge base; theresult
is immediately displayed to the author by means of an automatically
generated natural language document: thus ‘What You See Is What
You Meant’.

1.1 Graphical tools

Most knowledge bases are coded in object-based formalisms,with
objects classified by a conceptual hierarchy so that attributes can be
inherited, as in such languages asLOOM [6]. Encoding the knowl-
edge is often a programming task, but some knowledge-editing tools
provide graphical browsers in which relations among objects are shown
by network diagrams (examples are the Generic Knowledge-Base
Editor [7] and theCODE4 Knowledge Management System [13]).1 Information Technology Research Institute, University ofBrighton, Lewes

Road, Brighton BN2 4GJ, UK, Firstname.Lastname@itri.bton.ac.uk

Such graphical tools have the advantage of allowing what we will
call ‘direct knowledge editing’, as opposed to ‘text editing’. When
you edit a network diagram, the basic operations have a direct se-
mantic interpretation: for instance, you create an object belonging to
one of the permitted categories; or you extend a labelled arcfrom
one object to another, thus encoding one of the permitted relation-
ships between the two objects. By contrast, when you encode the
knowledge by writing a program in a text editor, the basic operations
of inserting and deleting characters have no direct semantic interpre-
tation: to extract the knowledge, the text must be parsed andinter-
preted, and even experienced programmers are likely to makesyntax
errors.

Although graphical editing tools make life easier for the knowl-
edge engineer, they fail in the objective of making knowledge edit-
ing accessible to domain experts. Network diagrams correspond too
directly to the underlying knowledge formalism: they cannot be un-
derstood and developed without training in such technical notions
as ‘object’, ‘attribute’ and ‘value restriction’. Empirical studies have
reported high error rates by domain experts using graphicalobject-
oriented modelling tools [3], and a clear advantage of text over graph-
ics for understanding nested conditional structures [9].

1.2 Natural language input

Some researchers have tried an alternative solution in which the au-
thor defines the knowledge base by writing a natural languagetext,
which the system automatically interprets and encodes in the knowl-
edge representation formalism. This method is obviously attractive,
since it would allow domain experts to specify a knowledge base in
the most natural way; the problem is whether it is feasible. Unfor-
tunately, information extraction from free text is unreliable: for the
foreseeable future, natural language input can be used onlyif the au-
thor adheres to a controlled language such as Attempto Controlled
English [2] or Computer Processable English [11]. Many benefits of
natural language input are therefore lost. The domain expert can de-
fine a knowledge base only after training in the controlled language;
and even after training, the author may have to try several formula-
tions before finding one that the system will accept.

Natural language input implies text editing rather than direct knowl-
edge editing: the author defines a character sequence that must be
parsed and interpreted to extract the knowledge. An interesting inter-
mediate technique, which might be called ‘syntactic editing’, is used
in the NLMenu system [14]: sentences are composed not by typing in
characters, but by choosing at each stage from a list of the continua-
tions allowed by the grammar. In this way, the system guarantees that
every input sentence can be parsed and interpreted; the disadvantage
is that the author is constrained to focus on syntactic development

c
 1998 R.Power, D. Scott and R. Evans
ECAI 98.13th European Conference on Artificial Intelligence
Edited by Henri Prade
Published in 1998 by John Wiley & Sons, Ltd.

of the current sentence rather than on semantic developmentof the
knowledge.

1.3 A new solution

We have seen that direct knowledge editing is preferable to text edit-
ing, since it avoids any need for automatic parsing and interpretation;
on the other hand, presentation in natural language is preferable to
presentation in a network diagram (or in a programming language),
especially if we want the editing tool to be accessible to domain ex-
perts as well as to knowledge engineers.WYSIWYM editing attempts
to have your cake and eat it, by a technique that combines direct
knowledge editing with presentation in natural language text. The
method of presenting an object-oriented model through a text has
been used before (see [12] for a review); what is novel aboutWYSI-
WYM is that the author can actually build and edit the model by in-
teracting with the feedback text.

Before explaining the technique in detail, we will make somepre-
liminary comments in order to identify the niche thatWYSIWYM edit-
ing occupies in the space of possible editors.

2 TYPES OF EDITOR

At first sightWYSIWYM editing looks like word processing, because
the edited material is presented as a formatted document. Tounder-
stand the difference, we need to look more closely at the nature of
word processing.

When you edit a document with a word processor, you aim to
record various kinds of information. At a basic level, you define a
sequence of characters. These characters make up words and sen-
tences, which in turn express concepts and ideas. The word proces-
sor may also allow you to influence the graphical appearance of the
document, e.g. by changing the font or the size of the characters;
if it supportsWYSIWYG, you will be able to see on the screen the
appearance of the document when it is printed on paper.

Following the usual distinctions in linguistics, we can identify four
levels of information, each level having its own characteristic fea-
tures:

1. Graphical level (the two-dimensional bitmap)
2. Graphemic level (the character sequence)
3. Syntactic level (the words and sentences)
4. Semantic level (the meaning)

The visual display in a word processor shows all these levels. How-
ever, the editing operations mainly concern the graphemic level: the
insertion or deletion of characters. This is the only level at which the
user exerts direct control. The graphical level can be influenced by
altering fonts, page sizes, etc., but the user cannot directly draw the
characters. The syntactic and semantic levels can be influenced only
through the mediation of the graphemic level.

To summarize this situation, we can distinguish three kindsof fea-
tures.

1. Directly controlled features These are linked to the basic edit-
ing operations. For instance, in a word processor the character se-
quence is controlled directly by positioning the cursor andhitting
keys.

2. Interpreted features These are not directly controlled, but may be
recovered by interpreting lower-level features. In a word proces-
sor, syntactic and semantic features can be derived by interpreting
the character sequence. This raises the issue of who (or what) re-
covers the interpreted features. A program cannot utilize syntactic

or semantic features encoded in a character sequence unlessit has
the ability to parse and understand the language. Thus the seman-
tic features encoded in a document might be useful only to human
observers.

3. Presentational features These are introduced by the program in
order to display the other features to the user. For instance, a text
editor that only saves the character sequence must add graphi-
cal features in order to print the document or to display it onthe
screen.

We can now express the similarities and differences betweentext
editing andWYSIWYM editing. What they have in common is that
the editor displays graphical, graphemic, syntactic and semantic fea-
tures; this is why they look alike. The difference is that a word pro-
cessor allows direct control over graphemic features (the character
sequence), whileWYSIWYM editing allows direct control over se-
mantic features (the knowledge). InWYSIWYM editing, the graphi-
cal, graphemic and syntactic features are all presentational. The user
may influence them (e.g. by choosing French in preference to En-
glish), but cannot control them directly (e.g. by typing in specific
characters).

Under this scheme, we can imagine four kinds of natural language
editor, according to the level that is directly controlled by the user.

1. Handwriting Editor The user directly controls the graphical level
by writing the document by hand, using a pen-based input device.
In order to utilize information at other levels (e.g. to print a typed
version of the document) the editor would have to perform char-
acter recognition.

2. Text Editor The user directly controls the graphemic level by typ-
ing in characters at the cursor. This brings a cost and a benefit: the
user loses control over the detailed shaping of the characters, but
reliably encodes a character sequence that the editor can utilize,
e.g. by sending it through email, or varying the font sizes orcol-
umn widths.

3. NL-Menu The user controls the syntactic level, by choosing from
a list of words or phrases that are permissible extensions ofthe
current sentence. In this way, the user loses direct controlover
the character sequence, but reliably encodes a linguistic structure
from the sub-language that the editor can parse, so that the pro-
gram can reliably derive the meaning.

4. WYSIWYM editing The user controls the semantic (or knowledge)
level, by choosing conceptual extensions of the current meaning
from pop-up menus. All other features become presentational, so
that the user has no direct control over wording: switching from
English to French becomes a matter of presentational convenience,
akin to switching from small to large font. The program performs
no parsing or interpretation of any kind, since the highest level
(the knowledge) is directly controlled by the user and hencethere
are no interpreted features.

3 EDITING MEANING

At all levels, editing consists of modifying a current configuration ei-
ther by inserting material at a given location, or by deleting material
previously inserted. The initial, minimal configuration must have at
least one location; as material is added, new locations become avail-
able. In a text editor, the initial configuration is an empty string with
a single location (and hence a single cursor position); if you type the
letter ‘A’ there are now two locations, before and after the letter; add
‘B’ and there are three locations, and so forth.

678 R.Power, D. Scott and R. Evans

In a semantic network, the configuration comprises objects of var-
ious types (the labelled nodes in a network diagram); depending on
its type, an object may have various attributes (the labelled arcs in
a diagram); the value of an attribute is another object (the node to
which the arc points). The basic editing operation is that ofadding
a new object, of a specified type, as the value of an attribute of an
existing object. A location can be thought of as an attributethat cur-
rently has no value. As an initial minimal configuration, we need at
least one fixed attribute that cannot be deleted. The new object added
as the value of this root attribute will have attributes of its own, so
that further locations become available.

The basic idea ofWYSIWYM editing is that a special kind of nat-
ural language text is generated in order to present the current config-
uration of a semantic network. This ‘feedback text’ includes generic
phrases called ‘anchors’ which mark attributes that have novalue.
The anchors represent the locations where new objects may beadded.
By opening a pop-up menu on an anchor, you obtain a list of short
phrases describing the types of objects that are permissible values
of the attribute; if you select one of the options, a new object of the
specified type is added to the semantic network. A new feedback text
is then generated to present the modified configuration, including the
attributes of the new object.

As more information is added about a new object, it will be repre-
sented by longer spans of text, comprising whole sentences,or per-
haps even several paragraphs. These spans of text are also mouse-
sensitive, so that the associated semantic material can be cut or copied.
The cutting operation removes the network fragment that wasprevi-
ously the value of an attribute, and stores it in a buffer, where it re-
mains available for pasting into another suitable location. When the
text is regenerated, an anchor will show that the attribute now has no
value, and the span of text that previously represented thisvalue will
no longer appear.

4 ILLUSTRATION OF WYSIWYM EDITING

Our first application ofWYSIWYM editing was in the context of the
DRAFTER project [8], which developed a system to support the pro-
duction of software documentation in English and French. The sys-
tem includes a knowledge editor, with which a technical author can
define the procedures for using common software applications such
as word processors and diary managers; in this way the authorbuilds
the ‘domain model’ from which a text generator produces instruc-
tions, in English and French, that describe these procedures. The
eventual aim of such systems is to support the technical authors who
produce tutorial guides and user manuals for software applications,
by automatically generating routine procedural passages in many lan-
guages.

In DRAFTER-1, the first version of the system, knowledge edit-
ing was performed through a graphical interface in which objects in
the knowledge base were presented through nested boxes withbrief
linguistic labels. Since authors found these diagrams hardto inter-
pret and modify, we decided to explore the new idea of presenting
the growing domain model through a natural language text, thus ex-
ploiting the multilingual generator to support knowledge editing. The
result was a completely re-engineered system,DRAFTER-2, in which
the generator not only produces the final output texts, but also sup-
ports aWYSIWYM knowledge editor (see [12, 10] for more details of
the architecture).

As an example ofWYSIWYM editing, we will describe a session
in which a technical author usesDRAFTER-2 in order to define the
knowledge underlying a brief passage of software documentation.

We will suppose that the author is producing a tutorial guideto the
OpenWindows Calendar Manager, and is currently working on asec-
tion that explains how to schedule an appointment.

The procedure for scheduling an appointment requires various data
to be entered in a dialogue box called the ‘Appointment Editor’ win-
dow. With some simplifications, it could be expressed by the follow-
ing text, which we quote here in order to clarify the author’stask.

(1) To schedule an appointment
Before starting, open the Appointment Editor window by
choosing the Appointment option from the Edit menu.
Then proceed as follows:
1 Choose the start time of the appointment.
2 Enter the description of the appointment in the What field.
3 Click on the Insert button.

The author’s aim is to introduce this information into the domain
model. If this is done successfully, the system will be able to generate
the above text (or an equivalent one) in English, French, andany
other supported language.

Assuming that the model is to be built from scratch, the author
begins by selecting the option ‘New’ from the main menu. Since the
system is specialized for defining procedural models, a ‘new’ model
comprises a single procedure object for which the attributes — i.e.
the goal and the methods for achieving it — are undefined. Fromthis
model, the generator produces a single-sentence feedback text:

(2) Do this action by usingthese methods.

The feedback text has special features related to its authoring func-
tion.� The phrasethis action is coloured red, indicating that it marks a

mandatory choice, a location where informationmustbe added.
In this case, the red phrase represents the undefined goal of the
procedure. (Since colour is unavailable, we reproduce red phrases
in bold face in this paper.)� The phrasethese methodsis coloured green, indicating that it marks
an optional choice, a location where informationmaybe added. In
this case, the green phrase represents the undefined methodsfor
achieving the goal. (We reproduce green phrases in italics.)� Both coloured phrases are mouse-sensitive. By clicking on either
phrase, the author opens a pop-up menu from which a concept
may be selected.

We refer to the mouse-sensitive coloured phrases as ‘anchors’, by
analogy with the links in a hypertext.

Anchors can be developed in any order: we will assume in this
illustration that the author decides to define the goal of theprocedure
first, followed by the methods for achieving it.

To begin the process of defining the goal (scheduling an appoint-
ment), the author clicks on the red anchor. In response, the system
displays a pop-up menu listing the available action concepts

choose
click
close
.....
save
schedule
start
type

from which the author should select ‘schedule’.DRAFTER-2 now up-
dates its model by filling the goal attribute with a scheduling action,

679 R.Power, D. Scott and R. Evans

which includes a new attribute for the event to be scheduled (as yet
undefined). From the updated model, a completely new feedback text
is generated, incorporating the information just defined (the schedul-
ing action) along with a new red anchor indicating that the author
must choose which kind of event is to be scheduled.

(3) Schedulethis event by usingthese methods.

Although the anchors can be developed in any order, it would be
most logical for the author to continue defining the goal by click-
ing on this event and choosing the appropriate concept, in this case
‘appointment’.

(4) Schedule the appointment by usingthese methods.

The goal is now completely specificed, since it is shown by a phrase
with no red anchors. If an error has been made (e.g. choosing ‘meet-
ing’ instead of ‘appointment’), the author can undo the mistaken
choice by opening a pop-up menu on the relevant span of text (in this
case, ‘the meeting’) and selecting the option ‘Cut’. This will bring
back text 3 so that the correct choice can be made from the anchor
this event. If the goal were completely wrong, the author could cut
the span ‘Schedule the meeting’, undoing both choices and returning
to text 2.

When satisfied that the goal is correctly defined, the author pro-
ceeds to specify the method (or methods) by which appointments
can be scheduled. Opening the anchorthese methodsyields a single
option, labelled ‘methods’: in effect, the only choice hereis whether
to develop this optional anchor at all. Since a method has several
attributes, all of which must be expressed through anchors,the feed-
back text grows suddenly more complicated.

(5) To schedule the appointment� Before starting, followthis procedure.
Then proceed as follows.
1 Do this action by usingthese methods.
2 Next step.
To quit, follow this procedure.� Next method.

Since the material will no longer fit into a single sentence, the gen-
erator chooses a different pattern in which the methods are presented
in bulleted paragraphs, introduced by a TO-phrase that presents the
goal. The rephrasing of the goal is instructive: it shows that the au-
thor has been choosing the meaning, not the words. It is the generator,
not the author, that decides how the procedure should be worded; as
a result, the wording may change (without any intervention from the
author) as the editing of the knowledge proceeds.

The model provides for more than one method, since sometimes
a goal can be achieved in several ways. Since the author has decided
that there will be at least one method, the components of the first
method (so far undefined) are shown by suitable anchors; the optional
anchorNext method(at the bottom) can be developed if the author
wishes to define further methods.

A method comprises a precondition (optional), a sequence ofsteps
(obligatory), and an interrupt procedure (optional). Eachstep is a pro-
cedure, because in addition to a goal it may have methods of its own.
The precondition is a task that should be performed before the steps;
the interrupt procedure provides a way of abandoning the method if
you have second thoughts.

Since there must be at least one step, the first step is shown by
a sentence with anchors for goal and methods. Further steps can be
added by opening the optional anchorNext step. The same pattern is

thus used for a sequence of methods and a sequence of steps, except
that the former is presented by a bulleted list and the latterby an
enumerated list.

Since the basic mechanism should now be clear, we now jump to
a later stage in which most of the information has been defined; the
only missing piece is the method for opening the AppointmentEditor
window.

(6) To schedule the appointment� Before starting, open the Appointment Editor window by
usingthese methods.
Then proceed as follows.
1 Choose the start time of the appointment fromthis

objectby usingthese methods.
2 Enter the description of the appointment in the What

field by usingthese methods.
3 Click on the Insert button by usingthese methods.
4 Next step.
To quit, follow this procedure.� Next method.

To add the last piece of information, the method for opening the Ap-
pointment Editor window, the author develops the anchorthese meth-
ods(third line). This poses a problem for the generator, since as we
have seen the material for an expanded method will not fit intoa sin-
gle sentence. The problem is solved by deferring the procedure for
opening the Appointment Editor window to a separate paragraph.

(7) To schedule the appointment� Before starting, open the Appointment Editor window.
Then proceed as follows.
1 Choose the start time of the appointment fromthis

objectby usingthese methods.
2 Enter the description of the appointment in the What

field by usingthese methods.
3 Click on the Insert button by usingthese methods.
4 Next step.
To quit, follow this procedure.� Next method.

To open the Appointment Editor window� Before starting, followthis procedure.
Then proceed as follows.
1 Do this action by usingthese methods.
2 Next step.
To quit, follow this procedure.� Next method.

As a result of this reorganization of the text, the action of opening the
window has to be expressed twice: in the first paragraph, it serves as
the precondition in the procedure for scheduling an appointment; in
the last paragraph, it serves as the goal of a sub-procedure.Of course
this does not mean that there are now two actions. The author might
decide to cut one of the phrases ‘the Apointment Editor window’ in
order to replace ‘window’ by another concept, e.g. ‘dialogue-box’,
thus redefining the action as one of opening the Appointment Editor
dialogue-box; the effect on the text would be that both the sentences
expressing this action would change. This reinforces the point that
the author is editing meaning, not text.

To complete the model, the author should develop the red anchor
this action, which is eventually replaced by the phrase ‘Choose the
Appointment option from the Edit menu’. At this point the model
is potentially complete, since it contains no red anchors. (Note that

680 R.Power, D. Scott and R. Evans

the model was also potentially complete for texts 4 and 6.) When
a model is potentially complete, the author can switch the modality
from ‘Feedback’ to ‘Output’ in order to obtain a text which sim-
ply presents the knowledge base, without indicating the locations at
which further information may be added. The generator will now
produce text 1, which was used at the start of this section to indicate
the desired content.

Note that this output text has been completely regenerated;it was
not obtained merely by omitting the green anchors from text 7. In
particular, since the method for opening the Appointment Editor win-
dow can now be expressed by a phrase, there is no need to defer it to
a separate paragraph.

5 SIGNIFICANCE

WYSIWYM editing is a new idea that requires practical testing. We
have not yet carried out formal usability trials, nor investigated the
design of feedback texts (e.g. how best to word the anchors),nor
confirmed that adequate response times could be obtained forfull-
scale applications. However, if satisfactory large-scaleimplementa-
tions prove feasible, the method brings many potential benefits.� A document in natural language (possibly accompanied by dia-

grams) is the most flexible existing medium for presenting in-
formation. We cannot be sure that all meanings can be expressed
clearly in network diagrams or other specialized presentations; we
can be sure they can be expressed in a document.� Domain experts understand natural language much better than they
understand network diagrams.� Authors require no training in a controlled language or any other
presentational convention. Apart from the expense of initial train-
ing, this means that there is no problem of having to relearn the
conventions when a knowledge base is re-examined after a delay
of months or years.� Since the knowledge base is presented through a document in nat-
ural language, it becomes immediately accessible to anyonepe-
ripherally concerned with the project (e.g. management, public
relations, domain experts from related projects). Documentation
of the knowledge base, often a tedious and time-consuming task,
becomes automatic.� The model can be viewed and edited in any natural language that
is supported by the generator; further languages can be added as
needed. When supported by a multilingual natural language gen-
eration system, as inDRAFTER-2, WYSIWYM editing obviates the
need for traditional language localisation of the human-computer
interface. New linguistic styles can also be added (e.g. a terminol-
ogy suitable for novices rather than experts).� As a result,WYSIWYM editing is ideal for facilitating knowledge
sharing and transfer within a multilingual project. Speakers of sev-
eral different languages could collectively edit the same knowl-
edge base, each user viewing and modifying the knowledge in
his/her own language.� Since the knowledge base is presented as a document, large knowl-
edge bases can be navigated by the methods familiar from books
and from complex electronic documents (e.g. contents page,in-
dex, hypertext links), obviating any need for special training in
navigation.� For systems in which information must be retrieved from the knowl-
edge base by complex queries,WYSIWYM editing can be used in
order to formulate queries as well as to edit the knowledge base.� For systems which generate technical documentation,WYSIWYM

editing ensures that the output texts will conform to desired stan-

dards of terminology and style. For instance, the generation rules
could be tailored to meet the constraints of controlled languages
such asAECMA [1].

ACKNOWLEDGEMENTS

We thank all members of theDRAFTER team who contributed to our
ideas on knowledge editing, especially Cécile Paris and Keith Vander
Linden. We also thank Kees van Deemter for useful comments onan
earlier draft.

REFERENCES
[1] AECMA. AECMA Simplified English: A guide for the preparation

of aircraft maintenance documentation in the International Aerospace
Maintenance Language. AECMA, Brussels, 1995.

[2] Norbert Fuchs and Rolf Schwitter, ‘Attempto controlledenglish (ace)’,
in Proceedings of the first international workshop on controlled lan-
guage applications, Katholieke Universiteit Leuven, Belgium, (1996).

[3] Y. Kim. Effects of conceptual data modelling formalismson user vali-
dation and analyst modelling of information requirements.PhD thesis,
University of Minnesota, 1990.

[4] Richard I. Kittredge and Alain Polguère, ‘Generating extended bilin-
gual texts from application knowledge bases’, inInternational Work-
shop on Fundamental Research for the Future Generation of Natural
Language Processing, Kyoto, Japan, pp. 147–160, (1991).

[5] B. Macais and S. Pulman, ‘A method for controlling the production
of specifications in natural language’,The Computer Journal, 38(4),
(1995).

[6] Robert MacGregor and Raymond Bates, ‘TheLOOM knowledge repre-
sentation language’, inProceedings of the Knowledge-Based Systems
Workshop,St. Louis, April 21–23, (1987).

[7] S. Paley, ‘Generic knowledge-base editor user manual’,Technical re-
port, SRI International, California, (1996).

[8] Cécile Paris, Keith Vander Linden, Markus Fischer, Anthony Hartley,
Lyn Pemberton, Richard Power, and Donia Scott, ‘A support tool for
writing multilingual instructions’, inIJCAI-95, pp. 1398–1404, (1995).

[9] M. Petre, ‘Why looking isn’t always seeing: readership skills and
graphical programming’,Communications of the ACM, 38(6), 33–42,
(1995).

[10] R. Power and D. Scott, ‘Multilingual authoring using feedback texts’,
in Proceedings of the 17th International Conference on Computational
Linguistics and 36th Annual Meeting of the Association for Computa-
tional Linguistics, Montreal, Canada, (1998).

[11] Stephen Pulman, ‘Controlled language for knowledge representation’,
in Proceedings of the first international workshop on controlled lan-
guage applications, Katholieke Universiteit Leuven, Belgium, (1996).

[12] D. Scott, R. Power, and R. Evans, ‘Generation as a solution to its own
problem’, inProceedings of the 9th International Workshop on Natural
Language Generation, Niagara-on-the-Lake, Canada, (1998).

[13] D. Skuce and T. Lethbridge, ‘CODE4: A unified system for manag-
ing conceptual knowledge’,International Journal of Human-Computer
Studies, 42, 413–451, (1995).

[14] Harry Tennant, ‘The commercial application of naturallanguage inter-
faces’, inCOLING-86, (1986).

681 R.Power, D. Scott and R. Evans

