
WhatNext:

A Prediction System for Web Requests using N-gram Sequence Models

Zhong Su*

Department of Computing Science
and Technology

Tsinghua University
Beijing 100084, China

Suzhong_bj@hotmail.com

Qiang Yang*, Ye Lu*

School of Computing Science
Simon Fraser University

Burnaby BC
V5A 1S6 Canada

qyang,yel@cs.sfu.ca

Hongjiang Zhang

Microsoft Research China
5F, Beijing Sigma Center

#49, Zhichun Road, Haidian
District

Beijing 100080, China
hjzhang@microsoft.com

ABSTRACT

As an increasing number of users access information on the
web, there is a great opportunity to learn from the server
logs to learn about the users’ probable actions in the
future. In this paper, we present an n-gram based model to
utilize path profiles of users from very large data sets to
predict the users’ future requests. Since this is a prediction
system, we cannot measure the recall in a traditional sense.
We, therefore, present the notion of applicability to give a
measure of the ability to predict the next document. Our
model is based on a simple extension of existing point-
based models for such predictions, but our results show for
n-gram based prediction when n is greater than three, we
can increase precision by 20% or more for two realistic
web logs. Also we present an efficient method that can
compress our model to 30% of its original size so that the
model can be loaded in main memory. Our result can
potentially be applied to a wide range of applications on
the web, including pre-sending, pre-fetching, enhancement
of recommendation systems as well as web caching
policies. Our tests are based on three realistic web logs.
Our algorithm is implemented in a prediction system called
WhatNext, which shows a marked improvement in precision
and applicability over previous approaches.

Keywords
N-gram model, Web data mining, prediction

 * This work was performed while the author was visiting
Microsoft Research China in Beijing.

1. INTRODUCTION

The Internet provides a rich environment for users to
retrieve information. At the same time, it also makes it easy
for a user to get lost in the sea of information. One way to
assist the user with their informational need is to predict a
user’s future request and use the prediction for pre-fetching,
pre-sending, caching and recommendation. Prediction is
increasingly feasible to do as more information is tracked
through search engines and web servers. The purpose of
this paper is to explore ways to exploit the information from
web logs for predicting users’ actions on the web.

There are generally two types of information source
available: query log and server log. A query log tracks
users’ queries while server log tracks a user’s browsing
activities on a server. In this paper, we discuss how to
exploit server logs of users for the purpose of prediction.

There has been an increasing amount of work on prediction
models on the web. In the past, web-log based inference
has been focused on prediction models that make best
guesses on the user’s next actions based on their previous
ones. Much work has been done on recommendation
systems and pre-sending systems. Recommendation
systems rely on a prediction model to make inferences on
users’ interests based upon which to make
recommendations. Examples are the WebWatcher[6]
system and Letzia[10] system. Pre-sending systems go a
step further --- they focus on making use of the predictions
to send documents ahead of time. Accurate prediction can
potentially shorten the users’ access times and reduce
network traffic when pre-sending is handled correctly.

Prediction models can be either point based or path based.
Point-based prediction models are built on actions that are
indexed on time instants and are used to predict the user’s
next action based on the currently observed action. These
models draw on relatively small amount of information
from each session and therefore the prediction can
potentially be rather inaccurate. For examples, the best
model[1][16] predicts, for a confidence measure of over
50%, future documents with an accuracy of only around
30%. There has been relatively little work on path-based
models in the past. These models are built based on the
user’s previous path data, and can potentially be more
accurate. But the general belief is that they may suffer from
much lower recall because sequences with long length are
rare. The aim of this paper is to dispel this myth and show
that with large enough web access logs one can build an
accurate enough prediction models that also come with high
recall.

In this paper, we present a simple probabilistic path-based
prediction model that is inspired by n-gram prediction
models commonly used in speech-processing
communities[9]. We have found that when using 3-gram
and above the prediction accuracy is increased substantially
whereas there is only a moderate decrease in applicability.
We present a combined approach where multiple high-order
n-gram models are organized in a step-wise manner.
Experiments show that this approach achieves a reasonable
balance between precision and applicability. Our work
assumes very little knowledge about users and target pages
while providing high accuracy and maintaining relatively
high applicability. The system assumes no knowledge of
user profiles as the ones required by Syskill and Webert
[12], and no knowledge about linkage structures of web
sites as required by WebWatcher. It’s only requirement is
that user sessions in web access can be logged successfully,
a requirement realistic enough to apply to a wide range of
domains.

Our assumptions, hypothesis and goal may be summarized
as follows:

! We assume that we are given a list of sequences of
user clicks that correspond to visits to URLs’ on the
web;

! We assume that the log resides on the server side and
that we can observe users’ requests made on the
server;

! We assume that we have methods of identifying users
such that each sequence in the server log corresponds
to a unique ID (which may not be a user ID);

! We hypothesize that the users’ short request sequences
generally correspond to unpredictable requests. We
thus only make predictions on users’ next actions
based on long enough sequences of user requests;

Given the above, our task is to predict the next user request
when the users have made long enough sequences of
requests.

This paper is organized as follows. Section 2 presents the
algorithms for the construction of path-based models.
Section 3 presents the prediction algorithms. Section 4
evaluates the performance of the proposed algorithms.
Section 5 discusses related work. Finally, section 6
provides a summary of this work.

2. Path Based Model

Our path-based model is built on a web-server log file L.
We consider L to be preprocessed into a collection of user
sessions, such that each session is indexed by a unique user
id and starting time. Each session is a sequence of requests
where each request corresponds to a visit to a web page (an
URL). For brevity, we represent each request as an
alphabet. The log L then consists of a set of sessions.

Our algorithm builds an n-gram prediction model based on
the occurrence frequency. Each sub-string of length n is an
n-gram. These sub-strings serve as the indices of a count
table T. During its operation, the algorithm scans through
all sub-strings exactly once, recording occurrence
frequencies of the next click immediately after the sub-
string in all sessions. The maximum occurred request is
used as the prediction for the sub-string. The algorithm for
building a path-based model on sub-strings is described
below.

Algorithm PathModelConstruction (n: length of n-gram;
L: log file of sessions; T: table indexed by all n-grams of
all sessions in L)

Begin

L := Filter(L); // we will explain how to filter log file L
later;

T[] := 0; // Initialize Table T to zero for all n-grams

H[] := 0; // result of the model is stored in hash table H(),
indexed on n-grams

Max[] := 0 // Max[] records the maximum count for each
n-gram

For i:= 1 to |L| Do

S := L[I];

For j:=1 to |S| do

If (|S| - j)>n Then

// find a sub-string of length n starting at alphabet j

P := sub-string�S, j, n�;

C := sub-string(S,j+1,1); // find the next click

T[P,C] := T[P,C] + 1;

If T[P,C] > Max[P] Then

H[P] := C;

End If

End If

End For

End For

Return H[];

End

In this algorithm, Filter(L) removes all requests with low
visiting frequency according to a certain thresholdθ . All

URLs whose access count is below the θ threshold is
removed from the log Filter(L). Based on our empirical
tests to be discussed in Section 5, it is reasonable to setθ to
10 times or less in web server logs.

As an example, consider a log file L consisting of the
following request paths:

A,B,C,D

A,B,C,F

A,B,C,F

B,C,D,G

B,C,D,G

B,C,D,F

If we were to construct a 3-gram model, we have two 3-
grams to build our prediction model on. These are

A,B,C; B,C,D

Our application of the algorithm returns the following hash
table H3():

N-Gram Prediction

A,B,C F

B,C,D G

However, if we were to build a 2-gram model, then we have
the following 2-grams to contend with:

A,B; B,C; C,D

Based on the log data, we can build the following 2-gram
prediction model H2():

N-Gram Prediction

A,B C

B,C D

C,D G

3. Prediction Algorithm

Based on the n-gram prediction model constructed out of
the log data, we can then make predictions on a user’s
clicks in real time. Let Hi() be the prediction model built
on i-gram model. Our algorithm is as follows:

Algorithm n-gram+ (P: user’s current clicking sequence;
n: minimal path length)

Begin

For i:= |P| downto n do

If P is an index in hash table Hi Then

Prediction := Hi[P];

Return (Prediction);

End If

P := the same sequence with the first element
removed;

End For

Return(“No Prediction”);

End

For comparison purposes, in our experiment we also test
individual n-gram algorithms as defined below:

Algorithm n-gram (P: user’s current clicking sequence)

Begin

If ((|P| >= n) and (P is an index of Hn[])) Then

Prediction := Hn[P];

Return (Prediction);

End If

Return(“No Prediction”);

End

As an example, assume that we have built up 3-gram and 2-
gram models as H3 and H2 in the last section. Suppose that

we observe that the current clicking sequence consists of
only one click “DBC”. In this case, the prediction
algorithm checks H3 first to see if an index “DBC” exists.
It finds out that the index does not exist. Therefore, it
checks the 2-gram model H2 for the index “BC”, which
exists, thus the predicted next click is “D”, according to H2.

In the evaluation of the algorithm, we use the following
measures. Let S(m)={S1, S2, …, Sn} be the set of sessions
in a log file that have sequence length greater than m. We
build models on a subset of these sequences, known as the
training sequences, which are separated from the remaining
or the testing sequences. When applying the trained model
on the testing sequences, let P+ be the correct predictions
and P- be the incorrect predictions. Because we remove the
infrequent requests, the union of P+ and P- is a subset of
S(m). Let || R be the set of all requests. We define the

following measures for each learned prediction model Hn[]:

()−+

+

+
=

PP

P
precision (1)

|| R

PP
ityapplicabil

−+ += (2)

In the above equations, precision has its similar meaning as
often used in information retrieval literature, whereas
applicability is a new measure that is different from recall.
In particular, the notion of applicability is measures, out of
all requests in the original log, the number of requests can
be predicted (correctly or wrongly) by our model.

4. Domain Analysis and Evaluation

We first analyze the data set under consideration. This is
the data set used in Zukerman et al.’s work on predicting
user’s requests [Zukerman et al. 1999 and Albrecht et al.,
1998]. It consists of server log data collected during a 50-
day period of time. It includes 525,378 total user requests
of 6727 unique URL’s (clicks) by 52,455 different IP’s,
consisting of 268,125 sessions.

0%

20%

40%

60%

80%

100%

1 10 100 1000 10000

Request Times

Pe
rc

en
ta

ge

Request %

Page %

Figure 1. Page vs. request percentage for Monash
University data set

One important piece of information about the server data is
revealed in Figure 1. In this figure, the horizontal axis
shows integer in log scale, designating the number of user
visits (to pages). There are two curves in the figure. The
upper curve “Page Ratio” depicts, for each value X on the
X-axis, the percentage of pages that are visited X times or
less by all users. For the same X value, the lower curve
“Request Ratio” depicts, shows the percentage of
accumulated visits out of all visits in the log on the pages
which are visited X times or less. Thus, for example, X=10
represents a visit count of ten times. The upper curve for
X=10 shows that around 60% of pages are each visited 10
times or less, and the total number of such visits represents
around 15% of all visits there are.

||

||
)(1

S

S

XPageRatio

x

i
i∑

== �3�

∑

∑
∞

=

==

1

1

)*|(|

)*|(|
)(Re

i
i

x

i
i

iS

iS
XquestRatio �4�

We have also repeated the page vs. request ratio for two
more data sets, NASA and MSN.com data sets, as shown in
Figures 2 and 3. The NASA data set contains two months
worth of all HTTP requests to the NASA Kennedy Space
Center WWW server in Florida. The log was collected
from 00:00:00 August 1, 1995 through 23:59:59 August 31,
1995. In this period there were 1,569,898 requests.
Timestamps have 1-second resolution. There are a total of
18,688 unique IP’s requesting pages, having a total of
171,529 sessions. A total of 15,429 unique pages are
requested. The MSN.com log is obtained from the server
log of msn.com, with all identity of users stripped away. It
consists of data collected from Jan 27, 1999 to Mar 26,
1999, with a total of 417,783 user requests. This log

contains 722 unique IP’s requesting 14,048 unique pages.
The MSN.com log is unique in that some requests are from
groups of users submitted by Proxies or ISP’s. Therefore
the lengths of some sessions are long. For example, the
long sessions range from 8,384 consecutive requests to
166,073 requests.

As can be seen from both figures, the data in all three
domains follow the same pattern: a large proportion of web
pages corresponds to low access ones (less than10 visits per
page in the entire log), and together these visits count for a
small percentage of total requests as well. Therefore
removing them from training set will only decrease
precision by a small amount. This further justifies our
filtering operation in the first step of the
PathModelConstruction algorithm. After applying the
model construction algorithm, we have built different hash
tables for storing the learned models. These models are
stored in memory. To give an indication of their sizes, for
the Monash University log our n-gram table sizes are shown
in Table 1.

0 %

2 0 %

4 0 %

6 0 %

8 0 %

1 0 0 %

1 1 0 1 0 0 1 0 0 0 1 0 0 0 0

R e q u e s t T im e s

Pe
rc

en
ta

ge

R eq u es t %

P age %

Figure 2. Page vs. request percentage for NASA data set

0%

20%

40%

60%

80%

100%

1 10 100 1000

R equest T im es

Pe
rc

en
ta

ge

R equest %

Page %

Figure 3. Page vs. request percentage for MSN.com data set

Figures 4 and 5 present the session-length distribution
charts for Monash University and NASA data sets. They
show, for each session length, the statistical distribution of
the sessions having that many consecutive requests on a

server. These charts tell us that a significant number of
sessions are for one or two requests in a row. However,
there are still a sizable number of requests for sessions with
lengths greater than three. In fact, our prediction
algorithms are aimed at just these sessions. There are
several reasons for this choice. We hypothesize that for
sessions with lengths less than or equal to three it is difficult
to make any predictions with significant accuracy based
purely on the statistical information. This hypothesis is
supported by our individual n-gram precision experiments
in all three domains, as shown in Figures 6, 8 and 10,
respectively. It can be seen that for all three domains, the
prediction errors are reduced significantly when one
predicts based on 3-gram sequences as compared to 1-gram
data.

Table1. Hash table sizes for implementing n-gram models

Hash
Table

1 gram 2 gram 3 gram 4 gram

Table
Size

17,434 23.763 22,804 20,958

0 %

1 0 %

2 0 %

3 0 %

4 0 %

5 0 %

6 0 %

1 1 0 1 0 0 1 0 0 0

S e s s io n L e n g th

O
cc

ur
en

ce
%

Figure 4. Session length distribution for Monash University
data

0 %

5 %

1 0 %

1 5 %

2 0 %

2 5 %

3 0 %

1 1 0 1 0 0 1 0 0 0

S es s io n L en g th

O
cc

ur
en

ce
%

Figure 5. Session length distribution for NASA data

For all data, we took 4/5 of the log as training data set and
the remaining 1/5 as testing log. For each test, we recorded
the precision and applicability information as described by
Equations (1) and (2). We have recorded the prediction

precision as a function of n where n is the path length of the
sequence used for n-gram prediction. Figure 6 shows the
precision for the Monash University data and Figure 7
shows the applicability on the same scale. In these and
subsequent figures, the x-axes are marked with the length of
n-grams (n=1, 2, 3, 4), and the corresponding y-axes
represent precision obtained when applying algorithm n-
gram(n). The remaining mark on x-axes is “3-gram+”,
which represent experiments on data consisting of sessions
having length greater than or equal to three for both training
and testing (that is, setting m to 3 in n-gram+(m)
algorithm). As can be seen, our prediction using the
combined 3 and 4-gram models achieved a much higher
precision than using 1-gram prediction only. We have also
applied the same training and testing to NASA log data as
shown in Figures 8 and 9. The results confirm similar
conclusions.

Finally, we took 10% of the NASA log and run a
comparison of n-gram models (n-gram(n)) for n between
one and seven. The results of precision and applicability
are shown in Figure 12. As we can see, as the order of n-
gram model increases, the precision is increasing linearly
while applicability decreases linearly as well. However, we
can see that the decrease in applicability is faster than the
increase of precision, indicating an upper limit in which n-
gram models should be applied.

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

1 gram 2 gram 3 gram 4 gram 3gram+

n gram model

Precision

Applicability

Figure 6. Precision and Applicability as a function of
session lengths for Monarsh University data log. n-grams
(n=1, 2, 3, 4) represent precision as recorded for sessions
having length greater than n

0%
50%

100%
150%

1 gr
am

2 gr
am

3 gr
am

4 gr
am

3g
ram

+

n gram model

Precision

Applicability

Figure 7. Precision and applicability as a function of
session lengths for NASA data log

0%
20%
40%
60%
80%

100%

1 gr
am

2 gr
am

3 gr
am

4 gr
am

3g
ram

+

n gram model

Precision

Applicability

Figure 8. Precision and applicability as a function of
session lengths for MSN.com data log

0

20

40

60

80

100

0 2 4 6 8

n-gram model used

Applicability

Precision

Figure 9. Comparing precision and applicability of
different n-gram models for a portion of the NASA data

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7

1Gram 2Gram 3Gram 4Gram

n gram model

pr
ec

is
io

n

Raw Log Data

Filter Data

Figure 10. Comparing precision of using raw data and
filtered data of different n-gram models for NASA Data

5. RELATED WORK

Curewitz et al [4] were the first to examine the use of
compression modeling techniques to track events and pre-
fetch items. They prove that such techniques converge to an

optimal online algorithm. They go on to test this work for
memory access patterns in an object oriented database and a
CAD system. Kroeger et al[7] adapts Prediction by Partial
Match in a different manner. The problem domain they
examine was the file systems access patterns. The hit ratio
of 4M caches using PPM is even higher than 90M caches
using LRU. Compared to their work, we focused on the
comparison of n-gram models for different n. We also
applied a cascading n-gram model (n-gram+) over three
realistic web server logs and show that the prediction
techniques hold valid for the web domain.

The availability of web related information has inspired an
increasing amount of work in user action prediction. Much
work has been done in recommendation systems, which
provide suggestions for user’s future visits on the web
based on machine learning or data mining algorithms. An
example is the WebWatcher system [6], which makes
recommendations on the future hyperlinks that the user
might like to visit based on a model obtained through
reinforcement learning. Other recommendation systems
include the Letizia system that anticipates a user’s browsing
actions by making forward explorations and the Syskill &
Webert system that learns to rate pages on the World Wide
Web. Compared to these systems, our path-based
prediction model is obtained by building sequences of user
requests of long enough length from all user actions in a
user log and predicts the next action based on statistical
analysis of sequence information.

Due to bandwidth limitations, users on the Internet are
experiencing increasing delays in obtaining the desired
documents. In response, many researchers have designed
action systems that make use of predictions from a learned
model to pre-fetch or pre-send documents. The work by
Zukerman et al. and Albrecht et al. belong to this class. In
this work, a Markov model is learned through training on a
web server log based on both time interval information and
document sequence information. The predicted documents
are then sent to a cache of a certain size on the client side
ahead of time. Similarly, Lau and Horvitz [8] have
classified user queries and built a Bayesian model to predict
users’ next query goal or intention based on previous
queries and time interval. Our work is also related to that
of [11] who studied users’ complete web search sequences
and the work of Silverstein[13] who provided a detailed
statistical analysis of log data. Compared to these systems,
our work focuses on utilizing the server log that contains
the users’ browsing actions rather than queries submitted to
a search service. In addition, our algorithm only makes
prediction on users’ actions when it gathers enough
information regarding the users’ actions on a long enough
sequence of such requests. When the users are observed to

make short sequence visits, we do not make any predictions
since such users may be making random visits on the web,
and thus the next action may not be predictable. The work
of [14][15] used similar techniques but did not compare
the effectiveness of different n-gram models as we did in
this work.

Compared to previous research, our main contributions
are:

1. We compared the effectiveness of n-gram
prediction for different sequence length n, and
found that with an increase in sequence length,
there is an increase in precision and decrease in
applicability.

2. In response, we formulated a cascading model n-
gram+ by including successively lower order
models in prediction, and obtained a good balance
between predictability and applicability.

3. We preformed experiments on three very different
server logs (commercial, university and
governmental), and found that our prediction
algorithm indeed performed well.

6. Conclusions and Future Work

Our work is aimed at showing that using simple n-gram
models for n greater than two will result in significant gain
in prediction accuracy while maintaining reasonable
applicability. Our results show that for n-gram based
prediction when n is greater than three gives a precision
gain on the order of 10% or more for the three realistic web
logs. Our combined algorithm n-gram+(3) shows a higher
precision than individual 3-gram model and slightly lower
than 4-gram model, while at the same time having a
applicability equal to that of the 3-gram model and higher
than that of the 4-gram model. This shows that the n-
gram+(3) algorithm applies to a significant portion of the
web logs for it to be useful. Our results also show that both
the training and prediction algorithms can be applied in a
real time setting.

Our algorithm has immediate applications in web server
caching, pre-sending and recommendation systems. In our
future work, we wish to apply this algorithm to these
domains.

Acknowledgments
We thank Jing Han for her initial involvement in this work,
Susan Dumais and Eric Horvitz for their timely feedback on
this work. We also thank Steven Johnson of MSR Web
Support Group and David Abrecht and Ingrid Zukerman

from Monash University for sharing their web log data with
us.

7. References

[1] Albrecht, D. W., Zukerman, I., and Nicholson, A. E. (1999).
Pre-sending documents on the WWW: A comparative study.
IJCAI99 – Proceedings of the Sixteenth International Joint
Conference on Artificial Intelligence.

[2] Balabanovic, M. (1998). Exploring versus exploiting when
learning user models for text recommendation. User Modeling
and User-adapted Interaction 8(1-2):71-102.

[3] Breese J., Heckerman D. and Kadie C. (1998). Empirical
Analysis of Predictive Algorithms for Collaborative Filtering.
Proceedings of the Fourteenth Conference on Uncertainty in
Artificial Intelligence, Madison, WI, July, 1998.

[4] Curewitz K M, Krishnan. P and Vitter. J. S. 1993. Practical
Prefetching via Data Compression. SIGMOD
Record,22(2):257-266 . ACM, Jun. 1993

[5] Horvitz, E. (1998) Continual Computation Policies for
Utility-Directed Prefetching. Proceedings of the Seventh ACM
Conference on Information and Knowledge Management,
November 1998.

[6] Joachims, T., Freitag, D., and Mitchell, T. (1997)
WebWatch: A tour guild for the World Wide Web. IJCAI 97 –
Proceedings of the Fifteenth International Joint Conference on
Artificial Intelligence, 770-775.

[7] Kroeger T M and Darrell D.E. 1996 Predicting Future file-
System Actions From Prior Events. Proceedings of the USENIX
1996 Annual Technical Conference. Jan 1996

[8] Lau T., and Horvitz, E., (1999) Patterns of search:
analyzing and modeling web query refinement. User Modeling
’99, pp119-128.

[9] Lee, K. F. and Mahajan, S. (1989). Automatic Speech
Recognition: The Development of the SPHINX System.
Kluwer, Dordrecht, The Netherlands.

[10] Lieberman, H., (1995). Letizia: An agent that assists web
browsing. IJCAI95 – Proceedings of the Fourteenth International
Joint Conference on Artificial Intelligence, 924-929.

[11] Maglio, P. P., and Barrett, R. (1997) How to build
modeling agents to support web searchers. User Modeling:
Proceedings of the Sixth International Conference, UM97, 5-16.

[12] Pazzini, M., Muramatsu, J., Billsus, D., (1996). Syskill and
Webert: Identifying Interesting web Sites. Proceedings of the
AAAI 1996., Portland, OR., pp54-62.

[13] Silverstein, C., Henzinger, M., Marais, H., and Moricz, M.
(1998). Analysis of a very large AltaVista query log. Technical
Report 1998-014, Digital Systems Research center, Palo Alto,
CA.

[14] Pitkow J. and Pirolli P. (1999) Mining Longest Repeating
Subsequences to Predict WWW Surfing. Proceedings of the
1999 USENIX Annual Technical Conference.

[15] Schechter, S., Krishnan, M., and Smith, M.D. (1998) Using
path profiles to predict HTTP requests. Proceedings of the
Seventh International World Wide Web Conference Brisbane,
Australia.

[16] Zukerman, I., Albrecht. W., and Nicholson, A., (1999).
Predicting user’s request on the WWW. UM99 – Proceedings
of the Seventh International Conference on User Modeling

