What You SeelsWhat You Meant: direct knowledge
editing with natural language feedback

Richard Power and Donia Scott and Roger Evans'

Abstract. Many kinds of knowledge-based system would be easier Such graphical tools have the advantage of allowing what ile w

to develop and maintain if domain experts (as opposed to latme
engineers) were in a position to define and edit the knowlefeigen
the viewpoint of domain experts, the best medium for defirihrgy
knowledge would be a text in natural language; however,rablan-
guage input cannot be decoded reliably unless written itrolbed
languages, which are difficult for domain experts to leard ase.

WYSIWYM editing is an alternative solution in which the texts em-

ployed to view and edit the knowledge are generated not byske

but by the system. The user can add knowledge by clicking Bn ‘a

chors’ in the text and choosing from a list of semantic akéues;
each choice directly updates the knowledge base, from vehigtw
text is then generated.

1 KNOWLEDGE EDITING

Many applications require editing of information exprebssea knowl-
edge representation formalism. Expert systems are an wbhwr-
ample; others are systems for generating documents [4,Bfan
encoding design specifications [5]. With currently avdasupport

tools, knowledge editing has to be performed by knowledgg-en

neers who are familiar with the representation formalidra;knowl-

edge cannot be directly inspected and modified by domainrexpe

or other interested parties. Much recent research has stughm-
plify knowledge editing, e.g. by graphical browsers, or bptit in
controlled languages.

We propose here a new knowledge-editing method calledsi-

wYM editing’. wysiwym editing allows a domain expert to edit a

knowledge base reliably by interacting witifeedback textgener-
ated by the system, which presents both the knowledge gld=d
fined and the options for extending it. Knowledge is added byun
based choices which directly extend the knowledge baseagethdt
is immediately displayed to the author by means of an autcaibt

generated natural language document: thus ‘What You Seehis W

You Meant’.

1.1 Graphical tools

Most knowledge bases are coded in object-based formalisitis,
objects classified by a conceptual hierarchy so that ateibcan be
inherited, as in such languagesiasom [6]. Encoding the knowl-
edge is often a programming task, but some knowledge-gditiols

provide graphical browsers in which relations among obkjaot shown
by network diagrams (examples are the Generic KnowledgeBa

Editor [7] and thecoDE4 Knowledge Management System [13]).

1 Information Technology Research Institute, UniversityBoighton, Lewes
Road, Brighton BN2 4GJ, UK, Firstname.Lastname@itri.tdoruk

© 1998 R.Power, D. Scott and R. Evans

ECAI 98. 13th European Conference on Atrtificial Intelligence
Edited by Henri Prade

Published in 1998 by John Wiley & Sons, Ltd.

call ‘direct knowledge editing’, as opposed to ‘text edifinWhen
you edit a network diagram, the basic operations have atdiec
mantic interpretation: for instance, you create an objebiriging to
one of the permitted categories; or you extend a labelledrarm
one object to another, thus encoding one of the permittedioat
ships between the two objects. By contrast, when you endugle t
knowledge by writing a program in a text editor, the basicrapiens
of inserting and deleting characters have no direct semantérpre-
tation: to extract the knowledge, the text must be parsedirzted
preted, and even experienced programmers are likely to syakax
errors.

Although graphical editing tools make life easier for theokah
edge engineer, they fail in the objective of making knowkeéglit-
ing accessible to domain experts. Network diagrams coorespoo
directly to the underlying knowledge formalism: they canbe un-
derstood and developed without training in such technicdions
as ‘object’, ‘attribute’ and ‘value restriction’. Empiatstudies have
reported high error rates by domain experts using grapbioct-
oriented modelling tools [3], and a clear advantage of tegt graph-
ics for understanding nested conditional structures [9].

1.2 Natural language input

Some researchers have tried an alternative solution inhathie au-
thor defines the knowledge base by writing a natural langtexdge
which the system automatically interprets and encodeseikiiowl!-

edge representation formalism. This method is obvioushactive,

since it would allow domain experts to specify a knowledgseba

the most natural way; the problem is whether it is feasiblefod

tunately, information extraction from free text is unréliex for the
foreseeable future, natural language input can be usedfdahtyau-

thor adheres to a controlled language such as Attempto Qfamatr
English [2] or Computer Processable English [11]. Many fieef

natural language input are therefore lost. The domain éxperde-
fine a knowledge base only after training in the controllewjlaage;
and even after training, the author may have to try severatita-

tions before finding one that the system will accept.

Natural language input implies text editing rather thaectiknowl-
edge editing: the author defines a character sequence tlsathau
parsed and interpreted to extract the knowledge. An irtieemter-
mediate technique, which might be called ‘syntactic editiis used
in the NLMenu system [14]: sentences are composed not bydypi
characters, but by choosing at each stage from a list of thénc@-
tions allowed by the grammar. In this way, the system guassthat
every input sentence can be parsed and interpreted,; travdigage
is that the author is constrained to focus on syntactic dgveént

of the current sentence rather than on semantic developofiehe or semantic features encoded in a character sequence itflass

knowledge. the ability to parse and understand the language. Thus tharse
tic features encoded in a document might be useful only togmm

1.3 A new solution observers. _ _

3. Presentational features These are introduced by the program in
We have seen that direct knowledge editing is preferablextoetlit- order to display the other features to the user. For instantext
ing, since it avoids any need for automatic parsing andpnétation; editor that only saves the character sequence must addigraph
on the other hand, presentation in natural language is ratgéeto cal features in order to print the document or to display it
presentation in a network diagram (or in a programming lagg, screen.

especially if we want the editing tool to be accessible to dionex-

perts as well as to knowledge enginesvs.siwym editing attempts ~ We can now express the similarities and differences betvieen
to have your cake and eat it, by a technique that combinestdire editing andwysiwym editing. What they have in common is that
knowledge editing with presentation in natural language. t€he the editor displays graphical, graphemic, syntactic antbsgic fea-
method of presenting an object-oriented model through shag tures; this is why they look alike. The difference is that advpro-

been used before (see [12] for a review); what is novel abotg!- cessor allows direct control over graphemic features (Hegacter

wYM is that the author can actually build and edit the model by in-sequence), whilevysiwym editing allows direct control over se-

teracting with the feedback text. mantic features (the knowledge). Wmysiwym editing, the graphi-
Before explaining the technique in detail, we will make sqre cal, graphemic and syntactic features are all presentdtidhe user

liminary comments in order to identify the niche thatsiwym edit- may influence them (e.g. by choosing French in preferencento E

ing occupies in the space of possible editors. glish), but cannot control them directly (e.g. by typing jmesific

characters).
2 TYPESOF EDITOR Under this scheme, we can imagine four kinds of natural laggu

editor, according to the level that is directly controlledthe user.
At first sightwysiwyM editing looks like word processing, because
the edited material is presented as a formatted documenmder- 1. Handwriting Editor The user directly controls the graphical level

stand the difference, we need to look more closely at ther@atf by writing the document by hand, using a pen-based inputdevi

word processing. In order to utilize information at other levels (e.g. to printyped
When you edit a document with a word processor, you aim to version of the document) the editor would have to perfornrcha

record various kinds of information. At a basic level, yodine a acter recognition.

sequence of characters. These characters make up wordemnd 2. Text Editor The user directly controls the graphemic level by typ-

tences, which in turn express concepts and ideas. The wooggr ing in characters at the cursor. This brings a cost and a Ietfefi

sor may also allow you to influence the graphical appearahteso user loses control over the detailed shaping of the chasdiet

document, e.g. by changing the font or the size of the chersict reliably encodes a character sequence that the editor deme,ut
if it supportswysiwyG, you will be able to see on the screen the e.g. by sending it through email, or varying the font sizesaif

appearance of the document when it is printed on paper. umn widths.

Following the usual distinctions in linguistics, we canntéy four 3. NL-Menu The user controls the syntactic level, by choosing from
levels of information, each level having its own charastérifea- a list of words or phrases that are permissible extensiorbeof
tures: current sentence. In this way, the user loses direct cootret

the character sequence, but reliably encodes a lingutstictare
from the sub-language that the editor can parse, so thatrthe p
gram can reliably derive the meaning.

. wysiwym editing The user controls the semantic (or knowledge)
level, by choosing conceptual extensions of the currentnimga

1. Graphical level (the two-dimensional bitmap)

2. Graphemic level (the character sequence)

3. Syntactic level (the words and sentences) 4
4. Semantic level (the meaning)

The visual display in a word processor shows all these let#w/- from pop-up menus. All other features become presentdtisoa
ever, the editing operations mainly concern the grapheeviell the that the user has no direct control over wording: switchirgnf
insertion or deletion of characters. This is the only levethich the English to French becomes a matter of presentational casmves
user exerts direct control. The graphical level can be infted by akin to switching from small to large font. The program pemis
altering fonts, page sizes, etc., but the user cannot bjirécw the no parsing or interpretation of any kind, since the highesell
characters. The syntactic and semantic levels can be icgdemly (the knowledge) is directly controlled by the user and heheee
through the mediation of the graphemic level. are no interpreted features.

To summarize this situation, we can distinguish three kofdea-
tures.

3 EDITING MEANING
1. Directly controlled features These are linked to the basic edit-

ing operations. For instance, in a word processor the ctearae- At all levels, editing consists of modifying a current configtion ei-
guence is controlled directly by positioning the cursor hitting ther by inserting material at a given location, or by delgtimaterial
keys. previously inserted. The initial, minimal configuration shinave at

2. Interpreted features These are not directly controlled, but may be least one location; as material is added, new locationsrbe@vail-
recovered by interpreting lower-level features. In a wordcps- able. In a text editor, the initial configuration is an empiyng with
sor, syntactic and semantic features can be derived bynetang a single location (and hence a single cursor position); if type the
the character sequence. This raises the issue of who (o} véhat letter ‘A’ there are now two locations, before and after tkedr; add
covers the interpreted features. A program cannot utiijpéestic ‘B’ and there are three locations, and so forth.

678 R.Power, D. Scott and R. Evans

In a semantic network, the configuration comprises objdotam
ious types (the labelled nodes in a network diagram); depgnzh
its type, an object may have various attributes (the labedles in
a diagram); the value of an attribute is another object (ttderto
which the arc points). The basic editing operation is thaadding
a new object, of a specified type, as the value of an attributao
existing object. A location can be thought of as an attrilhée cur-
rently has no value. As an initial minimal configuration, weed at
least one fixed attribute that cannot be deleted. The neweitdgieled
as the value of this root attribute will have attributes sfatvn, so
that further locations become available.

The basic idea ofvysiwym editing is that a special kind of nat-
ural language text is generated in order to present therduroafig-
uration of a semantic network. This ‘feedback text’ inclsdeneric
phrases called ‘anchors’ which mark attributes that haveatoe.
The anchors represent the locations where new objects majdeel.

We will suppose that the author is producing a tutorial gu@ée
OpenWindows Calendar Manager, and is currently working seca
tion that explains how to schedule an appointment.

The procedure for scheduling an appointment requireswsudata
to be entered in a dialogue box called the ‘Appointment Etlitin-
dow. With some simplifications, it could be expressed by thie-
ing text, which we quote here in order to clarify the authta'sk.

(1) To schedule an appointment
Before starting, open the Appointment Editor window by
choosing the Appointment option from the Edit menu.
Then proceed as follows:
1 Choose the start time of the appointment.
2 Enter the description of the appointment in the What field.
3 Click on the Insert button.

The author’s aim is to introduce this information into therdon

By opening a pop-up menu on an anchor, you obtain a list oftshormodel. If this is done successfully, the system will be ablgenerate

phrases describing the types of objects that are perngssiiles
of the attribute; if you select one of the options, a new abjdthe
specified type is added to the semantic network. A new feddieat
is then generated to present the modified configurationdirog the
attributes of the new object.

As more information is added about a new object, it will bereep
sented by longer spans of text, comprising whole sentenceser-
haps even several paragraphs. These spans of text are alse-mo
sensitive, so that the associated semantic material caut be@opied.
The cutting operation removes the network fragment thatpwess-
ously the value of an attribute, and stores it in a buffer, ighere-
mains available for pasting into another suitable locatitthen the
text is regenerated, an anchor will show that the attribote Inas no
value, and the span of text that previously represented/ghie will
no longer appear.

4 |LLUSTRATION OF wysiwyM EDITING

Our first application ofvysiwym editing was in the context of the

DRAFTER project [8], which developed a system to support the pro-

duction of software documentation in English and Frencle 3ys-
tem includes a knowledge editor, with which a technical auttan
define the procedures for using common software applicaoich
as word processors and diary managers; in this way the dotilds
the ‘domain model’ from which a text generator producesrutst
tions, in English and French, that describe these proceddree
eventual aim of such systems is to support the technicabesthho
produce tutorial guides and user manuals for software eguins,
by automatically generating routine procedural passagesny lan-
guages.

In DRAFTER-1, the first version of the system, knowledge edit-

ing was performed through a graphical interface in whicteotsj in
the knowledge base were presented through nested boxebnigith
linguistic labels. Since authors found these diagrams taidter-
pret and modify, we decided to explore the new idea of prasgnt
the growing domain model through a natural language tews éx-
ploiting the multilingual generator to support knowledgiétieg. The
result was a completely re-engineered systeRRFTER-2, in which
the generator not only produces the final output texts, kad slip-
ports awysiwyM knowledge editor (see [12, 10] for more details of
the architecture).

As an example ofvysiwyMm editing, we will describe a session
in which a technical author us&RAFTER-2 in order to define the
knowledge underlying a brief passage of software docurtienta

679

the above text (or an equivalent one) in English, French, amd
other supported language.

Assuming that the model is to be built from scratch, the autho
begins by selecting the option ‘New’ from the main menu. 8itie
system is specialized for defining procedural models, a"neadel
comprises a single procedure object for which the attributei.e.
the goal and the methods for achieving it — are undefined. Finésn
model, the generator produces a single-sentence feedbdck t

(2) Dothisaction by usingthese methods

The feedback text has special features related to its anthunc-
tion.

e The phrasehis action is coloured red, indicating that it marks a
mandatory choice, a location where informatimustbe added.

In this case, the red phrase represents the undefined gda of t
procedure. (Since colour is unavailable, we reproduce negises
in bold face in this paper.)

e The phras¢éhese methods coloured green, indicating that it marks
an optional choice, a location where informatimaybe added. In
this case, the green phrase represents the undefined mévhods
achieving the goal. (We reproduce green phrases in itplics.

e Both coloured phrases are mouse-sensitive. By clickingithere

phrase, the author opens a pop-up menu from which a concept

may be selected.

We refer to the mouse-sensitive coloured phrases as ‘asichoyr
analogy with the links in a hypertext.

Anchors can be developed in any order: we will assume in this
illustration that the author decides to define the goal optloeedure
first, followed by the methods for achieving it.

To begin the process of defining the goal (scheduling an appoi
ment), the author clicks on the red anchor. In response,\thters
displays a pop-up menu listing the available action corzcept

choose
click
close
save
schedule
start
type

from which the author should select ‘schedulBRAFTER-2 now up-
dates its model by filling the goal attribute with a scheduléaetion,

R.Power, D. Scott and R. Evans

which includes a new attribute for the event to be schedwded/ét thus used for a sequence of methods and a sequence of s, ex
undefined). From the updated model, a completely new fe&dbat that the former is presented by a bulleted list and the lddyean
is generated, incorporating the information just defined fichedul- enumerated list.

ing action) along with a new red anchor indicating that ththau Since the basic mechanism should now be clear, we now jump to
must choose which kind of event is to be scheduled. a later stage in which most of the information has been defithed

]) only missing piece is the method for opening the Appointnititor
(3) Schedule¢hisevent by usingthese methods window.

Although the anchors can be developed in any order, it woeld b (6) To schedule the appointment

most logical for the author to continue defining the goal bgkel e Before starting, open the Appointment Editor window by
ing onthis event and choosing the appropriate concept, in this case usingthese methods
‘appointment’. Then proceed as follows.

1 Choose the start time of the appointment fritris
objectby usingthese methods

2 Enter the description of the appointment in the What
field by usingthese methods

3 Click on the Insert button by usirthese methods

4 Next step

To quit, follow this procedure

e Next method

(4) Schedule the appointment by usihgse methods

The goal is now completely specificed, since it is shown byragh
with no red anchors. If an error has been made (e.g. choosiagt-
ing’ instead of ‘appointment’), the author can undo the akish
choice by opening a pop-up menu on the relevant span of tetttié
case, ‘the meeting’) and selecting the option ‘Cut’. Thidl Wiing
back text 3 so that the correct choice can be made from theoanch

this event. If the goal were cc_)mpletely_wrong, the e_luthor coyld CUt T add the last piece of information, the method for openiegAp-
the span “Schedule the meeting’, undoing both choices dothieg inyment Editor window, the author develops the anthese meth-

totext2. _ i ods(third line). This poses a problem for the generator, sirce/a
When satisfied that the goal is correctly defined, the authdr p - 56 seen the material for an expanded method will not fitzrstim-

ceeds to specify the method (or methods) by which appoirt8nen o sentence. The problem is solved by deferring the proeefiu

can be scheduled. Opening the anciise methodgields a single 5hening the Appointment Editor window to a separate papigra
option, labelled ‘methods’: in effect, the only choice hexevhether

to develop this optional anchor at all. Since a method hasrakv (7) To schedule the appointment

attributes, all of which must be expressed through anclicesfeed- e Before starting, open the Appointment Editor window.
back text grows suddenly more complicated. Then proceed as follows.
1 Choose the start time of the appointment fritris
(5) To schedule the appointment objectby usingthese methods
* Before starting, follovthis procedure 2 Enter the description of the appointment in the What
Then proceed as follows. field by usingthese methods
1 Dothisaction by usingthese methods 3 Click on the Insert button by usirthese methods
2 Next step 4 Next step
To quit, follow this procedure To quit, follow this procedure
¢ Next method e Next method
Since the material will no Ionger fit into a Single sentenbe, dgen- To open the Appointment Editor window

erator chooses a different pattern in which the methodsrasepted
in bulleted paragraphs, introduced by a TO-phrase thaepteghe
goal. The rephrasing of the goal is instructive: it showg tha au-
thor has been choosing the meaning, not the words. It is thergtor,
not the author, that decides how the procedure should beadpess
a result, the wording may change (without any interventiomfthe
author) as the editing of the knowledge proceeds.

The model provides for more than one method, since sometimeAs a result of this reorganization of the text, the actionpring the
a goal can be achieved in several ways. Since the author bisede window has to be expressed twice: in the first paragraphpveseas
that there will be at least one method, the components of the fi the precondition in the procedure for scheduling an app@ént; in
method (so far undefined) are shown by suitable anchorsptimnal the last paragraph, it serves as the goal of a sub-procedficeurse
anchorNext methodat the bottom) can be developed if the author this does not mean that there are now two actions. The autight m
wishes to define further methods. decide to cut one of the phrases ‘the Apointment Editor wivido

A method comprises a precondition (optional), a sequenstepg order to replace ‘window’ by another concept, e.g. ‘dialeduox’,
(obligatory), and an interrupt procedure (optional). Estelp is a pro- thus redefining the action as one of opening the AppointmditbE
cedure, because in addition to a goal it may have methods aiit. dialogue-box; the effect on the text would be that both thrteseces
The precondition is a task that should be performed bef@stifps; expressing this action would change. This reinforces thet fbat
the interrupt procedure provides a way of abandoning thé&oadeif the author is editing meaning, not text.
you have second thoughts. To complete the model, the author should develop the redoanch

Since there must be at least one step, the first step is shown kis action, which is eventually replaced by the phrase ‘Choose the
a sentence with anchors for goal and methods. Further stepbec Appointment option from the Edit menu’. At this point the nebd
added by opening the optional ancidext stepThe same patternis is potentially complete, since it contains no red anchdyetd that

¢ Before starting, followthis procedure
Then proceed as follows.
1 Dothisaction by usingthese methods
2 Next step
To quit, follow this procedure

e Next method

680 R.Power, D. Scott and R. Evans

the model was also potentially complete for texts 4 and 6.gkVh
a model is potentially complete, the author can switch theatity
from ‘Feedback’ to ‘Output’ in order to obtain a text whichrsi
ply presents the knowledge base, without indicating thatlons at
which further information may be added. The generator wallvn
produce text 1, which was used at the start of this sectiondicate
the desired content.

Note that this output text has been completely regeneriteds
not obtained merely by omitting the green anchors from texh7
particular, since the method for opening the Appointmeritdegvin-
dow can now be expressed by a phrase, there is no need totdefer i
a separate paragraph.

5 SIGNIFICANCE

wysIwyM editing is a new idea that requires practical testing. We

have not yet carried out formal usability trials, nor inigsated the
design of feedback texts (e.g. how best to word the anchoes),
confirmed that adequate response times could be obtainddlffor
scale applications. However, if satisfactory large-saaglementa-
tions prove feasible, the method brings many potential titsne

e A document in natural language (possibly accompanied by dia 4l

grams) is the most flexible existing medium for presenting in

formation. We cannot be sure that all meanings can be exqatess

clearly in network diagrams or other specialized presemiatwe
can be sure they can be expressed in a document.

e Domain experts understand natural language much bettetttag
understand network diagrams.

e Authors require no training in a controlled language or atieo
presentational convention. Apart from the expense ofahiitain-
ing, this means that there is no problem of having to relelaen t
conventions when a knowledge base is re-examined afterag del
of months or years.

¢ Since the knowledge base is presented through a documegtin n

ural language, it becomes immediately accessible to angene
ripherally concerned with the project (e.g. managemenblipu
relations, domain experts from related projects). Docuatem

of the knowledge base, often a tedious and time-consumgig ta [10]

becomes automatic.

e The model can be viewed and edited in any natural languagie tha

is supported by the generator; further languages can baladde

needed. When supported by a multilingual natural language g (11]

eration system, as IDRAFTER-2, WYSIWYM editing obviates the
need for traditional language localisation of the humamyoater
interface. New linguistic styles can also be added (e.graitel-
ogy suitable for novices rather than experts).

e As aresultwysiwyM editing is ideal for facilitating knowledge
sharing and transfer within a multilingual project. Speaks sev-
eral different languages could collectively edit the samewd-

edge base, each user viewing and modifying the knowledge if4]

his/her own language.
e Since the knowledge base is presented as a document, lange kn

[12]

[13]

dards of terminology and style. For instance, the genearatites
could be tailored to meet the constraints of controlled leugs
such assECMA [1].

ACKNOWLEDGEMENTS

We thank all members of theRAFTERteam who contributed to our
ideas on knowledge editing, especially Cécile Paris arithKéander
Linden. We also thank Kees van Deemter for useful commengsion
earlier draft.

REFERENCES

[1] AECMA. AECMA Simplified English: A guide for the prepaiah
of aircraft maintenance documentation in the Internatiévexospace
Maintenance Language. AECMA, Brussels, 1995.

Norbert Fuchs and Rolf Schwitter, ‘Attempto controlledglish (ace)’,
in Proceedings of the first international workshop on conédllan-
guage applicationsKatholieke Universiteit Leuven, Belgium, (1996).
Y. Kim. Effects of conceptual data modelling formalistmis user vali-
dation and analyst modelling of information requiremefkD thesis,
University of Minnesota, 1990.

Richard I. Kittredge and Alain Polguére, ‘Generatingemnded bilin-
gual texts from application knowledge bases’ |iternational Work-
shop on Fundamental Research for the Future Generation drbla
Language Processing, Kyoto, Japap. 147-160, (1991).

B. Macais and S. Pulman, ‘A method for controlling the gwotion
of specifications in natural languag&’he Computer Journal38(4),
(1995).

Robert MacGregor and Raymond Bates, ‘Tlwom knowledge repre-
sentation language’, iRroceedings of the Knowledge-Based Systems
WorkshopSt. Louis, April 21-23, (1987).

S. Paley, ‘Generic knowledge-base editor user manidiachnical re-
port, SRI International, California, (1996).

Ceécile Paris, Keith Vander Linden, Markus Fischer, Harty Hartley,
Lyn Pemberton, Richard Power, and Donia Scott, ‘A suppast tor
writing multilingual instructions’, inJCAI-95 pp. 1398-1404, (1995).
[9] M. Petre, ‘Why looking isn't always seeing: readershikills and
graphical programming’'Communications of the ACN88(6), 33-42,
(1995).

R. Power and D. Scott, ‘Multilingual authoring usingetiback texts’,
in Proceedings of the 17th International Conference on Coatmutal
Linguistics and 36th Annual Meeting of the Association fomputa-
tional Linguistics Montreal, Canada, (1998).

Stephen Pulman, ‘Controlled language for knowledg#esentation’,
in Proceedings of the first international workshop on conédllan-
guage applicationsKatholieke Universiteit Leuven, Belgium, (1996).
D. Scott, R. Power, and R. Evans, ‘Generation as a soiut its own
problem’, inProceedings of the 9th International Workshop on Natural
Language GeneratigrNiagara-on-the-Lake, Canada, (1998).

D. Skuce and T. Lethbridge, ‘CODE4: A unified system foamag-
ing conceptual knowledgelnternational Journal of Human-Computer
Studies42, 413-451, (1995).

Harry Tennant, ‘The commercial application of natuealguage inter-
faces’, inCOLING-86 (1986).

(2]

(3]

(5]

(6]

[7]
(8]

edge bases can be navigated by the methods familiar fronsbook

and from complex electronic documents (e.g. contents page,
dex, hypertext links), obviating any need for special tregnin
navigation.

e For systems in which information must be retrieved from thevid-
edge base by complex queriegysiwym editing can be used in
order to formulate queries as well as to edit the knowledge ba

e For systems which generate technical documentatiorgiwym
editing ensures that the output texts will conform to desstan-

681

R.Power, D. Scott and R. Evans

