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Abstract 

Background: Wheat yield is influenced by the number of ears per unit area, and manual counting has traditionally 

been used to estimate wheat yield. To realize rapid and accurate wheat ear counting, K-means clustering was used for 

the automatic segmentation of wheat ear images captured by hand-held devices. The segmented data set was con-

structed by creating four categories of image labels: non-wheat ear, one wheat ear, two wheat ears, and three wheat 

ears, which was then was sent into the convolution neural network (CNN) model for training and testing to reduce 

the complexity of the model.

Results: The recognition accuracy of non-wheat, one wheat, two wheat ears, and three wheat ears were 99.8, 97.5, 

98.07, and 98.5%, respectively. The model R2 reached 0.96, the root mean square error (RMSE) was 10.84 ears, the 

macro F1-score and micro F1-score both achieved 98.47%, and the best performance was observed during late grain-

filling stage (R2 = 0.99, RMSE = 3.24 ears). The model could also be applied to the UAV platform (R2 = 0.97, RMSE = 9.47 

ears).

Conclusions: The classification of segmented images as opposed to target recognition not only reduces the work-

load of manual annotation but also improves significantly the efficiency and accuracy of wheat ear counting, thus 

meeting the requirements of wheat yield estimation in the field environment.
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Background
Wheat is one of the most important food crops that play 

a significant role in national food security. �e wheat 

grain-filling period is the key growth period that deter-

mines yield formation, and the number of ears per unit 

area is an important factor of yield [1–3]. �us, it is of 

great significance to estimate wheat yield by rapidly 

determining the ear number. During production, the 

manual counting method is often used to estimate pro-

duction, which is time-consuming and labor-intensive. 

Conversely, machine vision, machine learning, and image 

processing technologies can be used to rapidly and accu-

rately identify wheat ear per unit area. �is is of great 

significance to wheat yield estimation and provides tech-

nical support and a foundation for the acquisition of 

wheat plant phenotypic information.

�e development of high spatial resolution com-

puter vision-based phenotype identification [4–6] has 

produced high-throughput phenotyping platforms [7]. 

Image processing technology has been used to iden-

tify the number of ears of wheat [8, 9], but the methods 

focus on texture features, color segmentation, morpho-

logical extraction, and other feature extraction methods. 

Cointault et  al. [10] used a color texture image analysis 
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method based on mixed space to realize the recognition 

and counting of wheat ear. Fernandez-Gallego et al. [11] 

used local maximum peak values to count ears based on 

RGB color images in field conditions [12]. �e current 

recognition methods based on image processing tech-

nology require extensive artificial image feature extrac-

tion, which places high demand on the environment and 

technology.

In recent years, machine learning has been shown 

to have a significant advantage in the field of machine 

vision, such as in image segmentation and object rec-

ognition [13–15]. Zhu et  al.[16] used a support vector 

machine segmentation (SVM) model to realize wheat ear 

counting, and Li et al. [17] used a neural network based 

on texture features to detect ears, the accuracy of which 

exceeded 80%. Hasan et al. [18] used an in-depth learning 

method to detect and count wheat ears, achieving a high-

est accuracy of 94%. Madec et al. [19] used CNN to iden-

tify wheat ears from low-spatial-resolution RGB images. 

Machine learning methods provide automatic feature 

extraction and excellent parameter adjustment, which 

greatly reduce manual feature extraction and interpre-

tation. However, the use of machine learning to identify 

grains requires the manual extraction of the image fea-

ture building the data set. �us, these methods are prone 

to some human error and also have the disadvantages of 

identification inaccuracy caused by the adhesion of mul-

tiple wheat ears. At the same time, a simple and rapid 

counting system for wheat ears is lacking, and the devel-

opment of such a system would have a significant impact 

on wheat production.

Image processing methods are influenced by the extrac-

tion of image features, lighting conditions, shadows, and 

complex backgrounds [20], and the requirements of the 

environment and technology are limited by the data 

set itself [21]. Although wheat ear recognition methods 

based on CNN are advantageous, image features (wheat 

ears) need to be manually extracted in order to construct 

the dataset [22]. To overcome the above issues, we pro-

pose the use of image processing technology to extract 

wheat ear features rapidly, combining this with CNN to 

reduce the workload of manual labeling and improve the 

recognition accuracy.

In this paper, we use mobile devices to rapidly acquire 

wheat ear images in the field environment and extract 

the contour features of the wheat ears automatically 

based on the K-means clustering algorithm, thus reduc-

ing the workload of the manual extraction of wheat ear 

features. On this basis, we constructed an image classi-

fication dataset with four types of labels: non-wheat ear, 

one wheat ear, two wheat ears, and three wheat ears. 

Ultimately, a CNN model was constructed to realize the 

rapid and accurate identification of wheat ears in the 

complex field environment as well as to provide technical 

support for the accurate yield estimation of wheat.

Materials and methods
Field experiments

Experiment 1 was conducted in Xuchang, China, at 

the Campus of Henan Agricultural University in 2018, 

2019 in the experimental farm (34°08′N, 113°48′E). �e 

Xuchang site is in the center of China, with a typical 

temperate and monsoonal climate. �e previous crop 

was soybean. �e tested wheat varieties included AK58, 

XN509, YM49, and ZM27. �e experimental plot was 

10 m long, 2 m wide, and with a row spacing of 20 cm. 

A split-plot design was adopted and was repeated three 

times. In order to facilitate sampling and field operation, 

a 1 m wide channel was set up between each plot. Nitro-

gen fertilization was applied as ammonium nitrate in the 

winter at rates of 120 kg ha−1 for every year, and water-

ing once in overwintering period and jointing period 

respectively.

Experiment 2 was conducted in Yuanyang, Xinxiang, 

China, at the Yuanyang Science and Education Park 

(35°6″N, 113°56″E) of Henan Agricultural University in 

2018. �e Yuanyang site is in the center of China, with 

a warm temperate continental monsoon climate. �e 

previous crop was maize. �ere were 10 wheat varieties 

tested, namely, SM159, XN20, XN511, YM11, ZM119, 

ZM136, ZM158, ZM318, ZM32, and ZM36. �e area of 

the community was 25 × 5 m, and the row spacing was 

20 cm. Nitrogen fertilization was applied as ammonium 

nitrate in the winter at rates of 127.5 kg ha−1, and water-

ing once in overwintering period and jointing period 

respectively.

Image acquisition

Wheat ear image data were captured during the flower-

ing and filling period (Table  1). Image acquisition was 

conducted in a Redmi Note 7 mobile phone (Xiaomi, 

Beijing, China), HUAWEI nova 3i (HUAWEI, Shenzhen, 

China) and DJI Phantom 3 Pro (DJI, Shenzhen, China). 

�e Redmi Note 7 mobile phone has 48 million + 5 mil-

lion pixels in the rear cameras, the HUAWEI nova 3i 

mobile phone has 24 million + 2 million pixels in the rear 

cameras, and the Phantom 3 Pro has a battery capacity 

of 23 min for each flight and can take auxiliary hovering 

pictures. �ree devices are high quality with full color. 

Image acquisition was carried out on both sunny and 

cloudy days. �e image acquisition mode was vertical 

shooting. �e ground resolution was 0.18–1.0. One flight 

of 3  m altitudes was completed in Xuchang (Table  1), 

the purpose of which was to verify the portability of the 

research method on the unmanned aerial vehicle (UAV) 

platform. One data collection was in Yuanyang in order 
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to verify the applicability of the method in different wheat 

varieties. On May 13, 2020 in Xuchang, a 12  ×  30  cm 

white board was placed as the ground standard when the 

image was taken, and one square meter area was selected 

in the center of the shooting area for wheat ear manual 

measurement and counting, to verify the applicability of 

proposed method in field condition.

Image processing

Wheat ear images were processed with image processing 

technology and were clustered and segmented, following 

which they were sent to the CNN model for learning and 

recognition. �e algorithm flow chart is shown in Fig. 1.

To accelerate image processing, the original image was 

reduced by 1400 × 1400 from the center of the acquired 

image and scaled to 700 × 700. Following enhancement 

by histogram equalization, the contours of the wheat 

ears were extracted by K-means clustering segmentation. 

�e segmented images were divided into four categories: 

non-wheat ear, one wheat ear, two wheat ears, and three 

wheat ears. Image processing algorithm was developed 

in Python (3.7, Python Software Foundation) using the 

OpenCV library (4.2) [23].

Image denoising and enhancement

Due to the reflection of the wheat leaves under sun-

light, the instability of the camera during shooting, and 

the influence of the natural environment, some noise 

will appear in the images. In addition, the image may 

be interfered with by random signals during the trans-

mission process. It was thus necessary to enhance and 

denoise the wheat ear images.

�e image was transformed into CIELAB [24], and 

the L channel with a threshold of 2 was used for adap-

tive histogram equalization to enhance the image (using 

Python with OpenCV library, the createCLAHE func-

tion with parameter clipLimit = 2.0, tileGridSize = (8, 

8)), and the size of kernel 3 was used to perform 

median filtering to remove noise (using Python with 

OpenCV library, medianBlur function with param-

eter ksize = 3). Figure  2 shows the original wheat ear 

image and the enhanced wheat ear image. �e wheat 

ear image is mainly composed of the ear, leaf, stem, and 

soil, and the ear color characteristics are more obvious 

when the wheat is in the filling stage. During the fill-

ing stage, the wheat ear turns yellow gradually, showing 

obvious color differences with the leaf and stem, as well 

as the ground, but the difference between the wheat 

leaf color and stem color is small (Fig.  2). Enhancing 

the image increases the brightness of the wheat ears in 

the image, which makes the contrast between the wheat 

ear and the background of the stem and leaf more obvi-

ous, which is advantageous for the extraction of wheat 

ears’ features.

Table 1 Summary of the main image acquisition characteristics of the two experimental sites

The images collected by the mobile phones were taken by holding mobile phones or holding sel�e sticks at an altitude of 1.5–2.2 m. The UAV images were taken at an 

altitude of 3 m

Sites Date Weather Plot Image size Camera Image Focal length 
(mm)

Resolution (mm)

Xuchang 06/05/2019 Sunny cloudy 12 4000 × 3000 Redmi Note 7 60 5 0.27–0.54

Xuchang 14/05/2019 Sunny cloudy 12 4000 × 3000 Redmi Note 7 60 5 0.27–0.54

Xuchang 14/05/2019 Sunny cloudy 12 4000 × 3000 DJI Phantom 3 Pro 20 4 1.00

Yuanyang 15/05/2019 Sunny cloudy 10 4000 × 3000 Redmi Note 7 490 5 0.27–0.54

Xuchang 16/05/2019 Sunny 12 4000 × 3000 Redmi Note 7 60 5 0.27–0.54

Xuchang 20/05/2019 Sunny 12 4000 × 3000 Redmi Note 7 324 5 0.27–0.54

Xuchang 13/05/2020 Sunny cloudy 12 4608 × 3456 HUAWEI nova 3i 48 4 0.18–0.26

Original image     Image enhancement    Image clustering       Image segmentation    Data set construction 

Non-wheat ear 

1 wheat ears 

2 wheat ears 

3 wheat ears 

Fig. 1 Flow charts of wheat ear image processing. The original image was enhanced using adaptive histogram equalization, then the original 

image was segmented into four types of data through K-means clustering segmentation: non-wheat ear, one wheat ear, two wheat ears, and three 

wheat ears



Page 4 of 13Xu et al. Plant Methods          (2020) 16:106 

Image segmentation and wheat ear contour extraction

�e K-means algorithm is a clustering algorithm based 

on iterative solution [25–27]. It uses distance as the index 

of similarity, meaning that the closer the two data points 

are, the greater the similarity. �e traditional method of 

extracting features by hand is time-consuming and labor-

intensive and can easily produce errors in the images of 

dense wheat ears. In this study, a K-means-based image 

segmentation algorithm was used for wheat ear segmen-

tation to replace the traditional manual feature extraction 

of wheat ear color features and thus reduce the error of 

manual extraction, which was realized in Python Scikit-

learn [28] library using the KMeans function.

After image enhancement, there were obvious differ-

ences between the color of the wheat ear and the back-

ground color of the stem, leaf, and transition colors. 

If these are directly clustered into two groups, it will 

lead to segmentation errors in the color transition area. 

�erefore, three clustering centers were selected to use 

K-means clustering to quantify the color of the wheat 

ear image. After clustering, the wheat ear image will only 

contain a specified number of categories. �e process is 

as follows: the wheat ear image is clustered, three cluster-

ing centers are selected, the clustered wheat ear image is 

converted into a gray image, and the color of the wheat 

ear is assigned to black. A flow chart of this process is 

shown in Fig. 3.

According to the color characteristics of the wheat ear 

after clustering, the image of the wheat ear after clus-

tering is binarized (black for wheat ears, white for the 

background area, gray for the stalk and leaf ). As there is 

noise in the ear image after segmentation, some of the 

ears stick to each other. For the binary image, a morpho-

logical opening with anchor 6 ×  6 was used to remove 

background noise and the burr around the wheat ear, and 

then morphological closing with anchor 3 × 3 was used 

to fill in the holes in the wheat ear, as indicated in Fig. 4a, 

b. �e black area is the contour of the wheat ear after 

morphological processing.

By comparing the binary image with the original image, 

the wheat ear image was obtained using the contour 

Fig. 2 Image denoising and enhancement. a Original image b enhanced image. The original image was transformed into CIELAB, and the L 

channel was enhanced using adaptive histogram equalization with a threshold of 2. Enhanced image increases the brightness of the wheat ears to 

distinguish the background, such as the stem and leaves

Fig. 3 Wheat ear image segmentation algorithm flow. Three 

segmentation categories are beneficial for the segmentation 

accuracy: soil background, stem and leaf, and wheat ear, which were 

realized in Python Scikit-learn library using the KMeans function
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feature of the wheat ear and the information of the center 

of mass, area, perimeter, and boundary frame of each 

black connected area, which were developed in OpenCV 

library using the findContours function with param-

eters contours = 1 and hierarchy = 5. After obtaining 

the boundary frame of each black connected region, the 

wheat ears were marked on the original image by a mask, 

and then the marked wheat ears were divided into small 

images and saved. A border was added to the original 

image to prevent the ears near the border from becoming 

indivisible. A complete wheat ear segmentation map was 

obtained as shown in Fig. 4c.

Data set construction

Seventy of 490 images of Xuchang on May 20, 2019 and 

50 of the 324 images of Yuanyang on May 15, 2019 were 

reserved for testing. �e remaining 694 images were seg-

mented into 160,784 small images as a training set and 

a verification set. Other collected images were used to 

measure the generalization ability of the method. After 

batch segmentation, it was found that due to strong light, 

part of the wheat leaves had strong reflection, resulting 

in them being mistaken as wheat ears. Second, the wheat 

ear after segmentation was basically one wheat ear, two 

wheat ears, or three wheat ears, and more than three 

wheat ears in one image was rare. �erefore, to reduce 

complexity in the establishment of the CNN model, 

the recognition categories were output into four cat-

egories: non-wheat ear, one wheat ear, two wheat ears, 

and three wheat ears. Following the segmentation, the 

two types of images with more images were non-wheat 

ears and one wheat ear, whereas the images with more 

than three wheat ears, particularly three wheat ears, 

were less. �erefore, to maintain the equilibrium of the 

data set, four types of wheat ear were selected from the 

segmentation images. Four categories of labeled image 

data sets were selected, and the number of non-wheat 

ear, one wheat ear, two wheat ears, and three wheat ears 

were 1483, 4246, 1173, and 893, respectively. Some of 

these results are provided in Fig. 5.

To provide sufficient data for model training, 12,000 

augmented images of non-wheat ear, one wheat ear, 

two wheat ears, and three wheat ears were produced by 

randomly cutting, flipping, rotating, and adjusting the 

brightness of the original image [29–31]. �e expanded 

data set was divided into a training and test set, and each 

class included 11,000 training sets and 1000 test sets.

CNN model construction and recognition

Deep learning allows the neural network to grasp data 

features by itself, providing a more abstract high-level 

representation by combining low-level features to 

Fig. 4 Wheat ear contours feature extraction diagrams. a Clustering image, b binarization image by removing background noise and the burr 

around, filling in the holes inside in the wheat ear, c masked segmentation image. The image segmentation and contour extraction were developed 

in the Python OpenCV library using the findContours function, then wheat ears are marked on the original image

Fig. 5 Illustration of the data set images. a Non-wheat ear, b one 

wheat ear, c two wheat ears, and d three wheat ears. The data set 

images of two and three ears of wheat were mostly the result of 

adhesion
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describe the high-level attribute categories or features 

of the identified objects [32–35]. A large amount of data 

was available following clustering segmentation, and the 

segmented image was composed of four types of images: 

non-wheat ear, one wheat ear, two wheat ears, and three 

wheat ears. �e CNN model was established to train 

and recognize the four categories of segmented images. 

�rough clustering segmentation, a large number of 

wheat ear images were obtained and could effectively 

scale the data without feature engineering. Furthermore, 

the algorithm exhibited strong adaptability and was easily 

convertible.

�e CNN model was composed of five convolution lay-

ers, five pooling layers, 3 × 3 convolution layer convolu-

tion kernels to extract features, and two fully connected 

layers. �e structure is indicated in Fig.  6, the active 

function is Rectified Linear Unit (ReLU), and the softmax 

cross entropy loss function is used to quantify the CNN 

method accurate. Following model training, the images 

of the test set were segmented after image enhancement, 

color reversal, and clustering. �e trained CNN model 

was loaded, and the segmented photos were provided 

to the model for recognition and classification. �en the 

number of each classification was recorded, finally add-

ing all of the different quantities to obtain the number of 

ears.

Statistical analysis
�e Xuchang site test data set was divided into three 

parts: random test, different shooting time, and UAV 

shooting using SPSS software (25.0, SPSS, Chicago, IBM, 

USA) (Table  2), and 120 images were used to evaluate 

the performance. Fifty images of 10 different cultivars 

in the Yuanyang site data set were used to evaluate the 

repeatability.

To evaluate the classification performance of the CNN 

model, the precision (P), recall (R), macro F1-score 

(F1,ma), and micro F1-score (F1,mi) were calculated to eval-

uate the performance of multi-label classification model 

[36, 37], which are defined as follows:

where TPi, is true positive, which denotes the number of 

images correctly classified as change type i; FPiis false posi-

tive, which denotes the number of images incorrectly clas-

sified as change type i; and FNiis the false negative for class 

i, which denotes the number of images of type i that are 

incorrectly classified as other types. Pi and Ri are respec-

tively precision and recall for class i, n is the number of 

classes (this study, n = 4), and Pmi and Rmi are respectively 

precision and recall for Micro-F1.

In addition, R2 and RMSE, the relative root means square 

error (RRMSE) [38], and bias were used to quantify the 

counting performance of the model:

(1)Pi =
TPi

TPi + FPi

(2)Ri =
TPi

TPi + FN i

(3)F1,ma =
2

n

n∑

i=1

Pi × Ri

Pi + Ri

(4)F1,mi = 2 ×
Pmi × Rmi

Pmi + Rmi

Pmi =

∑
n

i=1
TPi

∑
n

i=1
TPi +

∑
n

i=1
FPi

Rmi =

∑
n

i=1
TPi

∑
n

i=1
TPi +

∑
n

i=1
FN i

(5)
R
2

= 1 −

∑

n

i=1
(mi − ci)

2

∑

n

i=1

(

mi−

−

m

)2

(6)RMSE =

√

√

√

√

1

n

n
∑

i=1

(mi − ci)
2

Fig. 6 CNN model. C convolutional layer, P pooling layer, F fully connected layer
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where n is the number of images, and mi and ci are 

the manual annotation and identifying counts for 

image i, respectively, and 
−

m is the average of the man-

ual annotation counts.

Results
The CNN framework was trained and tested in 

PyCharm (2019.3, PyCharm, Prague, JetBrains, Czech) 

using the TensorFlow framework (TensorFlow1.15, 

Google, California, USA) on a Windows 10 PC Intel 

Core i7 processor (3.6 GHz) with 16 GB RAM. In this 

paper, a 1400  ×  1400 image was cut from the origi-

nal image from the center position and then scaled 

to 700 × 700. After segmentation, the four categories 

images were uniformly scaled to 100  ×  100. On this 

basis, the performance evaluation of the CNN machine 

learning method could be compared to the manual 

annotation and counting of the image.

(7)RRMSE =

RMSE

−

m

× 100%

(8)Bias =

1

n

n∑

i=1

(mi − ci)

Model accuracy evaluation

To assess the classification results, after 8000 epochs of 

training, we adopted indices of macro F1-score and micro 

F1-score calculated on a multiclass confusion matrix. �e 

classification results obtained by the methods are shown 

in Fig. 7 and Table 3. Figure 7 lists the confusion matrix 

in detail, which calculates the statistics of the classified 

Table 2 Summary of the manual counting of ears of winter wheat at the Xuchang and Yuanyang experimental sites

The cultivar image of Yuanyang was acquired on May 15, 2019, whereas the UAV image of Xuchang was acquired on May 14, 2019

SD standard deviation, CV coe�cient of variation

Sites Data set Samples size Min Mean Max Range SD CV (%)

Xuchang Test 60 166 250 357 191 43 17

May 6 10 173 239 309 136 47 20

May 14 10 137 195 232 95 30 15

May 16 10 251 291 326 75 26 9

May 20 10 194 233 275 81 29 13

All date 40 137 240 326 189 48 20

UAV 20 117 176 255 138 43 24

Yuanyang SM159 5 274 315 367 93 33 11

XN20 5 316 346 387 71 27 8

XN511 5 265 322 362 97 39 12

YM11 5 289 318 360 71 27 8

ZM119 5 219 254 271 52 23 9

ZM136 5 276 301 320 44 16 5

ZM158 5 220 250 285 65 27 11

ZM318 5 202 280 310 108 45 16

ZM32 5 265 338 378 113 44 13

ZM36 5 232 270 303 71 27 10

All cultivars 50 202 300 387 185 44 15

All 170 117 253 387 270 58 23

Fig. 7 The multiclass confusion matrix of the different classification 

results using the test data. The method achieved good results in the 

classification of each category 
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image number by comparing the actual label in the test 

data with the predicted types and indicates whether the 

model is confounding the different classes. In Table  3, 

the precision, recall, and F1-score of the four classes are 

calculated on the basis of the confusion matrix, which 

embodies the classification accuracy of each class. From 

the table, we notice that the macro F1-score and micro 

F1-score both achieved 98.47%. From this result, we can 

infer that the recognition accuracies of non-wheat ear, 

one wheat ear, two wheat ears, and three wheat ears were 

99.8, 97.5, 98.07, and 98.5%, respectively.

Evaluation of performance of wheat ear images

Test images were preprocessed and clustered, and then 

each image was segmented, saved, and sent to the CNN 

model for recognition and counting to test the generali-

zation ability of the model. �e comparison between the 

detected ears of wheat images and the manual counting 

results is shown in Fig. 8.

�e performances evaluated over the test data sets 

showed only a slight degradation in comparison with the 

test and different datasets, providing some confidence on 

the robustness of the K-means-CNN method (Fig. 8 and 

Table  4). �e model-based identification of the wheat 

ears was in good agreement with the manual identifica-

tion (Fig. 8a and Table 4). �e result demonstrated that 

the high R
2 = 0.96 of the K-means-CNN counting was 

highly correlated with manual counting and demon-

strated low data dispersion (Table 4).

However, performances of identify degrade for the 

different dates of grain filling stage (Table  4). �e bias 

between the identified and the manual ear values 

ranged from 0.1 ears (May 20) to 11.60 (May 14) ears for 

Xuchang (Table  4). �e poorer performances observed 

on May 6 (R2 = 0.82, RMSE = 22.54) may be attributed 

to the early stage when the wheat ear is not yet mature. 

In these conditions, the contrast between the wheat ears 

with the stems and leaves is poor, whereas the character-

istics are more obvious and easily identifiable in the later 

stages, and thus the best performance was observed on 

May 20 (R2 = 0.99, RMSE = 3.24, Table  3). �e results 

suggested that the images should be taken at the later 

grain-filling stage around May 20. Our results are in good 

agreement with those of earlier studies [11].

To further evaluate the robustness of the proposed 

method, 20 UAV images not involved in training were 

used for verification. �e relationship between the 

K-means-CNN model and manual ear counting was posi-

tive and strong, with an R2 of 0.97 and an RMSE of 9.47 

ears. �is result showed that the images collected by the 

UAVs and hand-held devices all achieved high recogni-

tion accuracy using the proposed method (Fig.  9). In 

addition, the UAV data set bias values were –5.00, indi-

cating a slight overestimation of the number of ears.

Repeatability across di�erent cultivars

Fifty subsamples with 10 different cultivar extracts of the 

subsample were selected in the Yuanyang site to evalu-

ate the repeatability of the estimation when the images 

were taken under slightly different cultivation conditions. 

High consistency between the 10 cultivars was observed 

(Fig. 10), with the residuals showing a standard deviation 

of about 12.43 ears.

�e performance of the algorithm was further tested 

using the 50 images. Manual counting was used as the 

validation data, as before. Table  5 provides the statisti-

cal summary results obtained for the Yuanyang plots. 

�e results showed a decrease by up to 0.04 in R2 while 

maintaining a similar correlation, and the bias between 

the identified and the manual ear values ranged from 

− 15.40 ears (ZM32) to 18.80 (ZM158) ears for Yuanyang 

(Table  4). �e R
2 value remained close to the Xuchang 

values for all but the ZM119 and ZM136 images, where 

the correlation values shifted slightly from the original 

values. �e best performance was observed in XN511 

(R2 = 0.99, RMSE = 8.97, Table  5), and the lowest was 

observed in ZM119 (R2 = 0.81, RMSE = 10.14, Table  5). 

�is suggested that the genotypes of the different culti-

vars will slightly affect the identification results. �ese 

results suggest that more genotype images are needed to 

contribute to model training to achieve higher accuracy.

Evaluation of performances in �eld condition

Forty-eight subsamples of wheat ear images with ground 

standard were selected in the Xuchang site to evaluate 

Table 3 Quantitative comparison of the classi�cation accuracy for di�erent classes using the test data

The recognition accuracy of non-wheat ear, one wheat ear, two wheat ears, and three wheat ears all have higher precision

Class Precision (%) Recall (%) F1-score (%) Macro F1-score (%) Micro F1-score (%)

Non-wheat ear 99.80 98.42 99.11 98.47 98.47

1 wheat ear 97.50 97.70 97.60

2 wheat ears 98.07 97.98 98.03

3 wheat ears 98.50 99.80 99.14
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the accuracy and practicality of the proposed method. It 

can be concluded that 48 samples are highly correlated 

with measurement counts in the field condition (Fig. 11).

�e performance of the method was further tested 

using 48 subsamples. One Square meter area was selected 

in the center of the image area for manual counting in the 

field condition, which was used as the test data. Figure 11 

a b

c d

Fig. 8 Comparison between the wheat ears identified using the model with the corresponding manual values by visually identifying the ears in the 

images. Data for the three experimental data sets are well identified. a Test images, b UAV images, c different date images, and d all test images in 

Xuchang

Table 4 Relationships between the identi�ed and manual wheat ear counting for the three data sets

The K-means-CNN counting was highly correlated with manual counting

Sites Dataset Samples size Slope Intercept RMSE (ears) R2 RRMSE (%) Bias (ears)

Xuchang Test 60 0.97 8.53 0.03 0.97 0.01 1.40

May 6 10 0.88 41.25 22.54 0.82 9.43 6.90

May 14 10 0.82 47.97 16.10 0.93 8.26 11.60

May 16 10 0.85 46.10 10.30 0.84 3.54 2.90

May 20 10 0.91 21.79 3.24 0.99 1.39 0.10

All dates 40 0.88 34.68 14.87 0.92 6.21 7.10

UAV 20 0.87 18.52 9.47 0.97 5.40 -5.00

All 120 0.97 9.05 10.84 0.96 4.63 2.24
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shows the results obtained, with the residuals showing a 

standard deviation of about 23.96 ears/m2, the relation-

ship between the method and measurement ear counting 

was positive and strong, with an R2 of 0.91 and RRMSE 

of 4.04%. �e results showed a decrease in R2, indicating 

a slight reduction the identification results in field con-

dition. �e reason may be related to the small number 

of wheat ears hidden under the stems and leaves during 

field counting.

Discussion
�e results showed that the number of wheat ears iden-

tified by K-means and CNN was consistent with the 

manual ear counting results (Fig. 8 and Table 4). �e dif-

ference between the two methods (Fig. 8) indicated that 

the accuracy is poor in the earlier grain-filling stage. 

�e results of Alkhudaydi et  al. [39] also suggested that 

this model performed well during the grain-filling stage. 

�ese results confirm that better-quality images can be 

obtained from the later grain-filling stage.

Our method is based on target localization. Add-

ing a later stage would probably have led to a marginal 

improvement, as the ears in the grain-filling stage are a 

relatively homogeneous yellow color. Furthermore, the 

images were grouped into three groups to avoid the dis-

carded region where the contrast between the ear and 

background is not great enough in the K-means segmen-

tation. �e identification error caused by the adhesion of 

the wheat ear and background proposed by Fernandez-

Gallego et al. [11] was effectively reduced. In addition, the 

wheat ear images were divided into non-wheat ear, one 

wheat ear, two wheat ears, and three wheat ears, which 

could effectively reduce the identification inaccuracy 

caused by the adhesion of multiple wheat ears, which has 

Fig. 9 Image segmentation and wheat ear recognition. a 

Segmentation and recognition of the UAV image, b segmentation 

and recognition of the mobile phone image. The images collected by 

the UAV and hand-held device all achieved high recognition accuracy

Fig. 10 Comparison of wheat ear identification from the images of 

10 different cultivars extracted from the same subsample

Table 5 Relationships between the identi�ed and manual counting of 10 cultivars

ZM119, ZM136, and ZM32 overestimated the number ears

Sites Data set Samples size Slope Intercept RMSE (ears) R
2 RRMSE (%) Bias (ears)

Yuanyang SM159 5 0.61 127.37 12.47 0.98 3.96 3.60

XN20 5 0.81 67.88 6.91 0.96 2.00 3.00

XN511 5 0.92 32.27 8.97 0.99 2.79 8.00

YM11 5 0.71 92.03 7.29 0.98 2.30 0.40

ZM119 5 0.84 36.91 10.14 0.81 3.99 − 4.40

ZM136 5 0.96 0.33 11.67 0.89 3.87 − 10.60

ZM158 5 0.78 74.03 20.35 0.92 8.13 18.80

ZM318 5 0.94 18.50 5.64 0.98 1.91 1.40

ZM32 5 0.70 86.44 20.45 0.95 6.05 − 15.40

ZM36 5 0.60 110.48 10.24 0.97 3.79 2.00

All cultivars 50 0.85 45.09 12.43 0.92 4.15 0.68
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been a significant issue in traditional image processing 

methods [10].

Overall, the proposed K-means and CNN algorithm 

showed suitable performance in identifying wheat ears 

at early or later growth stages in all datasets (R2 = 0.96, 

RMSE = 10.84 ears, Table 3), and similar outcomes were 

presented by Zhou [40]. �e result using K-means to 

segment the wheat ear features accurately and train the 

machine learning model not only improved the model 

training efficiency but also improved the recognition 

accuracy. �is method was used to classify the wheat ear 

instead of using target recognition to reduce the com-

plexity of the algorithm, and together with the CNN 

model, could effectively and accurately identify and count 

the wheat ears.

Our work is useful for the development of a low-cost, 

rapid, and easy-to-implement method to identify wheat 

ears. We used images collected by the UAV platform 

to verify the training model of the mobile phone photo 

collection, which also achieved good results. However, 

determining the actual area represented in the photos 

still needs to be resolved. Current research mainly uses 

measures such as placing a reference substance as a 

ground standard [22] or fixing the shooting height [18], 

which reduces the practicability of the method. In the 

future, augmented reality (AR) technology could be used 

to solve this problem, which is one of our research aims.

It should be noted that different cultivars had a slight 

influence on the identification results. Although the 

training data of the CNN model were constructed on 

May 14, 2019 and May 20, 2019, and thus the sample 

size of the training data set was not large, the model still 

achieved good recognition of the images collected on the 

other dates. In our opinion, the best shooting date is at 

the late stage of grouting, when the wheat ears turn yel-

low and the stems and leaves are still green. In addition, 

we believe that the use of mobile devices to shoot images 

at the height of 1.5–2.2 m in sunny cloudy is a better way 

of shooting, as it matches the height of the person and 

facilitates the practical application of this method.

Conclusion
In this study, wheat ear images were collected using 

hand-held equipment, which is fast and convenient. 

�rough K-means clustering segmentation, complete 

wheat ear images were automatically segmented, and 

automatic feature extraction of the wheat ear images was 

realized. �e code can be found at https ://githu b.com/

xuxin 468/earco uting .

�e segmented images were divided into four types, 

and the CNN model was established to realize the rec-

ognition and counting of the wheat ear images. �e 

correlation coefficient R2 was 0.96. �e recognition accu-

racies of the non-wheat ear, one wheat ear, two wheat 

ears, and three wheat ears were 99.8, 97.5, 98.07, and 

98.5%, respectively. �e results showed that the recogni-

tion accuracy of the CNN model could be improved by 

using image processing technology to accurately locate 

and segment wheat ears before training and recognizing, 

thus meeting the requirements of field-based wheat ear 

counting.

�e present study has several improvements over pre-

vious studies: (1) K-means clustering was used to auto-

matically and accurately segment the wheat ear, thus 

reducing the traditional workload of manual labeling and 

the associated human errors. (2) �e wheat ear adhesion 

problem was resolved by creating four types of labeled 

datasets, including the non-wheat ear, single wheat ear, 

two wheat ears, and three wheat ears, which transforms 

the task of wheat ear recognition into the task of wheat 

ear image classification. (3) K-means was used to seg-

ment the wheat ear features accurately, and as a result, 

the efficiency and accuracy of the machine learning 

model was significantly improved.

�e wheat ear recognition model based on CNN dem-

onstrates strong generalization ability and robustness 

and can be applied to UAV platform as well. �is paper 

combined automatic image processing and CNN meth-

ods, which is of great technical value for the recognition 

and counting of wheat ears in the field.

Our aim was to help reduce the cost of image acquisi-

tion and improve the application scope of this method. 

�is method can be used to estimate wheat ear numbers 

and improve the efficiency of wheat yield estimation. At 

Fig. 11 Comparison between the wheat ears identified using the 

model with the corresponding values by manual counting in field 

condition. 48 samples are highly correlated with measurement 

counts in the field condition

https://github.com/xuxin468/earcouting
https://github.com/xuxin468/earcouting
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the same time, it can also provide breeders with a fast 

and automated high-throughput wheat ear counting 

system to improve breeding efficiency. Although this 

method is applied to the segmentation and counting of 

wheat ears, it can also be applied to the segmentation 

and counting of other plants. In future work, our aim is 

to use AR measurement technology, which can provide 

a ground standard for the images.
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