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A key goal of software engineering research is to improve the environments, tools, languages, and techniques

programmers use to efficiently create quality software. Successfully designing these tools and demonstrating

their effectiveness involves engaging with tool users—software engineers. Researchers often want to conduct

user studies of software engineers to collect direct evidence. However, running user studies can be difficult,

and researchers may lack solution strategies to overcome the barriers, so they may avoid user studies. To

understand the challenges researchers face when conducting programmer user studies, we interviewed 26

researchers. Based on the analysis of interview data, we contribute (i) a taxonomy of 18 barriers researchers

encounter; (ii) 23 solution strategies some researchers use to address 8 of the 18 barriers in their own studies;

and (iii) 4 design ideas, which we adapted from the behavioral science community, that may lower 8 additional

barriers. To validate the design ideas, we held an in-person all-day focus group with 16 researchers.
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1 INTRODUCTION

Research in software engineering often intends to help a programmer work better in some way.
For example, fault localization tools [29, 50, 74, 103] may have the goal of helping programmers
identify the cause of defects more effectively. Documentation tools [58, 59, 64] may seek to help
programmers share or gain knowledge more effectively. The goal of domain-specific programming
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languages [35, 69, 75, 105] may be to make programming more natural and/or expressive for do-
main experts. In these cases, the aim is to improve software development by enabling a human
programmer to work more effectively.

Will programmers benefit from a new tool, language, or feature? Are our existing tools, lan-
guages, or features any good? Answering questions like these may require a programmer user
study to collect direct evidence while human programmers use a tool, language, or feature. Unfor-
tunately, researchers looking to conduct studies with programmers face a number of significant
barriers. A survey of authors at OOPSLA, ICSE, CHI, FSE, and other venues found that 84% agreed
with the statement that “user evaluation is difficult” [21]. Barriers reported included recruiting par-
ticipants, the necessary time required, and the practical knowledge needed to design and conduct
a user study [21].

As a result, conducting programmer user studies remains infrequent among software engineer-
ing researchers. An ESE 2015 systematic literature review of tool evaluations published in ICSE,
FSE, TSE, and TOSEM from 2001 to 2011 [54] found that while 82% of papers described a tool, only
17% included an empirical evaluation with a human. Of these 17%, over half reported the authors’
own experience using the tool. The remaining 83% did not evaluate tool utility with users or relied
entirely on indirect evidence, such as by evaluating precision and recall of algorithms.

While some individual researchers adopt practices and build infrastructure to reduce their
own barriers to conducting studies, this knowledge and infrastructure is rarely shared beyond
their research group or local community. The goal of our current work is to identify barriers
and disseminate barrier-lowering solution strategies some researchers employ that are not well
known or widely adopted. These solutions strategies may encompass practice, infrastructure,
or both.

Our research intends to answer three variants of the same question about programmer user
studies: “What barriers do researchers experience inX for programmer user studies, and what practices
or infrastructure might help reduce these barriers?” The three values of “X ” are as follows:

(1) X = Recruiting participants (this Research Question will be abbreviated RQr ecruit inд)
(2) X = the Effort required (RQef f or t )
(3) X = the Knowledge required (RQknowledдe )

These questions mirror the research of past studies [21] yet are general enough that they elicited
unexpected barriers in our interviews.

To begin to answer these questions, we interviewed 26 researchers about their experience
running programmer user studies and used inductive thematic analysis [17] to analyze the inter-
view data and address the research questions. The results contribute a taxonomy of 18 barriers
researchers report encountering (Table 4), 23 solution strategies researchers report using to lower 8
of the 18 barriers (Table 5), and four community infrastructure design ideas (Table 8) adapted from
the behavioral science community [3, 25, 77] that may lower 8 additional barriers. Addressing the
final 2 barriers remains for future work. To validate the four design ideas, we held an in-person
all-day focus group with 16 researchers, who provided context and insights that are reflected in
Section 6.

2 BACKGROUND

This research focuses on task-based experiments where programmers are the participants. Exam-
ples include A/B Testing, Exploratory Lab Studies, and Rapid Prototype Evaluations. There are
relevant questions and barriers for other types of studies (e.g., Contextual Inquiry, Survey, Data
mining) we did not ask about. While our findings may apply to these other types of studies, we do
not attempt to analyze that here.
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Fig. 1. Key stages in a programmer user study. Within each stage, activities may occur in various orders.

This is an augmented version of Figure 1 of Ko et al. 2015 [54].

Each task-based programmer user study has various stages in its development and execution.
Figure 1 expands Ko et al.’s “canonical experiment” diagram [54] to include planning, which Ko
et al. describes but omits from its diagram for reasons that are appropriate for that paper. Below
we describe the four stages shown in Figure 1:

(1) Planning. Prior to conducting human study research, planning and approvals are generally
required. Key steps for the researcher include learning the background knowledge needed
for the study, choosing research questions, selecting study methods and protocols, planning
recruitment, designing tasks, identifying data to collect, planning the analysis of the data,
getting approvals, and so on. These interrelated steps often require multiple iterations.

(2) Recruiting. Participants must be found and recruited into the study. For many studies, these
participants must be representative of the intended user population.

(3) Execution. Data must be collected from recruited participants while guiding them through
the study steps, which may include obtaining participant consent, collecting demographic
data, assigning the participant to a group, and presenting tasks, debrief, and payment (if
offered).

(4) Data Analysis. Analyzing the data collected to answer the research questions and choosing
if or how to disseminate and package the findings.

Throughout this article, we use several definitions. We inclusively define programmer as
anyone who writes programs, whether as an end-user, professional, or student. This definition
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reflects the diversity of how our participant researchers define programmers in their own studies.
We differentiate programmer tools, which encompass anything used by a programmer to develop
software [55], from study tools, which facilitate a researcher’s management and execution of a
study. Consider a study where a programmer writes code in a novel language using Visual Studio
while being observed via Zoom. Visual Studio and the novel language are “programmer tools” and
Zoom is a “study tool.” Throughout this article, we adopt Shadish et al.’s [78] definition of external
validity as “validity of inferences about whether the cause-effect relation holds over variation in
persons, settings, treatment variables, and measurement variables” and internal validity as “the
validity of inferences about whether observed covariation between A (the presumed treatment)
and B (the presumed outcome) reflects a causal relationship from A to B as those variables were
manipulated or measured.”

3 RELATED WORK

Programmer user studies are not new: Zendler [113] reports that 1968 Grant [40] is the first pro-
grammer user study in the literature. One of the earliest human–computer interaction books was
published in 1971 [104] and was about the study of programmers.

As researchers attempted to interpret and use early study results, barriers became evident. Basili
et al. [9] reviewed the early study papers and identified several barriers, such as insufficient plan-
ning and motivation of studies, unclear presentation of results, and vast differences in both pro-
grammer performance and environments. A framework and careful presentation of results were
proposed as solutions. Basili [7] observed the insufficient quantity of experiments and provided
advice for researchers. Basili [8] argued that software engineering needed to improve through
well-designed experiments, similarly to other scientific disciplines.

Over a 21-year period, researchers identified further barriers and proposed various solutions
using papers as an underlying data source. For example:

• Pfleeger et al. [67] addressed an implicit barrier of missing knowledge by proposing and
describing in detail a set of experiment stages (conception, design, preparation, execution,
analysis, dissemination, and decision-making), which are similar to our activities in Figure 1,
except we draw stage boundaries based on how interviewees talked about their studies.
• Kitchenham et al. [53] observed many studies would be unsatisfactory if assessed using

guidelines from other fields (e.g., medicine); this paper proposed guidelines for software
engineering researchers and reviewers to improve the quality of studies.
• Sjøberg et al. [87, 91] observed past studies used insufficiently-realistic tasks, participants,

or environments, which may not support external validity. The authors propose that re-
searchers should run more complex, expensive experiments and demand the resources
needed to achieve sufficient realism.
• Buse et al. [21] surveyed papers to show the number of user studies in the literature had

increased in absolute and relative terms and that papers containing user studies enjoyed pos-
itive benefits. The authors surveyed researchers and provided early insights that (i) many re-
searchers planning and executing user studies experience barriers and (ii) the set of barriers
researchers experience may differ from the set of barriers observable in the literature alone.
• Ko et al. [54] surveyed papers and continued to observe a scarcity of user studies. Informed

by this reality and by Buse et al.’s [21] survey data, the authors provide detailed and
practical advice for researchers conducting programmer user studies.

A literature-focused approach has clearly been impactful by directing attention to important
and widespread barriers and by providing an opportunity for experts to propose reasonable and
informed solutions that aid the community’s efforts to improve the quality of its knowledge.
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Table 1. Qualitative Research Methods Used with Researcher Participants

Semi-structured Interviews Focus
Individual Group 1 Group 2 Group 3 Group

Researchers 18 4 4 4 16
Duration 30 minutes 90 minutes All-day
Method Inductive Thematic Analysis Focus Group
Delivery Remote via Zoom In-person

Discussed in Section 5 Section 6

But as Basili [7] noted, the quantity of studies is also of concern. This is reasonable: User studies
contribute important direct evidence to the community’s body of knowledge. In 2007, Sjøberg
et al. [90] estimated that the quantity of user studies may be deficient relative to needs by an
order of magnitude. Buse et al. [21] reported the number of user studies had increased in relative
and absolute terms. But this observed increase is insufficient to close the gap, and Ko et al. [54]
continued to find user studies are remarkably “rare.”

Given their importance, why are there still so few programmer user studies? What barriers are
researchers encountering when planning and running programmer user studies? Why are some
researchers struggling, for example, with recruiting while others say they are not? Is one group
simply painting a pleasant picture? What is different among these groups?

To understand what is going on, different methods would be valuable: Directly talking to peo-
ple is recommended [11, 70, 71, 81] to understand complex and nuanced questions such as why
researchers are not publishing more programmer user studies and why researchers are experienc-
ing barriers. We therefore talked to researchers who are running programmer user studies.

4 METHOD

Table 1 provides an overview of the methods used in our qualitative study. To gather data about
barriers and solutions researchers encounter in programmer user studies, we interviewed 26
researchers who published a programmer user study at ICSE, CHI, FSE, ASE, or OOPSLA between
2019 and 2021. As demographic data are unavailable for the target population of programmer
user study researchers, we selected researchers representing a diverse range of study areas (e.g.,
SE, PL, ESE, HCI, etc.), experience levels, genders, and roles. We originally planned to interview
participants in-person; consequently, many of the participants are located in North America.
Researchers were recruited into the study via e-mail. Due to the pandemic, interviews were
shifted to Zoom. We classified the 26 researchers based on role (Faculty, Ph.D Student, Industry),
geography, study areas, and years of experience running user studies (<5, 5–10, and 10+) using
public information. We conducted 18 individual semi-structured interviews and three group
semi-structured interviews of four researchers each using open-ended questions. As shown in
Table 2, four researchers participated in both a group and an individual interview. The third author
conducted 10 of the individual interviews, and the first author conducted 8. The third, fourth,
and sixth authors each conducted one group interview. Quotes from researcher participants are
anonymously attributed as R#. Later, we recruited 16 researchers (Table 3) into an in-person
all-day focus group where we discussed ideas for community infrastructure. We reimbursed rea-
sonable travel expenses for focus group participants. Otherwise, we did not compensate any of the
participants.

We analyzed interview transcript data qualitatively using the inductive thematic analysis pro-
cedure described by Braun and Clarke [17], which calls attention to Frith and Gleeson [39] as a
“particularly good example of an inductive thematic analysis.” We used Frith and Gleeson as a
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Table 2. Researcher Interview Participants

Group ID Role User Study Experience Gender Geography

Individual Interviews

Individual R3 Faculty 5–10 years Male North America
R5 Faculty 10+ years Female North America
R10 Industry 5–10 years Male North America
R11 Faculty 5-10 years Female North America
R13 Faculty 10+ years Female North America
R14 Faculty 5–10 years Male North America
R15 Faculty 5–10 years Female North America
R16 Faculty 5–10 years Female North America
R17 Industry 10+ years Female North America
R18 Faculty 10+ years Male North America
R19 Ph.D Student <5 years Female Europe
R20 Ph.D Student <5 years Male North America
R21 Ph.D Student <5 years Female North America
R22 Ph.D Student <5 years Male Europe
R23 Ph.D Student <5 years Male North America
R24 Faculty 5–10 years Male North America
R25 Ph.D Student <5 years Male North America
R26 Ph.D Student <5 years Male North America

Group Interviews

Group 1 R1 Faculty 5–10 years Female North America
R2 Faculty 10+ years Male North America
R3 Faculty 5–10 years Male North America
R4 Post-doc 5–10 years Male North America

Group 2 R6 Faculty 5–10 years Female North America
R7 Faculty 5–10 years Female North America
R10 Industry 5–10 years Male North America
R18 Faculty 10+ years Male North America

Group 3 R8 Faculty 5–10 years Male North America
R9 Post-doc 5–10 years Male North America
R11 Faculty 5–10 years Female North America
R12 Faculty 5–10 years Female North America

model for our interview data analysis. While the basis of Frith and Gleeson’s data was a question-
naire, we found the described method transferable to interview transcript data.

Braun and Clarke [17] describes six phases and takes care to emphasize (i) the phases are guide-
lines, not rules; (ii) thematic analysis is “not linear” and movement back and forth between phases
is expected; and (iii) the process should not be rushed. While we describe the phases below in a
linear fashion, we frequently moved back and forth between phases as we tested candidate themes
against the data and vice versa.

• Data familiarization. We automatically transcribed each session using Zoom, checked the
transcripts against the recordings for accuracy, and made corrections when necessary. An
intended effect of this process was becoming familiar with the underlying transcript data.
• Initial coding. Interview transcripts were read carefully and reviewed by a researcher to

identify timestamps relevant to the research topic and to assign a code that represents a
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Table 3. Researcher In-Person Focus Group Participants

Role User Study Experience Gender Geography

Faculty 5–10 years Female North America
Post-doc 5–10 years Male North America
Faculty 5–10 years Female North America
Industry 5–10 years Male North America
Faculty 5–10 years Female North America
Faculty 5–10 years Male North America
Faculty 5–10 years Female North America
Faculty 5—10 years Male North America
Faculty 10+ years Male North America
Student <5 years Female North America
Faculty 5–10 years Female North America
Faculty 5–10 years Male North America
Faculty 5–10 years Male North America
Faculty 10+ years Female North America
Faculty 10+ years Male North America
Faculty 5–10 years Male North America

researcher-reported barrier. Timestamps for parts of the transcript involving co-authors or
unrelated to the research topic (e.g., the weather) were assigned a null code.
• Finding themes. Timestamps with the same code (dealing with the same barrier observa-

tion) were grouped together into themes, including solution strategies researchers reported
as applicable to a barrier. Each timestamp could be coded to more than one theme as multiple
barriers could be discussed at a given timestamp.
• Reviewing themes. We systematically reviewed the data to ensure each theme was clearly

defined relative to the other themes and was supported by several timestamps and multiple
researchers within the underlying transcript data.
• Defining and naming themes. We defined the essence of each theme based on the underly-

ing data and named each of the barriers (Table 4) and solution strategies (Table 5) accordingly.
Going beyond the recommendations of Braun and Clarke [17] and Frith and Gleeson [39], a
separate co-author established replicability by re-coding one group interview transcript and
the first and last individual researcher interview transcripts. This resulted in a high level of
inter-rater reliability (K = 0.986, SD = 0.013).
• Producing report. This final step of the process is writing a report, which is this article.

5 MANY BARRIERS, SOME STRATEGIES

Our inductive thematic analysis of the interviews with 26 researchers identified 18 barriers re-
searchers encountered (Table 4) designing and running task-based programmer user studies as
well as 23 solution strategies (Table 5) researchers told us they employed to lower 8 of the 18 bar-
riers for themselves. We expected to observe similar problems and solution strategies across most
researchers. Instead, we observed unevenness: Solution strategies may be developed and shared
within a research group to lower its own barriers, but other research groups may be unaware of
these strategies. The following sections are organized by study stage (Figure 1) and discuss both
the barriers researchers encountered and the solution strategies some told us they adopted to lower
these barriers within their own work. These strategies included both practice and infrastructure
innovations.
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Table 4. Barriers Researchers Encountered and Strategies Researchers Used

Research Solution
ID Barrier Description Question Strategies

1. Planning Stage

B1 Task design is hard RQef f or t †
B2 Difficult to understand design tradeoffs in advance " S1-S5
B3 Can’t take any study off the shelf " †
B4 IRB requires effort that seems unnecessary "
B5 Building and integrating tools is challenging " S6,S7
B6 Difficult to get data collection right " S6,S8
B7 Lack of knowledge RQknowledдe S9
B8 Gaining the needed knowledge is inefficient " †
B9 Some researchers uncomfortable with people " S10

2. Recruiting Stage

B10 Hard to recruit enough representative participants RQr ecruit inд S11-S21
B11 Hard to manage participants over time " †
B12 Recruiting material norms vary by study/org. "

3. Execution Stage

B13 Hard to select participants with the desired characteristics RQef f or t †
B14 End-to-end orchestration is cumbersome " S22
B15 Prototype software isn’t ready for deployment " S23
B16 Deploying to a participant’s local PC is challenging " †
B17 Deploying to hosted VMs is challenging " †
B18 Deploying to the web is challenging " †
4. Data Analysis Stage

No barriers were reported by participant researchers for this phase

†=Potential Solution Strategy Design Ideas Discussed in Section 6.

5.1 Planning Stage

Aspects of a study require planning prior to the study’s execution. In this section, we discuss the
barriers and solution strategies researchers reported during the planning stage.

5.1.1 Task Design Is Hard (B1).

“We wanted to do a really realistic task. And then we realize, yeah, well, we can’t ask
somebody to spend, like, two days programming, you know, this task.” (R18)

“[...] you want [the participant] to do a relatively straightforward programming task, but
then coming up with the actual task itself is where I end up with a lot of trouble anyways.”
(R25)

“Of course, like, the actual hardest part of the study was picking the bugs to introduce
into those programs [...].” (R26)

Researchers who plan and execute task-based programmer user studies told us tasks are hard to
design. That is not surprising: Task design often involves inventing a solution that satisfies diverse
requirements. Among the possible task design requirements, some are shown in Table 6. Designing
a task to satisfy a single requirement is difficult; designing a task that satisfies all the requirements
is particularly difficult. For instance, lengthy or difficult tasks may lead to participant fatigue and
affect the validity of the results. Hence, tasks must be limited in length and difficulty [54].
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Table 5. Solution Strategies Reported by Researchers by Barrier

ID Solution Strategy Description Sources
Barrier B2: Difficult to understand design tradeoffs in advance
S1 Pilot remote studies in-person R25, R26
S2 Ask: Was the task realistic? R16, R21
S3 Reuse task designs with known properties R14, R19
S4 Consider using “found” tasks R21, R22, [54]
S5 Measure remote participant attention R19, R22, [44]
Barrier B5: Building and integrating tools is challenging
S6 Reusing tools with known properties (in general) R13, R14, R19, R23, R25
S7 Evaluate new tools early and using lightweight methods [21, 23, 55]
Barrier B6: Difficult to get data collection right
S6 Reusing tools with known properties (for data collection) R14, R19, R26
S8 Collect data manually R5, R10, R21, R23, R26
Barrier B7: Lack of knowledge
S9 Utilize experts, professional network, and the literature R19, R25
Barrier B9: Some researchers are uncomfortable working with people
S10 Start with online studies if uncomfortable with human subjects R12, R22
Barrier B10: Hard to get enough representative participants
S11 Recruit students when students are known to be representative R3, R4, R11, R15, et al.
S12 Build and use a personal network on LinkedIn R10, R13, R16, [27, 54]
S13 Leverage influential Twitter community members R16, R19, R20
S14 Announce on Reddit, but follow the rules R18, R19, R21, R24
S15 Use online marketplaces with caution R20, R22, R23, R25, [56, 95]
S16 Partner with or intern at a research-friendly company R10, R15, R17, [54, 88, 90]
S17 Deliver the study remotely to maximize recruitment pool size R11, R19, R2, R24, [20, 54]
S18 Make the recruitment request informal and personal R10, R11, R17
S19 Emphasize connection in the recruitment request R13, R15, R17
S20 Explain the wider benefit in the recruitment request R10, R16,
S21 Offer compensation R3, R10, R23
Barrier B14: End-to-end orchestration is cumbersome
S22 Automate parts of the study R14, R19, R20, R22
Barrier B15: Prototype software isn’t ready for deployment
S23 Minimize deployment environment variability R10, R13, R18

Not all solution strategies will apply in all situations.

Table 6. Some of the Requirements a Task Design May Need to Satisfy

Requirement Description
Realistic Resembles a task the target audience may perform outside the study
Constrained Controls variability such that the expected benefit may be measured
Measurable Provides data suitable to measure the benefit under study
Achievable Not so hard that a participant cannot do it
Brief Fits within the time available without causing participant fatigue
Understandable Simple enough for the participant to understand
Approachable Not require knowledge the participant does not have
Propensive Highly likely the novel feature or tool will be used by the participant
Demonstrative Highly likely to demonstrates the degree to which a benefit exists
Integrated The study and developer tools in the task work together

Task design often involves tradeoffs [83, 87]. For a task to support external validity, it must
be realistic. Similarly, for a task to support internal validity, it must be constrained such that the
effect under study is measured accurately and not confounded by other variables. These needs
are at odds [87], and the researcher must find a balance appropriate to the research question, as
described by Siegmund, Siegmund, and Apel [83].
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Some task requirements represent a linkage among the task design and other aspects of the
study that must be satisfied. For instance, a task design must generate data that may be analyzed by
the researcher to answer the research question(s); consequently, “measurable” represents a linkage
between task design, data collection, data analysis, and the research questions the study is in-
tended to answer. The connections among task design and other aspects of the study increases the
difficulty of task design such that a change to other aspects of the study may necessitate changes
to the task design. Similarly, if changes within a task impair its ability to satisfy the study’s needs,
then other aspects of the study design may require adaptation. In this way, changes may propagate
within the study. For example, an in-person study of a debugging aid may satisfy all requirements
and provide an easy way for researchers to observe participant attention and confusion. However,
in-person recruiting challenges and a power analysis might convince the researcher to deliver the
study remotely to have access to a sufficient number of participants. Moving to remote delivery
requires the researcher to decide how to check for attention and confusion within the task. If the
researchers decide to use Zoom and the participant’s camera to monitor for attention and confu-
sion, then additional approval from the Institutional Review Board (IRB) may be necessary as
well as a revision to the consent protocol. Further, the researcher must determine how to provide
the debugging tool and environment to the now-remote participant, as discussed in Section 5.3.1.
Researchers shared no clear solutions to this barrier, but we have some proposed ideas in
Section 6.

5.1.2 Difficult to Understand Design Tradeoffs in Advance (B2).

“Even as experienced empiricists, we have little understanding of what our particular
target audience [will] do with the particular tool we’re interested in at that time in that
particular kind of task.” (R5)

“You’re never going to get the study design right on the first try; you have to pilot it.”
(R20)

Experienced researchers told us they cannot predict what participants will do in a study. Partic-
ipants might, for example, misunderstand instructions, get bogged down in an unimportant detail,
or work in ways that lead to unexpected variability. Experienced researchers pilot their studies
with a small set of participants and collect data to evaluate the study’s properties to improve the
next iteration of the study. In other words, researchers offered no known shortcut to determine in
advance whether a study design meets their needs. However, some researchers use the following
strategies to lower the impact of this barrier by reducing the number of pilots and design iterations
required to find a satisfactory design.

Strategy S1: Pilot remote studies in-person. Any remote study may be delivered and ob-
served in-person. Researchers we interviewed noted it is easier to identify problems with an in-
person study than with a remote study. Two researchers take advantage of these two observations
by running early pilots of remote studies in-person to quickly identify confounding factors, e.g.,
participant confusion, stumbling blocks, variability, and so on. These observations then inform the
next iteration of the design.

Strategy S2: Ask: Was the task realistic? Some researchers ask the participant in the post-
survey whether the task was realistic, meaning the task was similar to one the participant might
perform in their usual work. This strategy provides (i) direct evidence from the participant as to
the task’s realism and (ii) an early warning to the researcher if a task is potentially unrealistic.

Strategy S3: Reuse task designs with known properties. Reusing previously designed
tasks with known properties may provide a researcher more certainty as to the range of behaviors
participants might exhibit when they encounter the task as well as improve the researcher’s
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understanding of the linkages among the task and other parts of the study design—without
needing to first run a pilot. The task design reuse researchers described was within a research
group where tooling tends to be more uniform. Differences among research groups’ tooling
may limit the benefit of this strategy, since the software underlying the task design may need
to be ported or re-implemented according to the receiving group’s tooling. Unlike in behavioral
science [3, 25, 77], there is not presently a repository for task designs or common experiment
tooling (but see Section 6, where we discuss how this may be achieved). While not directly
suggested by our researcher participants, Miller [62] cautions that the bias of a task design should
be considered prior to its reuse so as to control the propagation of previous bias into a new study.

Strategy S4: Consider using “found” tasks. Ko et al. [54] discusses using “found” tasks, such
as actual bugs from an actual codebase rather than inventing a new codebase and then inventing
new bugs for participants to find and fix. One researcher described the difficulty of finding tasks
that are sufficiently brief and not too difficult. Researchers who shared using existing codebases in
their user studies said they look for tasks in codebases that are neither too large (overly difficult)
nor too small (unrealistic). One researcher avoids popular codebases to reduce the chance that a
participant has worked with the codebase before.

Strategy S5: Measure remote participant attention. Compared to in-person studies, re-
searchers told us it is harder to monitor whether a remote participant is attentive to the task vs.
checking their phone, daydreaming, and so on. Undetected inattention is a confounding variable
that degrades the experiment’s internal validity. It is possible to mitigate this via webcam, but this
carries tradeoffs: e.g., the camera opens the participant’s home or office to the researcher, which
may not be desired—and may turn off some participants. Alternatives researchers reported using
successfully include (i) prompts that periodically check that the participant is actively working
and paying attention to the task, (ii) using automated data collection within the task by which the
researcher may infer the participant’s level of attention to the task, and (iii) asking the participant
whether they became distracted or had to step away from a task during the post-survey. In the
behavioral science literature, Hauser et al. [44] offers guidance similar to what our participants
reported.

5.1.3 Can’t Take Any Study Off the Shelf (B3). Replications, reproductions, and adaptations are
an important part of the scientific process. Miller [62] observes, “deriving reliable empirical results
from a single experiment is an unlikely event.” Brooks et al. [19] states, “the experiment process can
be error-prone.” For these and other reasons, the need for more software engineering replications
is a frequent topic in the literature as are the barriers and complexities that may impede these
essential studies [16, 51, 52, 60, 63, 72, 79, 82, 102].

Unlike a piece of software, researchers cannot easily study and modify a study’s “source code”
and use it as a tool to learn the endemic tradeoffs and success factors of certain decisions. Freire
et al. [37] cites the lack of a way to formalize an experiment (e.g., in a study configuration file) as
a barrier to replication. Miller [62] further notes, “drawing reliable conclusions from reading an
article is a difficult task.” Typically, a description of the study is provided in a paper and various
artifacts or a lab package may be available, but this may still be an incomplete view of the study
and may lack important details from Figure 1 such as recruitment materials or details on how
groups were counter-balanced. Further, research-quality software artifacts may suffer from “bit-
rot” [98] such that after the study is complete, the underlying software is difficult to get running
again, possibly due to assumptions about or evolution of the surrounding software ecosystem.
Consequently, the task of learning from an existing study may often be a question of reverse-
engineering a study based on the information available rather than picking up a working study and
adapting it. These realities make the process of learning from, adapting, or replicating past studies
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less efficient. Researchers shared no clear solutions to this barrier, but we have some proposed
ideas in Section 6.

5.1.4 IRB Requires Effort That Seems Unnecessary (B4). Many locales require an IRB or similar
organization to approve, monitor, and review research involving human subjects. The amount
of effort that IRBs require of researchers may vary by institution, locale, and study. While no
researcher we interviewed appeared to question the purpose or role of an IRB, some stated their
local IRB’s implementation choices introduce more inefficiency and effort than what might be
necessary. This barrier is further corroborated by a similar finding by Buse et al. [21].

5.1.5 Building and Integrating Tools Is Challenging (B5).

“I find myself, you know, asking my students to redevelop a platform for pretty much
every study [...].” (R6)

“My sense is that every time a PhD student is working on something like [a programmer
user study], they end up having to build their own [software] stack [...].” (R13)

“[...] if we could just keep the same tool—or just use different tools, but in the same way—it
would for sure make all our lives just easier.” (R19)

When a study intends to evaluate the benefits of a novel programmer tool, a prototype of the
tool often must be built. Researchers explained that predicting the amount of effort to build these
tools is challenging, just like other software projects. Further, researchers told us they are not
aware of any best practices or guidelines for creating and deploying research-quality tools. Instead,
researchers learn by trial and error and are often under time pressures due to the conference cycle.
These pressures crowd out time that might be spent on polishing a tool or making it easily reusable
by the wider research community.

Developing the novel tool is just the start: The researcher must make the tool work with other
tools in the study to provide a coherent experience to the human participant. Consider a researcher
evaluating a new programmer aid, XYZZY, within the Eclipse IDE. Here a data logging tool such as
FLUORITE [107] might collect detailed telemetry data about a programmer’s activities. Meanwhile,
Zoom might record the screen and audio. Participants in the intervention group will use XYZZY,
while participants in the control group will not. While Zoom may be orthogonal in this example
aside from synchronizing timestamps, Eclipse, FLUORITE, and XYZZY must work together, or
integrate, to provide a uniform task experience to the participant.

While examples of tool reuse such as CRExperiment [92] and FLUORITE [107] may be found in
the literature, it is hard to find and choose an appropriate tool to reuse, because, for instance, there
is no central repository in which to find these tools. Further, when a researcher finds a tool that
appears suitable, it might not integrate easily (or at all) with the other tools in the researcher’s soft-
ware stack. For instance, if XYZZY were written as a Visual Studio Code plugin, then FLUORITE
would not be compatible as FLUORITE requires Eclipse and is incompatible with Visual Studio
Code. The net result of these challenges, as R13 expresses above, is that researchers are expending
substantial efforts building (and rebuilding) and integrating (and re-integrating) tools.

Strategy S6: Reusing tools with known properties. In our interviews, we encountered
researchers successfully reusing tools developed within their own research groups and applied
to multiple studies: Researchers told us about off-the-shelf tools such as Zoom (screen share) and
Visual Studio Code (IDE) that are in common use. The literature provides evidence of successful
reuse of more-specialized tools such as FLUORITE [30, 49, 68, 76, 106–111] and task interfaces
such as CRExperiment [18, 93, 94]. But the literature provides many cautions regarding the
complexities, tradeoffs, and difficulties of reusing artifacts [6, 12, 45, 86, 98]; further, (i) there is
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presently no centralized or easy way to find tools to reuse, and (ii) even if a tool appears suitable,
the effort to understand and integrate a tool into a study’s software stack may be significant or
infeasible.

Strategy S7: Evaluate new tools early and using lightweight methods. The PLIERS frame-
work proposed by Coblenz et al. [23] provides case studies incorporating user-centered techniques
(e.g, Wizard of Oz and Rapid Prototyping) to iterate toward a suitable tool design more effectively
than traditional methods. Similarly, LaToza and Myers [55] proposes integrating human–
computer interaction methods into tool development at both the formative and summative stages.
Buse et al. [21] also provides evidence that lightweight methods are suitable for effective user
evaluation.

5.1.6 Difficult to Get Data Collection Right (B6).

“There was a dedicated programmer on that grant and much of what he did was trying
to get logging right. I mean, for five years.” (R5)

“[...] you wonder if there was any benefit to actually instrumenting the software, because
it ends up being pretty easy to just look at the video and go that was about two minutes
for that task.” (R10)

Accurately identifying and measuring cause and effect is important to support a study’s internal
validity. Data collection in today’s studies can be particularly laborious and tedious. While simple
measures such as time on task may be gathered by reviewing timestamps of screen recordings,
more complex measures, like the number of backtracking steps a programmer took, or the number
of files viewed, can require hours of careful review of recordings. Some studies automate measure-
ment by instrumenting the IDE; but beyond FLUORITE [107], this instrumentation is infrequently
shared across research groups and requires significant engineering investment to build.

Some researchers told us they avoid automated data collection and instead observe or record
the participant so the researcher may log events or collect data manually. The observation that
capable, intelligent, experienced, highly educated software engineering researchers take a “pass”
on automated data collection is an important signal of both its limitations and its complexity. Cer-
tainly, manual data collection has downsides, among them being the opportunity for manual error,
constraining the scale of the study, consuming research hours that might otherwise be applied to
the next study, and so on. But manual data collection may bring advantages, such as avoiding the
effort to build automated instrumentation and allowing measurements that require understanding
programmer intent, which may be infeasible to determine automatically. For example, some past
studies attempted to measure how long programmers spend debugging based on debugger log data.
But this measurement is inaccurate: The debugger may be used for tasks other than debugging and
programmers may debug without using the debugger. Here human judgement is required. The re-
searcher must evaluate all considerations and choose an appropriate data collection strategy to
answer the research question in a way that supports internal validity.

“Our instrumentation and our data analysis and our monitoring and all of those things
— those don’t come for free.” (R13)

“I can’t tell you how many times I’ve been through [building logging tools].” (R5)

For researchers who collect data automatically, why do they build so many data collection tools?
A data collection tool may be specific to (i) the research question it helps answer, (ii) the task, and
(iii) the developer tools employed. If any of these change, then a past data collection tool may
no longer be suitable. Given the variety of tasks and developer tools (often custom-built) that
researchers employ, it is not surprising that new data collection tools may be needed to support a
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new study. The connection also runs the opposite way: If a developer tool is incapable of providing
the data needed to answer the research question, then either the developer tool or the research
question may need to be replaced or adapted.

“If you don’t have any good way of log processing, it’s just a lot of work.” (R15)

Researchers told us about their experiences collecting data from programmer tools. Off-the-shelf
IDEs are attractive due to their realism: Programmers use these tools in their work today. But APIs
provided by the vendor may not be clearly documented or intended to satisfy needs researchers
have in mind. This may not become clear until late in the process, i.e., analyzing data from a pilot
study. One researcher explained the problem of granularity mismatch. In her case, she needed to
understand what the programmer was clicking on, but the API provided these data at a lower level
of granularity: It simply provided clicks and screen coordinates. Using the API, it was not possible
to know what the programmer was actually clicking on.

“[O]ver the last five years or so any time a new student wants to do a different kind of
thing, we just add an extra layer of data collection on top of the same platform so that
any user study that’s done from then on automatically has whatever random-ass data
collection needs to be in there.” (R14)

Strategy S6: Reuse tools with known properties. We discussed Strategy S6 in the previous
section (B5). It may also apply to this barrier, B6.

Strategy S8: Collect data manually. Manual data collection often requires the researcher
to directly observe or record the behavior to be measured and then to code event data. As the
number of participants, measures, and measurement complexities increase, so does the level of
effort; consequently, this strategy may be most feasible for simpler data collection needs with
fewer participants or for those requiring human judgement.

5.1.7 Lack of Knowledge (B7).

“Many software engineers believe they aren’t trained for [running user studies]—and
they’re right.” (R5)

“It’s just that, like, as part of computer science, we give zero training to students going
out there on how to conduct valid studies [...].” (R14)

“The post-doc that I had working with me at that time, [name redacted], had some expe-
rience [...], so she could easily guide me through it.” (R19)

Designing and running a programmer user study requires a significant and disparate set of skills
that researchers often acquire “on the job.” Senior researchers pointed out that new researchers
often feel they are not prepared to design and run a user study, because typical computer sci-
ence curriculums lack training for human study design, task design, qualitative and quantitative
research methods, local IRB protocols, recruiting participants, and so on. Even a researcher expe-
rienced with one type of study may lack knowledge relevant to other types of studies. Regardless,
a researcher requires specific knowledge to successfully design and run a study; otherwise, the
resulting study may be invalid or flawed.

Strategy S9: Utilize experts, professional network, and the literature. Early-career re-
searchers told us they overcame this barrier by talking to a colleague or advisor experienced with
the desired type of study and by reading suggested papers or books. Relying solely on the liter-
ature has limits: key design decisions, norms, and tradeoffs are not always clear. One researcher
reported a colleague shared pitfalls common to the planned study type and suggested solutions
that were integrated at an early stage of design. While not directly mentioned by our researcher
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participants, consulting with community experts who are familiar with the pitfalls and success
factors of a particular type of study is a natural variation of this strategy.

5.1.8 Gaining the Needed Knowledge Is Inefficient (B8).

“How do you know that you’ve appropriately found a match between the novelty that
you’re proposing in your paper and, like, recognized metrics—like, these are really hard
questions.” (R9)

“And you put some metric in your paper and you had one reviewer say you should have
done it this way, and another reviewer says you should have done it this other way.” (R11)

While the previous barrier is concerning the lack of knowledge, this barrier is concerned with
the inefficiency of gaining the knowledge that is missing. Researchers described as a barrier the
lack of access to organized, updated learning resources, and best practices for running program-
mer user studies. The lack of knowledge organization obscures the community’s norms and best
practices, which can be confusing to paper authors and reviewers alike. These differences may
lead to paper rejections that are costly to a researcher’s career. Coupled with the steep learning
curve, experienced researchers reported the ramp-up time required for new researchers to become
productive is significant. Researchers shared no clear solutions to this barrier, but we have some
proposed ideas in Section 6.

5.1.9 Some Researchers Are Uncomfortable Working with People (B9).

“Like, just the the idea of running [a user study] for some people, [it] just doesn’t, it doesn’t
match for them.” (R12)

Some early-career researchers may be uncomfortable working with human subjects; for ex-
ample, students experiencing a language or communication barrier or social anxiety may avoid
human-focused research at this present stage of their career.

Strategy S10: Start with online studies if uncomfortable with human subjects. One early-
career researcher reported telling his advisor, “I want to do a study that has the minimum amount of
interaction with [...] humans.” This researcher designed and ran a successful online study published
at a top venue. Notably, the study was highly automated and required minimal human subject
contact. This researcher indicates he plans to run more remote studies in the future.

5.2 Recruiting Stage

To support external validity, a study’s participants often must be representative of a population that
would use the object under study [87]. A past survey by Buse et al. [21] found over 60% of user study
researchers reported recruiting to be a barrier. In our interviews, researchers also repeatedly told
us recruiting qualified professional programmers is a barrier to running programmer user studies.
While studies need not always have a large n for validity, some study designs require recruiting at
least a reasonable number of participants.

“Recruiting is definitely the biggest pain point for me.” (R1)

“[Recruiting] is really hard. It always keeps me awake at night.” (R19)

5.2.1 Hard to Recruit Enough Representative Participants (B10).

“One [challenge] is recruiting a sample that’s representative [...].” (R13)

“For the professional populations, just finding enough people’s the biggest challenge.”
(R11)
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“[Y]ou can’t just get students anymore. It’s getting harder and harder to publish that, so
recruitment is a big problem.” (R15)

No academic researcher told us they encounter significant barriers recruiting students: Sjøberg
et al. [88] calls recruiting university students, “relatively easy.” In educational studies, students
clearly are representative. But researchers reported that students do not behave or perform sim-
ilarly to professional programmers in all settings and on all tasks—a perspective supported in
the literature [13, 32, 34, 48, 54, 65, 73, 87, 88]. A net effect is that researchers must often recruit
professional programmers into their studies.

With few exceptions, researchers we interviewed emphasized the difficulty they experience
recruiting a sufficient number of representative professional programmers. Lack of access to
professional programmers narrows a researcher’s range of achievable and publishable studies
by excluding studies that require participants with, for example, significant domain experience,
specific technology experience, significant practitioner experience, and so on. This is exacerbated
by the difficulties described in the literature of selecting a representative sample of professional
programmers [2, 5, 26, 27, 57]. Hence, this is an important barrier to address.

Researchers we interviewed shared the following strategies that help lower this barrier in their
own research. Strategies S12–S15 discuss specific social media platforms and online marketplaces.
This is not intended to be an exhaustive list. Over time, platforms vary in functionality and popu-
larity; consequently, future researchers should substitute the specific platforms and marketplaces
mentioned below with the ones that are most relevant for their specific time, place, and target
population.

Strategy S11: Recruit students when students are known to be representative. In settings
and tasks where students are known to be representative participants, researchers may avoid the
need to recruit professional programmers. For example, in educational research, students are the
target population. Otherwise, some researchers recruit a mixture of professionals and students
into a study and then may show that professionals and students perform similarly, in this case. If
students and professionals do not perform similarly, then more professionals must be recruited.

Strategy S12: Build and use a personal network on LinkedIn.

“LinkedIn gives me the metadata to do the sampling that I need to do.” (R13)

Ko et al.’s [54] systematic review of papers observed most studies recruited via existing relation-
ships. LinkedIn provides access to a network of individuals including the individual’s experience,
skill, and high-level demographic data—as it is known to LinkedIn. Students eventually become
professionals. With each class taught and each student encountered, an academic researcher may
encourage each student to connect on LinkedIn and build a large pool of potential professionals
over time. A tradeoff with this approach is the potential for selection bias as the pool of participants
within a researcher’s network may not generalize. Further, this method requires time to grow the
network. As to the quality of participants recruited via LinkedIn, de Mello et al. 2015 [27] found evi-
dence that Java programmers recruited via LinkedIn may demonstrate more experience than those
recruited via Mechanical Turk, although this finding might not generalize to other populations.

Strategy S13: Leverage influential Twitter community members. Some researchers re-
ported success engaging influential individuals in the target community with a large number of
followers on Twitter. The researcher asks via direct message if the community member would
retweet the study announcement while explaining why the study might be of interest to their
followers.

“[I]f you have a controversial title like, ‘I bet you can’t program this’ [...] you can get,
like, a lot of attention on Reddit.” (R18)
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Strategy S14: Announce on Reddit, but follow the rules. Find the subreddits where target
participants interact, follow all subreddit rules, and pre-screen the announcement with the moder-
ators prior to posting. Some moderators may refuse or limit what may be said, e.g., compensation.
Check first.

Strategy S15: Use online marketplaces with caution.

“I would not feel confident doing further work on [Mechanical Turk].” (R20)

“We found that we couldn’t really trust the data [on Mechanical Turk].” (R11)

Several researchers we spoke to used Mechanical Turk [95] to recruit participants and appre-
ciated its ease of recruitment. But each of these researchers explained the significant effort re-
quired to detect and filter many inattentive and unqualified participants, which Ahler et al. [1]
and Hauser et al. [44] indicate might be a common problem on this platform. A recent study by
Tahaei and Vaniea [96] found that somputer science students were more likely to be qualified than
self-reported developers recruited through Mechanical Turk and other marketplaces. de Mello et al.
[27] found evidence that Java programmers recruited via LinkedIn may demonstrate more experi-
enced than those recruited via Mechanical Turk. Ko et al. [54] and Tahaei and Vaniea [96] mention
marketplaces besides Mechanical Turk, but we did not encounter researchers using the specific
other marketplaces they mentioned. One researcher interviewed pointed to Lau et al. [56] as a
recent successful study utilizing UserTesting.com to recruit remote end-user programmers.

Strategy S16: Partner with or intern at a research-friendly company. Ko et al.’s [54] sys-
tematic review of papers observed some researchers recruited professional participants via a com-
pany insider, via a graduate student intern placed at the company, or by establishing a formal
partnership with the company. Two industrial researcher participants corroborate this observa-
tion by explaining recruiting attempts targeting programmers inside a company must originate
from inside the company to be successful, which helps explain the experiences reported by Baltes
and Diehl [5]. Further collaboration options are enumerated by Sjøberg et al. [88, 90].

Strategy S17: Deliver the study remotely to maximize recruitment pool size.

“[A remote study] definitely broadens the potential audience.” (R26)

Past research provides evidence that remote studies have fewer barriers to participation [20, 54].
In addition to pandemic safety protocols at the time, greater access to professionals was cited by
researchers as an important factor for deciding to run a study remotely.

Strategy S18: Make the recruitment request informal and personal. Some researchers
explained they communicate in their own name from their work or academic e-mail address, not
a generic or mailing list address, and avoid formal language. One industrial researcher reported a
marketing person was assigned to polish research communications to improve response rate, but
making recruitment communications more formal and less personal had the opposite effect.

Strategy S19: Emphasize connection in the recruitment request. If the potential partici-
pant has a connection with the researcher or institution, then some researchers make that connec-
tion clear in their request. Network-focused tools such as LinkedIn may make this task easier by
emphasizing points of connection in ways platforms such as Twitter, GitHub, and Reddit may not.

Strategy S20: Explain the wider benefit in the recruitment request. While direct benefit
to the participant is not necessary, some researchers emphasize the benefit the study may have to
the wider community to attract representative programmers into their studies.

Strategy S21: Offer compensation. Researchers shared their perceptions that professional
programmers are busy, highly paid, and expect significant compensation for their time. For in-
stance, Bergesen et al. [14] notably describes expending €40,000 to recruit 65 professional Java
programmers into a multi-day study. In our interviews, some researchers told us compensating
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programmer participants is a solution strategy that has helped lower this barrier for them, but it
should be noted that funding realities may be a limiting factor for many researchers.

5.2.2 Hard to Manage Participants over Time (B11). Researchers told us reusing a pool of partic-
ipants across multiple studies may be useful, for example, to (i) ease recruiting for future studies
where past qualified participants may be selected for a new study based on known demographic
data and (ii) keep track of past participants so they can be excluded from joining a new study when
their experience with a prior study may present a confounding factor. Some industry researchers
we interviewed use internal participant pools, which is feasible given their access to employee
programmers on the payroll. Researchers shared no clear solutions to this barrier, but we have
some proposed ideas in Section 6.

5.2.3 Recruiting Material Norms Vary by Study/Organization (B12). Researchers explained re-
cruiting materials are study specific and must (i) attract specific participants to a specific study,
(ii) elide details that may bias or prime the participant, and (iii) comply with local IRB protocols.
Researchers shared no clear solutions to this barrier.

5.2.4 Hard to Select Participants with the Desired Characteristics (B13). Some researchers ex-
plained that it is difficult to select participants with the desired characteristics upon their entry
into the study. Notably, researchers recruiting via LinkedIn or personal networks did not raise this
as a barrier, possibly due to sufficient data being available that allow these researcher to pre-filter
participants prior to their entry into the study. But researchers using Mechanical Turk encoun-
tered many participants who appeared to lack the skills or experience they claimed to possess,
even when they could pass a screener test. Often these researchers had to exclude participants
after-the-fact due to these differences. Researchers shared no clear solutions to this barrier when
pre-screening is not possible, but we have some proposed ideas in Section 6.

5.3 Execution Stage

The execution stage involves guiding recruited participants through the various steps and tasks of
the study. At each step, data may be collected to inform subsequent execution steps of the study
(e.g., the demographic survey may influence the group to which the participant is assigned) or may
be saved for subsequent analysis. Typical execution steps are shown in Figure 1.

5.3.1 End-to-end Orchestration Is Cumbersome (B14). During planning, a researcher determines
which tasks will be presented to which participants in which order. A common technique is to
randomly assign participants into groups (often called “conditions”) and to present all participants
in a particular group a particular set of tasks. For example, to compare toolA to tool B, a researcher
might randomly assign half the participants to group α and half to group β . All participants in
group α will perform programming tasks using tool A, and all participants in group β will use
tool B. This type of design, commonly referred to as a between subjects design, distributes the
variation between participants fairly. However, there are many alternative designs. For example, in
a within-subjects design, all participants use all tools being compared. In some cases, fully random
group assignment may not be the best choice, as the researcher may wish to ensure that groups
are balanced in terms of a particular independent variable such as experience with a particular
programming language, gender, disability, and so on.

A participant experiences one aspect of study orchestration in terms of the study steps presented
to them. For instance, when a participant enters the study, the first step may be to provide consent.
Once consent is provided, the participant completes the demographic survey. Next, the participant
is guided through the appropriate tasks, and so on, until all steps are completed. Orchestration may
be performed manually by a researcher, automated by a study tool, or some combination thereof.
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Beyond what a participant experiences, researchers explained study orchestration includes tasks
a participant often does not see, such as filtering participants based on demographic data, assign-
ing participants to a group (e.g., α or β), assigning tasks according to the study protocol, spinning
up and tearing down Virtual Machines (VMs), remembering to record a live session, collecting
data from the task, and mundane administrative tasks such as good record-keeping and securing
data.

“So the [orchestration tool] doesn’t exist, but I think it would be useful to have like an
automated workflow that kind of tracked all of this.” (R10)

Researchers interviewed raised the need for an orchestration tool to help manage these activi-
ties. Even with small studies, the manual effort to administer the study, its participants, its data,
and its tasks can be burdensome relative to a researcher’s time budget. Researchers attributed
errors to manual mistakes and a lack of orchestration, e.g., addressing e-mails to the wrong par-
ticipant, forgetting to follow consent protocols, errors in group assignment, forgetting to record a
session, throwing data away due to administrative errors, and other unfortunate outcomes. Several
researchers we interviewed ran studies automated to such an extent that a particular participants
could complete the study without a researcher being present. But generalized orchestration for
programmer user studies was rare in our sample.

One researcher interviewed built a generalized study orchestration tool within his own group.
While describing the system as “not pretty,” the researcher reports that it is useful and “better than
nothing,” since it helps the research group reuse its prior tools, automates complex or repetitive
tasks, and helps avoid some types of costly or embarrassing manual errors. By reusing the same
tools, data collection, and task interfaces from study to study, the researcher reports it is easier to
run studies and compare some data across studies within that research group.

Strategy S22: Automate parts of the study. To be clear, it is likely unrealistic for many re-
search groups to develop their own generalized study orchestration tools. Doing so may require
a large development effort. That said, several researchers reported successfully automating indi-
vidual studies such that they run unattended, which indicates that non-generalized automation is
achievable in some cases to avoid errors and reduce effort.

5.3.2 Prototype Software Is Not Ready for Deployment (B15).

“If you haven’t gotten their environment just right, you might squander a whole session.
And so we’ve mitigated a lot of that risk by often using platforms that we get to control.”
(R13)

Prototype software, by nature, is neither finished nor ready for deployment. A prototype might
only work in a narrow set of environments, and configurations it assumes may neither be main-
stream nor agree with best practice. The prototype instead is intended to explore a problem or
solution. Researchers used four methods to get prototype software in front of participants in a
task-based study—with mixed results:

(1) Web Application Server. The researcher deploys the prototype to a web server or container
the researcher controls. Participants access the tool via a web browser.

(2) Hosted Virtual Machine. The researcher deploys the prototype to a VM the researcher
controls. Participants access the tool via screen share or a remote access tool.

(3) Participant PC.1 The prototype is deployed directly onto the participant’s PC, which the
researcher does not control. The participant accesses the prototype from there.

1We include in this method a researcher-provided Virtual Machine deployed on the participant’s PC.
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(4) Researcher PC. The researcher deploys the prototype to a PC the researcher controls. Par-
ticipants access the PC in-person or via screen sharing or a remote access tool.

Researchers explained variability of the deployment environment may cause the researcher to
waste time—perhaps an entire session—troubleshooting and recovering from malfunctions.

Strategy S23: Minimize deployment environment variability. Researchers reported low-
ering this barrier by deploying the prototype into an environment the researcher controls: a Web
Application Server, hosted VM, or Researcher PC. A hybrid alternative is to deploy a VM on a
Researcher PC, which provides convenient environment control while reducing the management
overhead and/or cost of hosted VMs. With a Web Application Server, researchers reported the
participant’s web browser may be a point of variation: If the prototype only works correctly in
Chrome or Firefox, then the participant must use the compatible browser.

5.3.3 Deploying to a Participant’s PC Is Challenging (B16). Researchers who selected this route
uniformly expressed frustration getting prototype software to run reliably on participant PCs. This
is not surprising, as participant computers may be like snowflakes: Each one is unique due to dif-
ferent operating systems, software, patch levels, web browsers, configurations, and so on. Conse-
quently, prototype code and tooling may not work as expected—or at all. Researchers also told us
some participants do not want to install prototype code on their PC. One alternative approach is
to provide a virtual machine or Docker image file for the participant to run on their own computer.
This approach may not be suitable for participants who do not have these technologies locally or
who are unfamiliar with their use. Further, individuals with a slow internet connection will expe-
rience difficulty downloading large image files, and the researcher may find it time-consuming or
frustrating to help the participant install the VM and extract any data stored within the VM after
the study completes. Researchers shared no clear solutions to this barrier (except to avoid it by
using the other strategies).

5.3.4 Deploying to Hosted VMs Is Challenging (B17). Researchers told us managing hosted vir-
tual machines can require more sophistication than simply deploying to a Researcher PC. Further,
we heard that hosted VMs can be costly and complicated: It is not always clear to researchers how
to build environments that are stable, usable, robust, and secure. Some researchers also expressed
difficulty getting log data from VMs. Researchers shared no clear solutions to this barrier, but we
have some proposed ideas in Section 6.

5.3.5 Deploying to the Web Is Challenging (B18). Some researchers said deploying a prototype
via a Web Application Server is challenging and limiting in important ways; e.g., that web-based
coding tools give a poor experience, cannot handle complex needs, or are less realistic for coding
tasks. One researcher experienced problems due to a web security vulnerability in a prototype web
application. However, we also spoke to researchers who ran successful web-based studies using
tools such as Visual Studio Code and Code Sandbox. Researchers shared no clear solutions to this
barrier, but we have some proposed ideas in Section 6.

6 MANY UNMET NEEDS REMAIN

Though important, the 23 solution strategies reported by researchers in Section 5 (Table 5) lower
fewer than half the reported barriers we identified. In this section, we look for additional solution
strategies in 10 experiment platforms. We first examine seven software engineering experiment
platforms. However, none of these platforms are widely used. We then broaden our focus to include
three widely used behavioral science experiment platforms. From these platforms, we identify four
design ideas that might be adapted to programmer user studies to lower eight additional barriers
(Table 7).
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Table 7. Barriers Without a Researcher-Reported Solution Strategy

Potential
ID Barrier Description Solution Strategies

Barriers with Solution Strategies in Behavioral Science

B1 Task design is hard S27
B3 Can’t take any study off the shelf S26
B8 Gaining the needed knowledge is inefficient S25
B11 Hard to manage participants over time S24
B13 Hard to select participants with the desired characteristics S24

Barriers More-Specific to Programmer User Studies

B16 Deploying to a participant’s local PC is challenging S27
B17 Deploying to hosted VMs is challenging S27
B18 Deploying to the web is challenging S27

Barriers That May Not Have Solution Strategies

B4 IRB requires effort that seems unnecessary
B12 Recruiting material norms vary by study/org.

Table 8. Potential Solution Strategies

ID Potential Solution Strategy Description Barrier(s) Lowered

S24 Recruit using a shared pool of known participants B11, B13
S25 Design studies using wizards and guides B8
S26 Reuse study configuration files B3
S27 Reuse configurable task interfaces and components B1, B16, B17, B18

Table 9. Experiment Platforms Described in this Section

Platform Name Year Maintained?∗ Primarily Sustained By Phases

Software Engineering Experiment Platforms

Ginger2 [99] 1999 No Unknown 3, 4
SESE [22] 2002 No Single lab 1, 3
Experiment Manager [47] 2008 No Single lab 3
eSEE [101] 2008 No Single lab 1, 3, 4
ARRESTT [24] 2016 No Single lab 3
ExpDSL [42, 43] 2016 No Single lab 1, 3, 4
K-Alpha [85] 2021 Proof of Concept Single lab 1, 3, 4

Behavioral Science Experiment Platforms

jsPsych [25] 2015 Yes Open Source Community 1, 3
LookIt [77] 2017 Yes Hosted Platform 1, 2, 3
Gorilla [3] 2020 Yes Subscriptions 1,2†, 3
∗=as of September, 2022; See Figure 1 and Section 2 for Phase Descriptions; †=via integration.

6.1 Software Engineering Experiment Platforms

Over the past quarter century, the software engineering community built at least seven experiment
platforms to address its various needs. Freire et al.’s [38] systematic literature review covering 2002
to 2011 identified experiment platforms2 used in the software engineering literature, including

2We exclude FIRE [61] and VBER [15] as both are conceptual frameworks, neither tools nor platforms.

ACM Transactions on Software Engineering and Methodology, Vol. 32, No. 5, Article 120. Pub. date: July 2023.



120:22 M. C. Davis et al.

Ginger2 [99], SESE [22], Experiment Manager [47], eSEE [101], and Mechanical Turk3 [95]. In
our review of prior work, we found three additional platforms built since 2011: ARRESTT [24],
ExpDSL4 [42, 43], and K-Alpha [85]. All are summarized in Table 9.

Why do researchers not widely use these platforms to conduct programmer user studies? Freire
et al. [38] discusses some important limitations of certain platforms but does not investigate the
circumstances of their disuse. As circumstances of disuse may be varied, nuanced, complex, and
not documented in the literature, we contacted the authors of the original platform papers (ex-
cept Mechanical Turk) to understand their first-hand experience concerning the lifecycle of their
platform. We were able to reach the authors of all platforms except the oldest one, Ginger2. We pro-
vided an early draft of this section to the individuals we spoke to and incorporated their feedback
and corrections into this section and Table 9.

• Ginger2 (1999) [99] We were unable to reach the authors to gain additional context about
this platform’s lifecycle, but Freire et al. [38] points out that the platform only supports data
collection and analysis, and its experiments must follow a pre-determined process.
• SESE (2002) [22, 89] conducted remote and on-site programmer user studies at scale for a

single lab where the programmer used a local IDE such as Eclipse while the SESE client re-
ceived commands from and communicated results back to the central platform. SESE was
not intended for broad community adoption as it (i) used a proprietary codebase that re-
stricted its sharing and (ii) required a skilled operator to manage experiment execution. As
there was no community built around the platform, when the individuals responsible for the
system left the lab, SESE was no longer maintained or used.5

• Experiment Manager (2008) [41, 46, 47, 112] provided support for high-performance
computing–specific experiments by instrumenting a programmer’s locally installed tools
(e.g., Eclipse, Emacs, vi, shell, jUnit, etc.) and uploading the instrumentation data to the cen-
tral web-based server for analysis at the end of the experiment. Some instrumentation was
captured by creating wrapper programs for terminal commands. Plans existed to provide
support for further experiment types; however, when the research project came to an end
and the individuals that created the system graduated from the host institution, Experiment
Manager was no longer used or maintained.
• eSEE (2008) [100, 101], pronounced “Easy,” integrated several tools, task interfaces, and a

body of knowledge into a platform to support empirical software engineering. As the sys-
tem grew, keeping the evolving tools and task interfaces integrated consumed more time
than the research group could provide. While the central integrated platform stopped being
maintained, its templates, data collection tools, packages, protocols, and so on, continued to
evolve and additional tools were created, such as Experiment Factory [31].
• ARRESTT (2016) [4, 24] provided support for executing and reproducing experiments in

software testing techniques to address problems previously identified in Neto et al. [28].
Support for human experiments was planned, but evolution stopped and the platform fell
into disuse when the individuals responsible left or graduated from the host institution.
• ExpDSL (2016) [33, 42, 43] provided a platform, including an editor, to conduct human exper-

iments using prototype DSLs. The platform was based on the Meta Programming System
(MPS) [97] and did not have a community or company sponsorship; consequently, the plat-
form fell into disuse when breaking changes to the MPS platform also broke ExpDSL, and
resources were not available to make the necessary updates.

3Mechanical Turk [95] is not specific to software engineering but has been used in many software engineering studies.
4There are two unrelated tools called “ExpDSL” in the 2010s; this is not Freire et al.’s [36, 37] “ExpDSL.”
5Some ideas from SESE were later incorporated into greps.com, a commercial platform for Java skill evaluations [89].
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• K-Alpha (2021) [84, 85] is a recent prototype under active development that is too new at
the time of this writing to evaluate its full lifecycle, evolution, or sustainment.

Creating, sustaining, and evolving an experiment platform is neither trivial nor risk-free. Vari-
ous phases in the platform’s lifecycle may carry certain risks and opportunities, such as:

• Planning: No platform may be expected to support every possible experiment; conse-
quently, it is necessary to choose which experimenters and experiment types to support as
well as relative priorities among them. ExpDSL, Experiment Manager, and ARRESTT took a
narrow approach to the types of experiments supported. Careful attention should be given to
existing platforms on which the new platform may be built: breaking changes, instability, or
lack of maintenance in the underlying platform may generate an unexpected need for effort.
The authors of ExpDSL experienced this problem when updates to MPS broke ExpDSL.
• Implementation: The platform authors used a mixture of contract and in-house labor to

build the platforms. This phase may be similar to many other development projects.
• Sustainment and Evolution: Community-building is often needed to evolve and sustain a

platform over time. Absent a sustaining community, a platform’s ongoing viability may be
fragile such that it easily declines into disuse.

Software engineering researchers are clearly able to build a wide assortment of experiment plat-
forms that satisfy diverse needs but have thus far experienced less success building communities
that might support, sustain, and evolve these platforms over longer periods of time. Further, past
software engineering experiment platforms lacked support for community-based solution strate-
gies that are now used in behavioral science experiment platforms. We explore these platforms
next.

6.2 Behavioral Science Experiment Platforms

Behavioral science studies share many similarities with programmer user studies in terms of ex-
perimental design. In at least three cases, behavioral science researchers have built popular ex-
periment platforms with supporting communities and solution strategies that were notable in our
focus group discussions with programmer user study researchers. We outline these experiment
platforms below:

• jsPsych [25] is a web-based behavioral experiment platform that organizes an experi-
ment into a sequence of steps and decisions. Each experiment step presents a researcher-
configurable task interface within which the participant may complete a task. The result
of each task is recorded and may influence subsequent steps of the experiment. jsPsych
provides a set of core task interfaces appropriate for behavioral science, additional task in-
terfaces are provided by the community, and researchers may create custom task interfaces
for their own specific needs. jsPsych does not directly aid in the recruiting or data analysis
stages; however, jsPsych’s distillation of an experiment’s execution steps into an experiment
configuration file facilitates replication and adaptation of past experiments.
• LookIt [77] is a shared online platform on which researchers from different organizations

may design and execute online experiments. It provides the ability to define an experiment’s
steps and decisions and provides researchers a set of configurable task interfaces that may
be presented to a participant during the experiment. LookIt is particularly notable for
its community-oriented features; e.g., (i) it provides participants the ability to opt-in to a
shared participant pool whereby they may participate in future experiments according to
a cadence they choose, and (ii) the platform requires a community review of experiments
prior to recruitment to ensure LookIt’s community standards are upheld.
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• Gorilla [3] is a shared online platform on which multiple researchers may design and
host experiments. Researchers may use its visual tools to configure task interfaces and
insert them into complex experiment designs. Notably, Gorilla provides a set of guides for
experiment designs that are intended to help researchers design an experiment. Researchers
may use Gorilla to share their experiments with other researchers, and the tool is able to
ingest many jsPsych experiments. While Gorilla does not directly support recruitment, it
provides some integrations with platforms such as Qualtrics and Prolific.

Behavioral science platforms presently lack support for complex, diverse, and realistic program-
ming task interfaces such that participants may write, compile, test, analyze, and debug code. Con-
sequently, researchers in our focus group explained this gap is a barrier to adoption, which partially
echoes Freire et al.’s [38] recommendations for software engineering experiment platforms. How-
ever, our focus group discussions identified aspects of these platforms that, if adapted, may lower
additional barriers encountered by software engineering researchers.

6.3 Potential Solution Strategies

In this subsection, we explore four design ideas from jsPsych [25], LookIt [77], and Gorilla [3] that
our focus group discussions indicated might be adapted to lower 8 of the 10 programmer user study
barriers that presently lack solution strategies. We note that it is beyond the scope of this article
to prescribe whether it might be more advantageous to (i) extend behavioral science platforms to
support programmer user studies, (ii) build a community-supported platform specific to conduct-
ing programmer user studies, or (iii) take some other approach. We also leave to future work the
exploration of other software engineering study types that are not programmer user studies.

6.3.1 Strategy S24: Recruit Using a Shared Pool of Known Participants. LookIt [77] provides a
shared pool of participants that were previously recruited to the platform for a study. This pool
includes participant demographic information and respects the participant’s willingness to join
a future study. Prolific [66] provides a similar shared participant pool for scientific researchers.
Some software companies also maintain participant pools to support various types of research.
Researchers in our focus group supported this design idea as a means to help lower recruiting
barriers and to allow reuse of prior effort to attract hard-to-find populations. But managing a
shared pool requires addressing important considerations such as: participant privacy, participant
burn-out through over-contact, and ensuring study invitations and the study itself are high-quality
and appropriate. Notably, the design decisions of LookIt address many of these considerations,
including that participants control their contact state and frequency, controls are in place to protect
participant privacy, and a mandatory study peer review makes it more likely that studies will meet
community guidelines prior to being released to the participant pool. Adopting a similar strategy
may help lower recruiting barriers in programmer user studies:

• Hard to manage participants over time (B11) may be lowered using this strategy to
provide researchers a shared pool of programmer participants with known demographic
information that have participated in past studies.
• Hard to select participants with the desired characteristics (B13) may be lowered by

providing researchers visibility into the populations available within the pool, including
demographic and experience information relevant to a researcher’s study.

6.3.2 Strategy S25: Design Studies Using Wizards and Guides. Gorilla [3] offers a study configu-
ration wizard that allows researchers to design various studies through a series of prompts, which
allows researchers to benefit by exploring unfamiliar experiment designs that may be appropriate
to their goals. Guides may provide study-specific front-line guidance to address many typical
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questions and pitfalls in a normative way that may point to authoritative checklists or literature.
In our focus group, researchers found this idea realistic and that adopting a similar strategy may
help lower similar barriers for programmer user studies:

• Gaining the needed knowledge is inefficient (B8) may be lowered by guiding re-
searchers through the study design process using a series of wizard prompts and guides,
which may make the study design process less overwhelming while providing normative
guidance appropriate for the researcher’s need during the design process. This design ap-
proach may reduce the likelihood that a researcher will make errors relative to community
norms or need to find an expert for a particular study design simply to suggest literature
to read.

6.3.3 Strategy S26: Reuse Study Configuration Files. Basili et al. [10], Brooks et al. [19], Shull
et al. [82], and others [63, 79, 102] discuss the need to communicate key details needed for future
researchers to replicate, adapt, or understand a study; yet there are many complexities to doing
so [79, 80, 102]. jsPsych [25] and Gorilla [3] help address this need in diverse ways. Every jsPsych
experiment is encoded in a shareable study configuration file that may be read, copied, or adapted
similarly to a program’s source code. Notably, jsPsych delegates the representation of complex
configuration details within its configuration file to the task interface itself; consequently, jsPsych
avoids the need to be aware of all possible details of every possible task interface. Gorilla [3]
facilitates sharing a study design using its web-based portal. Freire et al. [36, 37] provide evidence
that a study configuration file may support a wide variety of software engineering experiment
types. Researchers in our focus group indicated this design idea may realistically lower barriers to
sharing study designs and facilitates a researcher’s adaptation of, learning from, and/or replication
of a previously-conducted study.

• Can’t take any study off the shelf (B3) may be lowered by encoding each study into a con-
figuration file that describes the aspects needed to adapt and/or repeat the experiment: the
participant pool selection and quantity, the demographic survey, logic to assign participants
to groups and tasks, the task interfaces and their configurations, as well as data collection
and analysis details. While contextual details such as motivation may be described in a com-
panion paper published by the researchers, the experiment configuration file may provide
a clear and transparent picture of the study such that a future researcher may take a past
experiment off the shelf and either replicate it or adapt it for their own research purposes
using the same platform.

6.3.4 Strategy S27: Reuse Configurable Task Interfaces and Components. According to Basili
et al. [10], experimentation time and cost may be reduced by reusing artifacts. But the literature
enumerates many difficulties, complexities, and tradeoffs involved [6, 12, 45, 86, 98]. Artifact reuse
is a key feature of jsPsych [25], LookIt [77], and Gorilla [3]: Each provides a variety of configurable
task interfaces and components. Our focus group indicated that adopting this strategy may reduce
the effort needed to set up and operate a working experiment, including items such as consent
forms, demographic surveys, and common tools and task interfaces. Evidence suggests that this
design idea is applicable to programmer user studies: One research group we encountered uses an
in-house generalized orchestration tool with configurable tools and task interfaces that are reused
from study to study. Other researchers we interviewed reuse some tools from study to study but
are inhibited by the lack of a generalized orchestration framework to facilitates integration and
exchange of task interfaces and components with other research groups. Adapting this solution
strategy to the unique needs of the programmer user study research community may help lower
multiple barriers:
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• Task design is hard (B1) may be lowered in many cases by a researcher selecting from
a shared library of configurable task interfaces appropriate for programmer user studies.
While task design will likely remain challenging, our focus group thought this solution strat-
egy may reduce effort by avoiding the build, test, and evaluation effort required for many
custom task interfaces. jsPsych [25], LookIt [77], and Gorilla [3] provide significant libraries
of task interfaces, and a similar effort within our own community would be necessary to
cover a set of realistic environments and programmer tasks.
• Deploying to hosted VMs is challenging (B17) may be lowered by encapsulating com-

mon VM hosting operations into a reusable task interface component. Our focus group indi-
cated the ability to automatically manage the lifecycle of spinning up a VM, connecting the
participant, managing the VM over the course of the study, and the final stages of data ex-
traction and shut down were automation opportunities. VM and cloud providers offer stable
APIs for this automation, but these APIs have a significant learning curve. Hence, providing
this automation within the orchestration tool relieves researchers of this burden.
• Deploying to the web is challenging (B18) may be lowered by providing pre-integrated

configurable task interfaces that utilize realistic web-based environments that some re-
searchers are successfully using in their studies today. These may include tools such as Visual
Studio Code, Code Sandbox, GitHub CodeSpaces, CRExperiment, and others. At our focus
group, the need for realistic web-based task interfaces was a common concern.
• Deploying to a participant’s local PC is challenging (B16). This barrier reflects the

difference between a participant’s local PC, which is of varied configuration and state, and
the need for prototype software to make assumptions about the environment in which it
will be installed. Researchers in our focus group expressed a desire to side-step this issue by
lowering the barriers described above.

7 THREATS TO VALIDITY

The researchers we engaged were selected because they are successful programmer user study
researchers, as evidenced by their past publications and meaningful contributions to the field. It
is possible researchers we did not talk to encountered significant barriers unknown to us. For ex-
ample, our sampling method excluded researchers who have not yet published their first study.
We attempted to mitigate this limitation by including in our sample junior researchers for whom
their first study was relatively recent, but it is reasonable that researchers who fail or give up on
their first programmer user study may experience a different set of barriers to which our method
and data lacks visibility. Our sample of researchers is primarily from North America; it is possible
barriers and solution strategies differ across geographies. We lack demographic data about our
target population of programmer user study researchers and are unable to describe how our re-
searcher sample relates to the overall population. Our research questions and interview scripts
were designed to surface practice and infrastructure needs; other needs, such as changes to com-
munity practices at large, may not be addressed because we did not ask researchers about them
specifically. However, we did not restrictively define the word “practices,” and we observed that
some researchers spoke of community practices in their responses. It is possible additional solu-
tion strategies exist for barriers that were unknown to our sample of researchers or that did not
seem salient to them at the time. The ongoing pandemic during the study period may have caused
some researchers, who might otherwise be reluctant to run remote studies, to run remote studies
anyway. Due to this shift, it is possible we encountered researchers at a time when they were ex-
periencing a different set of barriers than usual due to their need to actively adapt their studies
to an unfamiliar remote delivery method. Inductive thematic analysis requires an active role of
the researcher: Themes are tested against the data, but do not “reveal themselves” [17]. While we
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took steps beyond what Braun and Clarke [17] recommend to mitigate the biases of one author,
no process can remove all bias. For this reason, the findings supported by thematic analysis are
described as a set of barriers encountered by practitioners along with found solutions. We avoid
making broader or more-precise claims than the method and data support.

8 CONCLUSIONS

This article provides guidance and strategies that researchers can use to conduct more—and more
impactful—experiments with programmers. To that end, we engaged the programmer user study
research community through a set of human-focused methods that provide a more-nuanced lens
than prior work, which was largely based on literature reviews.

Using Inductive Thematic Analysis [17] to analyze transcripts of 26 researcher interviews
(Table 2), we found researchers encounter 18 substantial barriers (Table 4), including barriers
recruiting participants, the effort required, and the knowledge required to conduct a programmer
user study. Of the 18 barriers reported by researchers, we found 8 have at least one solution
strategy in use, but these strategies may neither be well known nor widely adopted, even if found
in prior work. We summarize these 23 solution strategies in Table 5 and contribute them to the
community as they may help lower 44% (8/18) of reported barriers.

We further found 8 of the 10 barriers without a solution strategy (Table 7) may be lowered by
adopting four community infrastructure design ideas previously adopted by the behavioral science
community, as evidenced by LookIt [77], jsPsych [25], and Gorilla [3]. We adapt and contribute
these design ideas in Table 8 and compare the sustainment models of 10 experiment platforms in
Table 9. Building or adapting a system to support these ideas for our community may increase
the number of barriers lowered by known solution strategies from 44% (8/18) to 89% (16/18). The
final 2 unresolved barriers remain as future work as are finding and addressing barriers we did not
elicit.

Is there support among researchers for building or adapting community infrastructure? In our
focus group of 16 researchers (Table 3), we observed support for the 4 design ideas (Table 8). Is
building community infrastructure realistic? The evidence indicates it may be: The behavioral sci-
ence community recently built three software-based human experiment platforms, and we found
seven examples of software engineering experiment platforms in the literature, although these
platforms often appear to have abbreviated lives due to insufficient community building. Incorpo-
rating similar ideas into the programmer user study community by extending behavioral science
platforms or by building a platform specifically for programmer user studies with community
support may similarly reduce the burden on researchers, increase the amount and proportion of
direct evidence available, and advance the field’s progress by making programmer user studies
easier, more impactful, and more available to software engineering researchers.
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