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Abstract

In the last two years, there has been a

surge of word embedding algorithms and

research on them. However, evaluation has

mostly been carried out on a narrow set of

tasks, mainly word similarity/relatedness

and word relation similarity and on a single

language, namely English.

We propose an approach to evaluate embed-

dings on a variety of languages that also

yields insights into the structure of the em-

bedding space by investigating how well

word embeddings cluster along different

syntactic features.

We show that all embedding approaches

behave similarly in this task, with

dependency-based embeddings performing

best. This effect is even more pronounced

when generating low dimensional embed-

dings.

1 Introduction

Word embeddings map words into a vector space,

allowing to reason about words in this space. They

have been shown to be beneficial for several tasks

such as machine translation (Botha and Blunsom,

2014), parsing (Lei et al., 2014), and named en-

tity recognition (Passos et al., 2014). Recently,

word embedding techniques have been studied for

their mathematical properties (Levy and Goldberg,

2014b; Stratos et al., 2015), yielding a better un-

derstanding of the underlying optimization criteria.

However, word embeddings have mostly been stud-

ied and evaluated on a single language (English).

Therefore, validation on languages other than En-

glish is lacking and the question whether word

embeddings work the same way across languages

has not been empirically evaluated. Evaluations of

complex systems – such as parsers – employing

word embeddings generally give only little insight

into the type of contribution to the result and the

structure of word embeddings.

We aim to fill these gaps by evaluating several

word embedding algorithms on a set of different

languages using tasks that enable additional insight

into the learned structures using easily obtainable

data. At the same time, we provide baseline results

for using word embeddings in several syntax-based

classification tasks.

We focus on syntax-related measures because

data is available for several languages and we ex-

pect a correlation with usefulness of word embed-

dings for syntax-related tasks such as named entity

recognition, parsing, and morphological analysis.

2 Related Work

Previous approaches to word embedding evaluation

have either used relatively basic word finding and

classification tasks (as this paper also proposes)

or application-oriented end-to-end evaluations as

part of a larger system. Word finding tasks are of

the form “given a pair of words (x, y), find a y′

for a given x′”, e.g. given (Rome, Italy), find a

word for Oslo. These tasks have been introduced

by Mikolov et al. (2013a). The downside of this

kind of task is that the data is not readily available

and has to be constructed for each language. This

type of evaluation primarily describes the similar-

ity between vector differences and not similarity

between vectors. In addition, Levy et al. (2015)

showed for this task that word embedding-based

classifiers actually mostly learn whether a word is

a general hypernym and not, as would be expected,

the relation between two words.

Another approach to evaluate embeddings, used

by Pennington et al. (2014) amongst others, is to

rank a fixed set of words relative to a reference

word. The results are then compared to human

judgments, e.g. from the WS353 corpus (Finkel-

stein et al., 2002). This approach has a limited

coverage and additional data is expensive to obtain.
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Botha and Blunsom (2014) propose to factorize

word vectors into morpheme vectors to better cap-

ture similarities between morphologically related

words and evaluate their word representations us-

ing log-bilinear language models based on their

word vectors.1 They measure model perplexity re-

duction relative to n-gram language models and

include their model into a machine translation sys-

tem, gaining between 0 (English → German) and

1.2 (English → Russian) BLEU points.

Lei et al. (2014) introduce a syntactic depen-

dency parser using (amongst others) a low-rank

tensor component for scoring dependency edges.

This scoring can employ word embeddings. Doing

so yields an improvement of 0.2 to 0.5 percentage

points. If no Part-of-Speech (PoS) tags are avail-

able, this difference rises to up to four percentage

points. Köhn et al. (2014) show that this gain from

using word embeddings is even more pronounced

in complete absence of morphological information

(including PoS tags), reporting a difference of five

to seven percentage points,depending on the lan-

guage, using the same parser. With these findings,

it can be assumed that word embeddings encode

some kind of morphological information. Neither,

however, investigated what kind of information the

word embeddings actually contain.

3 The Embedding Algorithms

To assess the differences between embedding algo-

rithms, we will evaluate six different approaches.

The continuous bag-of-words (cbow) approach de-

scribed by Mikolov et al. (2013a) is learned by

predicting the word vector based on the context

vectors. The skip-gram approach (skip) from the

same authors is doing the reverse: it predicts the

context word vectors based on the embedding of

the current word. We use the version of cbow and

skip as described in (Mikolov et al., 2013b) which

use negative sampling, i.e. they train by distinguish-

ing the correct word in its context against words

not occurring in that context.

Levy and Goldberg (2014a) alter the skipgram

approach by not using the neighboring words wrt.

the sentence’s word sequence but wrt. the depen-

dency tree of the sentence. Therefore, the context

of w is defined as all words that are either the head

or dependents of w. We will call this approach

dep.

1Their approach has not been evaluated in this paper as the
corresponding code is not available as of now.

GloVe, introduced by Pennington et al. (2014),

optimizes the ratio of co-occurrence probabilities

instead of the co-occurrence probabilities them-

selves, getting rid of the negative sampling used

for the approaches previously mentioned.

Stratos et al. (2015) describe a method to de-

rive word embeddings using canonical correlation

analysis. We will call this approach cca.

brown clusters (Brown et al., 1992) are con-

structed by clustering words hierarchically into a

binary search tree in a way that maximizes mutual

information for a language model. To construct an

embedding for a cluster c, we use the following

procedure: For each edge on the path from the root

to c, add either 1 or −1, depending on the direc-

tion of descent. Because not every path has the

same depth, we pad missing dimensions with 0.

This way, we obtain an embedding interpretation

of the clusters. Note that, in contrast to clustering

embeddings, no information is lost.

4 Our Evaluation by Classification Tasks

We classify words separately according to several

tasks with an L2-regularized linear classifier. All

classification tasks are based on the word embed-

ding of a single word alone, without any other infor-

mation about the word or its context; in particular,

the word’s lexicalization is not used as a feature.

By using the continuous features directly instead

of clustering them (as e.g. done by Bansal et al.

(2014)), we ensure that no information is lost dur-

ing preprocessing.

All tasks can be carried out on dependency tree-

banks with morphological annotation. From each

word in the treebank, we extract a data point (word

embedding, class) for training/testing, where class

is of one of the following, depending on the task:

pos The Part-of-Speech of the word

headpos The PoS of the word’s head

label The label of the word’s dependency edge

gender* The gender of the word

case* The case of the word

number* The number of the word

tense* The tense of the word

Tasks marked with an asterisk are only carried out

on words with a corresponding feature. Some of

these features are absent in some languages, e.g.

Basque is mostly genderless and the corpus of En-

glish we used is not annotated with morphological

information. These combinations of language and

feature have been omitted.
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We use a one-versus-all linear classifier for two

reasons: First, the feature dimensionality is rela-

tively high. Second, and more importantly, training

a linear classifier yields insights into the structure

of the vector space because the classifier also serves

as a tool to obtain a supervised clustering of the

vector space.

Let C be set set of classes. A one-versus-all

linear classifier learns a linear function fc ∈ R
n →

R for each class c ∈ C. The classifier assigns to

a vector X the best matching class based on these

functions:

class(X) = arg max
c∈C

fc(X)

Due to the linearity of the functions fc, the vector

space is partitioned into convex polytopes, which

each represent exactly one class (see Appendix A).

Therefore, the classification accuracies can also

be interpreted as supervised clustering accuracies.

This means that if the classifier yields a high ac-

curacy, the members of each class are clustered

in a single convex region of the vector space. We

think that this is a fairly strong statement about the

structure of the vector space.

To better gauge how well the embeddings are ac-

tually clustered, we use a majority baseline which

classifies all elements as the one class that occurred

most often during training. This is the accuracy a

classifier would yield without any information and

therefore the information gain obtainable by us-

ing word embeddings as features is the difference

between the achieved accuracy and the baseline

accuracy.

In addition to the lower bound described above,

we also provide an approximate upper bound for

the accuracy. Because no context information is

used during classification, the word vector corre-

sponding to a word will always be classified the

same, even though the correct classification might

depend on the context, e. g. the word put can be-

long to different tense classes depending on the

context. Therefore, an upper bound for the classifi-

cation task is to assign each word the most probable

class for that word (computed on the training set).

Assuming that no sparsity issues exist, embedding-

based classification can yield at most accuracies as

high as this approach. Note that because in reality

data sparsity unfortunately does exist, this is only

an approximation of the upper bound. We call this

approximation up-approx and compute it omitting

words not seen during training.

5 Experimental Setup

Evaluation was carried out on Basque, English,

French, German, Hungarian, Polish, and Swedish

datasets. For English, automatically labeled data

was obtained by tagging and parsing a subset of

the English Wikipedia dump provided by Al-Rfou

et al. (2013) using TurboTagger and TurboParser

(Martins et al., 2013). The Penn Treebank (Marcus

et al., 1994), converted using the LTH converter

(Johansson and Nugues, 2007), was used as the

corresponding manually annotated resource.

For all other languages, datasets including both

automatically and manually annotated data pro-

vided as part of the Shared Task on parsing mor-

phologically rich languages (Seddah et al., 2014)

were used.2

For all languages, we trained embeddings on the

automatically labeled data using the approaches

described in Section 3, with different window sizes

(5 and 11, where applicable) and dimensions (10,

100, 200). The rare word limit was set to five words

occurrences. brown was only trained with 1024

clusters equaling about 10 dimensions, as the num-

ber of clusters can not be increased to generate

higher-dimensional embeddings. dep was not eval-

uated on French because the French automatically

labeled dataset lacks dependency information.

6 Results

Figure 1 a) shows the accuracies for the evaluated

word embeddings on all tasks for the different lan-

guages. The results were obtained using the best-

performing hyperparameters (200 dimensions for

all, window size = 5 for cca, cbow and skip, win-

dow size = 11 for GloVe, compare Table 1).

All embeddings capture the PoS well. To a lesser

degree, the dependency label and head PoS can also

be recovered. The better-performing embeddings

achieve results near the approximate upper bound

for all tasks.

The embeddings also mostly cluster well with re-

spect to tense, number, gender, and case, with tense

showing the best correlations. For some of these

tasks, the baseline is however fairly high because

the number of classes is lower.

2Basque: (Aduriz et al., 2003; Aldezabal et al., 2008),
French: (Abeillé et al., 2003; Candito et al., 2010), German:
(Brants et al., 2002; Seeker and Kuhn, 2012), Hungarian:
(Csendes et al., 2005; Vincze et al., 2010), Polish: (Woliński
et al., 2011; Świdziński and Woliński, 2010; Wróblewska,
2012), Swedish: (Nivre et al., 2006)
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Figure 1: Results with window = 5 (for cbow, cca & skip) / 11 (for GloVe) for Basque, English, French,

German, Hungarian, Polish, Swedish. Note: brown is only present in b).

w d cca skip cbow dep GloVe

5 200 80.41 80.69 80.42 82.35 70.05
100 −1.38 −1.16 −3.31 −0.39 −2.24

10 −18.06 −22.92 −16.18 −8.38 −16.12
11 200 −1.31 −0.04 −0.05 n/a +0.57

100 −3.56 −1.16 −1.17 n/a −1.73
10 −23.51 −22.94 −16.34 n/a −15.64

Table 1: Mean accuracy across tasks for

dimension=200 and window=5, and change in

mean accuracy when deviating, measured in per-

centage points. dep has no window parameter.

cbow, cca and skip perform nearly identical,

while dep performs slightly better. Interestingly,

GloVe performs consistently worse than all other

embeddings, contrary to the findings published in

Pennington et al. (2014), but in line with Stratos et

al. (2015). dep performs best on nearly all tasks,

which may indicate that dependency-based context

is not only beneficial for preserving dependency-

related information, but also for morphology.

This finding is even more pronounced in the

evaluation using only ten dimensions (Figure 1 b)):

While dep can capture the different aspects tested

for nearly as well as with 200 dimensions, the other

embeddings suffer larger degradations, especially

for PoS and label prediction. cbow seems to be

able to cope better with low dimensionality than

skip, although they perform nearly identical on the

high dimensionality tasks. brown behaves similar

to the other approaches despite being quite different

algorithmically and only producing low-granular

data (with values for each dimension being either

1, 0, or −1). Note that results near the baseline

signify that the embeddings yield only minimal

benefit since the baseline does not use any features

at all.

Table 1 gives an overview of the average change

in accuracy when changing hyperparameters. Us-

ing 200 dimensions instead of 100 is beneficial for

all word embeddings. The difference is however

not nearly as pronounced as between ten and 100

dimensions. skip and cbow yield slightly better

results with a window of five, whereas for GloVe

a larger window is advantageous. dep achieves

both the highest average score and has the lowest

degradation when lowering the dimensionality.

Bansal et al. (2014) evaluate word embeddings
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wrt. how they cluster along PoS tags. They first

divide the embeddings into 1000 clusters using k-

means and then associate each cluster with a PoS

tag. They report a clustering accuracy of 81.1%

for w = 11 and 85.8% for w = 5 using skip. Our

results, however, show an accuracy of 94.4% and

94.4%, respectively, i.e. no such difference. That

means that the PoS are still mostly linearly sepa-

rable with larger window sizes. The differences

observed by them could result from information

getting lost during clustering.

7 Conclusions

Word embeddings are able to capture a range of

syntactic and morphological information. They

align especially well with the word’s part of speech.

With a high dimensionality, most embeddings per-

form similarly, with GloVe performing on average

ten percentage points worse. With a low dimen-

sionality, the differences become more pronounced

and dep is the clear choice for applications where

using high-dimensional vectors is not feasible and

a correlation to the features tested in this paper is

wanted.

We have shown that the different word embed-

ding algorithms behave similar over a variety of

languages and perform well relative to the task’s

upper bounds.

The evaluation approach proposed yields in-

sights into the usefulness of embeddings for syntax-

related tasks, works on a wide variety of languages

and avoids inaccuracies introduced when employ-

ing unsupervised clustering for evaluation. We

hope that this evaluation approach will be useful

for evaluating future embedding techniques.

The software to replicate the experiments for this

paper is available on

http://arne.chark.eu/emnlp2015.

A Proof: Convexity of regions

To show that a one-versus-all classifier generates

exactly one convex polytope for each class, we

have to show that for any two points belonging to a

class, each point between them belongs to the same

class.

Let c ∈ C be a class and rc ⊆ R
n be the re-

gion(s) of c in the vector space3 , i. e. where the

following holds true:

fc > fo ∀o ∈ C \ c

3the vector space is assumed to have one dimension for the
bias.

Let x, y ∈ rc be two points classified into c. Then

the following statement needs to be true:

z ∈ rc, z := (1 − λ)x + λy ∀λ ∈ [0, 1]

Assume that z /∈ rc. Then, by definition, fo(z) >
fc(z) for some o ∈ C \ c. We can substitute z with

its definition:

fo((1 − λ)x + λy) > fc((1 − λ)x + λy)

And therefore due to the linearity of fo and fc:

(1 − λ)fo(x) + λfo(y) > (1 − λ)fc(x) + λfc(y)

But this cannot be, as by definition, fo(x) < fc(x)
and fo(y) < fc(y). Therefore, there is only one

region for c and that region is convex. �
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