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The number of wheat ears in the field is very important data for predicting crop growth

and estimating crop yield and as such is receiving ever-increasing research attention. To

obtain such data, we propose a novel algorithm that uses computer vision to accurately

recognize wheat ears in a digital image. First, red-green-blue images acquired by a

manned ground vehicle are selected based on light intensity to ensure that this method

is robust with respect to light intensity. Next, the selected images are cut to ensure that

the target can be identified in the remaining parts. The simple linear iterative clustering

method, which is based on superpixel theory, is then used to generate a patch from the

selected images. After manually labeling each patch, they are divided into two categories:

wheat ears and background. The color feature “Color Coherence Vectors,” the texture

feature “Gray Level Co-OccurrenceMatrix,” and a special image feature “Edge Histogram

Descriptor” are then exacted from these patches to generate a high-dimensional matrix

called the “feature matrix.” Because each feature plays a different role in the classification

process, a feature-weighting fusion based on kernel principal component analysis is used

to redistribute the feature weights. Finally, a twin-support-vector-machine segmentation

(TWSVM-Seg) model is trained to understand the differences between the two types of

patches through the features, and the TWSVM-Seg model finally achieves the correct

classification of each pixel from the testing sample and outputs the results in the form of

binary image. This process thus segments the image. Next, we use a statistical function

in Matlab to get the exact a precise number of ears. To verify these statistical numerical

results, we compare them with field measurements of the wheat plots. The result of

applying the proposed algorithm to ground-shooting image data sets correlates strongly

(with a precision of 0.79–0.82) with the data obtained by manual counting. An average

running time of 0.1 s is required to successfully extract the correct number of ears from

the background, which shows that the proposed algorithm is computationally efficient.

These results indicate that the proposed method provides accurate phenotypic data on

wheat seedlings.

Keywords: superpixel theory, multi-feature optimization, support-vector-machine segmentation, wheat ear

counting, yield estimation
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INTRODUCTION

Wheat is an important primary food for a large proportion of
the world’s population, so methods to estimate its yield have
received significant research attention (Bognár et al., 2017).
The number of ears per unit area, the number of grains per
ear, and 1000 grain weight are known as the three elements
of wheat yield (Plovdiv, 2013). Of these, the number of ears
per unit area is mainly obtained in the field. The wheat ear
is an important agronomic component (Jin et al., 2017) not
only is closely associated with yield but also plays an important
role in disease detection, nutrition examination, and growth-
period determination. Thus, an accurate determination of the
number of ears is vital for estimating wheat yield and is a key
step in field phenotyping (Zhang et al., 2007). At present, two
main statistical methods exist to obtain the number of ears
per unit area: manual field investigation and image-based crop
recognition (Nerson, 1980). Manual field investigation, which
is the traditional method, is inefficient and costly, resulting
in more and more interest in image-based crop recognition.
However, because of the complexity of the field environment
(e.g., illumination intensity, soil reflectance, and weeds, which
alters the colors, textures, and shapes in wheat-ear images),
accurate wheat ear segmentation and recognition remains a
significant challenge (Mussavi and M. Sc. of Agronomy Ramin
Agricultural and Natural Resources, 2011). In the field of image
segmentation, a number of meaningful research results have
emerged in recent years. These methods mostly focus on two
approaches, the first of which is based solely on color information
(Naemura et al., 2000). For example, Chen et al. proposed a
threshold-selection algorithm for image segmentation based on
the Otsu rule (Chen et al., 2012). Subsequently, Khokher et al.
introduced an efficient method for color-image segmentation
that uses adaptive mean shift and normalized cuts (Khokher
et al., 2013). Moreover, Liao et al. used an edge-region active
contour model for simultaneous magnetic resonance image
segmentation and denoising (Liao et al., 2017). Additionally,
the color information for wheat changes over the reproductive
stage. Thus, different methods usually apply to different stages
of reproduction. Therefore, in addition to the disadvantages
described above, an excessive dependence on color information
will lead to incomplete extraction.

The second approach involves machine learning. For example,
Kandaswamy et al. used the meta-segmentation evaluation
technique to deal with the problem of image segmentation
(Kandaswamy et al., 2013). Linares et al. introduced an image-
segmentation algorithm based on the machine learning of
features (Linares et al., 2017). Soh et al. proposed a method based
on a linear classifier that reveals a new method of segmentation
(Soh and Tsatsoulis, 1999). In addition, Lizarazo et al. used a
support vector machine (SVM) classifier to segment remote-
sensing data (Lizarazo, 2008). Because of its high accuracy and
robustness, target segmentation based on classifiers was widely
used for target recognition in the field of complex environments
(Lizarazo and Elsner, 2009). This method mainly includes two
key steps: (i) extraction and combination of image features and
(ii) selection of classifiers to be trained.

The first step above forms the basis of image recognition (Song
et al., 2016). Choosing the appropriate features directly impacts
the final segmentation and recognition accuracy (Ding et al.,
2017). Hu et al. proposed an image-feature-extraction method
based on shape characteristics (Hu et al., 2016), and Yang et al.
introduced multi-structure feature fusion for face recognition
based on multi-resolution exaction (Yang et al., 2011). Datta et al.
applied kernel principal component analysis (KPCA) to classify
object-based vegetation species to fuse color and texture features,
which has good results (Datta et al., 2017). To summarize,
compared with the single-feature method, using a variety of
features to express the red-green-blue (RGB) images can be more
comprehensive and effective for improving the descriptive ability.

Next, another key step of the classifier-based segmentation
method is to use a general classifier to classify the features. The
representative image classifier to be trained mainly includes a
rough set, a Bayesian, and a SVM. Banerjee et al. used rough set
theory to solve the problem of multispectral image classification
(Banerjee and Maji, 2015). Zhang et al. proposed a method
for multiple categories based on Bayesian decisions (Zhang
et al., 2014). Finally, Park et al. introduced an automatic image-
segmentation method that uses principal pixel analysis and SVM
(Park et al., 2016). Upon comparing with the other two classifiers,
the SVM proves simpler in structure and offers global optimality
and good generalization, so it has been widely used in the fields
of image recognition and classification. However, the speed with
which SVM learns a model is a major challenge for multi-class
classification problems.

To overcome these problems, the present study proposes a
segmentation algorithm based onmulti-feature optimization and
twin-support-vector-machine (TWSVM) (Jayadeva et al., 2007).
First, the algorithm extracts the color feature, texture feature,
and edge histogram descriptor of wheat-ear images. Second, we
use the KPCA to obtain the corresponding weights for each
feature to rationally construct the feature space. The feature
space is composed of multiple features to more comprehensively
describe the target images, through which the advantages of
each feature for classifying the different classes are manifested.
Finally, the training of the TWSVM model is completed and
better performance is obtained.

The remainder of this paper is organized as follows:
The next section describes in detail both the study area
and image preprocessing. Section Methods describes the
methodology. Section Results describes the experimental results
and demonstrates the robustness of themethod. Finally, we finish
the paper with concluding remarks and possible directions for
future work.

STUDY AREA AND DATA
PREPROCESSING

Study Area
The field planted with wheat was located in the Xinxiang
comprehensive experimental base of the Chinese Academy of
Agricultural Sciences. (Xinxiang, China, 35◦9′32′′ latitude North,
113◦48′28′′ longitude East). The sowing date was October 16,
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2015. The experiment was conducted from 10 a.m. to 2 p.m.
on June 9, 2016. For this paper, we collected data in overcast
weather conditions, which resulted in totally scattered skylight
with no direct illumination. These conditions eliminate shadows.
While obtaining image data in the field, we made manual ground
measurements of the corresponding plot to obtain manual-
recognition data at the same time. The manual investigation area
is 4 m2 in each plot and the total area covered is 1200 m2 with
300 plots. (Figure 1).

Data Acquisition and Preprocessing
Image Acquisition

For each observation of an individual wheat ear, we systematically
varied the illumination factors. Figure 2 shows an example of an
image collected during a single observation. We imaged wheat
ears from the side at 45◦ above the horizontal because color and
texture are typically substantial from this perspective. The camera
aperture was f/3.9 with an exposure time of 1/90 s. The focal
length of the camera was 50mm.

Image Preprocessing

(A) Selection of dataset samples

In conditions of varying illumination intensity from morning to
afternoon, 1000 images were obtained with the same shooting
mode (2m imaging distance, 1.5m imaging height, imaging angle
at 45◦ above horizontal) and the same camera parameters as
mentioned above. As a result of the limitation of the number
of sample images, 700 images were used as the training sample
and the rest 300 images were used as the testing sample. This
procedure gave us images under differing light intensities. We
next divided these images into the following three categories
by visual analysis: (a) high light intensity, (b) medium light
intensity, and (c) low light intensity. All the images were selected
from each category as the source of training set. This processing
guarantees the robustness of the light intensity of the training
results.

(B) Image cutting

The images used in this work were all obtained from oblique
photography. As a result of the perspective, the wheat ears far
from the shooting position are not well rendered in the images.
The limitations imposed by camera resolution and the position
of the camera focus make this part of the image low quality, so
we cut the image to remove these parts and ensure uniform data
quality. After this cutting process, the image size was reduced to
3500× 1800 (Figure 2).

(c) Counting results validation

The performance of the image processing system to automatically
counting the ears appearing in an image was tested in the images.
In order to validate the algorithm, the machine counting result
was compared with the manual image-based ear counting on the
same image. Machine counting result depicts the binary image
where the connected pixels in white color are considered as a
wheat ear automatically detected by the image processing system;
each of these regions are added and the final result is referred to
as the algorithm counting. Besides, the number of ears in a subset

of images has been counted manually and is referred to as the
manual counting result. To ensure the precision of the manual
statistics, two people repeated the counting operation according
to the field range of the cut images. Moreover, in order to judge
the accuracy of the segmentation, the wheat ear area is manual
labeled as red small block. Then the labeled images were used
as the mask images to compare with the machine segmentation
and recognition results in order to ensure the accuracy of the
method.

METHODS

After image acquisition, the main flow diagram of the proposed
method includes off-line training of on-line segmentation, as
shown in Figure 3. This research framework consists of five
consecutive steps: (i) generating patches, (ii) establishing training
and test sample sets, (iii) optical combination of multi-features
space, (iv) training a classifier, and (v) noise reduction. Below, we
discuss each step in detail and refer in particular to the variables,
image types, and preprocessing strategies that we studied in our
experiments.

The specific algorithm (workflow) is as follows:

Step 1: Select N images as training samples and extract patches
of a certain size (20× 20) from these samples;

Step 2: Extract the color feature, texture feature, and edge
histogram descriptor feature from the samples;

Step 3: Use KPCA to extract the principal component features
and calculate the weight for each feature in each class of
samples;

Step 4: Train the TWSVM classification model with the
weighted features updated in Step 3;

Step 5: Perform a weighting to the feature in the test sample with
feature weights in each class, use the TWSVM-Seg model
obtained in Step 4 to classify, and determine the image
segmentation (Figure 3).

Generation of Patches Based on Simple
Linear Iterative Clustering Method and
Training Set and Validation Set Building
Pixel-level segmentation approaches have achieved a moderate
degree of success. At the same time, ignoring the neighborhood
information seriously impacts the edge-preservation of the
segmentation algorithm. Thus, processing the image patches with
similar characteristics instead of single pixels contributed to
overcoming the influence of noise, accelerating the processing
speed, and improving edge-preservation. Moreover, the TWSVM
requires uniform-sized images as input. To achieve this goal,
simple linear iterative clustering (SLIC) was applied to extract
superpixel image patches (Achanta et al., 2012). The computing
speed is faster than the other superpixel generation algorithm,
and the algorithm offers superior edge preservation. SLIC is
an adaptation of k-means for superpixel generation, with two
important distinctions:

1. The number of distance calculations in the optimization
is dramatically reduced by limiting the search space to a

Frontiers in Plant Science | www.frontiersin.org 3 July 2018 | Volume 9 | Article 1024

https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/plant-science#articles


Zhou et al. Automatic Wheat Ear Counting Method

FIGURE 1 | (A) Location of basement in China. (B) Location of basement in Xinxiang City. (C) Satellite map of experimental area. (D) Working state in the field.

region proportional to the superpixel size. This reduces the
complexity to be linear in the number N of pixels—and
independent of the number k of superpixels.

2. A weighted distance measure combines color and spatial
proximity while simultaneously controlling the size and
compactness of the superpixels.

However, these SLIC superpixel regions are irregularly shaped,
so they cannot be used directly as TWSVM input. Therefore,
a small window called a patch (20 × 20 pixels) and centered
on the weighted center of the current SLIC superpixel region
is given to the TWSVM. Note that the code to implement
the SLIC operation is based on open source code provided
available at https://ivrl.epfl.ch/research/superpixels. After the
SLIC generates the irregular superpixel regions as discussed
above, the center of the patch is determined by the weighted
center of the region. Then a regular patch is built according
to the position of the center point. The percentages in each
patch represent the ratio between the wheat ear area to the
corresponding areas of the SLIC superpixel region. The sample
patch is labeled category zero (background) if the percentage
of the current patch is zero; otherwise, it is labeled category
one (foreground). The fundamental part of any classification

operation involves specifying the output or action, as determined
based on a given set of inputs or training data. The classification
system is formulated as a two-class model: positive patches
and negative patches. The positive class contains image patches
manually labeled from wheat ears under different illumination
intensities. The negative class contains background images
manually segmented from soil, rocks, etc. The dataset for the
positive training class contains 8647 foreground patches, and
that for the negative training class contains 7412 background
patches. Meanwhile, the testing set was also generated by the
SLIC through the same steps above.

Multi-Feature Exaction and Combination
(1)Multi-feature exaction

Visual features are fundamental for processing digital images to
represent image content. A good set of features should contain
sufficient discrimination power to discriminate image contents.
The feature-extraction section uses color coherence vectors
(CCV) as the color feature (Roy and Mukherjee, 2013), the gray
level co-occurrence matrix (GLCM) as the texture feature (Varish
and Pal, 2018), and introduces the edge histogram descriptor
(EHD) feature (Agarwal et al., 2013). Among them, CCV is
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FIGURE 2 | Preprocessing strategy for original image.

FIGURE 3 | Schematic representation of method.

Frontiers in Plant Science | www.frontiersin.org 5 July 2018 | Volume 9 | Article 1024

https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/plant-science#articles


Zhou et al. Automatic Wheat Ear Counting Method

sufficiently robust to handle background complications and
invariants in size, orientation, and partial occlusion of the canopy
image. The GLCM feature has good performance in extracting
information from local and frequency domains and it can provide
good direction selection and scale selection characteristics. The
EHD feature can effectively distinguish the images with very
high similarity for colors and has good robustness for the color
and brightness changes which are the features with very strong
stability. Each feature describes the image content from different
angles, performing a reasonable optimization and integration to
achieve a more comprehensive description of the image content.
The final feature matrix contains of three elements: f C1 , f

G
2 , and

f E3 .
(2) Multi-Feature Combination based on Kernel Principal

Component Analysis

Based on the above description, we obtain a matrix composed
of multi-dimensional features. Differences clearly exist for the
importance of each feature in the classification process, then
reasonably constructing the feature space, so it is important
to assign weights to the features according to the importance
of features. To achieve this goal, we use KPCA to extract the
principal component of features, combining different features to
determine the feature weights for the importance of different
image classes (Twining and Taylor, 2003). The following details
the specific method of classifying feature weights.

We first normalized the fused feature to unify the range of
values. The importance of features is inversely proportional to
the dispersion of the feature distribution; features with a higher
dispersion have a lower importance, which means that a smaller
standard deviation leads to a higher importance for features. We
thus use In to indicate the importance of features:

In =
1

1+ kn
(1)

Where kn represents the standard deviation in class j of the
sample set. When the distribution of one-dimensional features
is more concentrated, the standard deviation is smaller, the
corresponding kn is smaller, and the importance of the feature
is greater. The formula for calculating the weight of features in
each dimension is

Wjn =
In
N
∑

n=1
In

(2)

Through the above operation, we can merge the multiple feature
vectors into a new feature matrix so that it can be used for
machine learning with our own model.

Image Segmentation Method Based on
Twin-Support-Vector-Machine
Segmentation Model and Noise Reduction
We introduce a twin-support-vector-machine segmentation
(TWSVM-Seg) model, which is based on the traditional SVM
model is better for segmentation of wheat-ear images (Peng et al.,
2016). It is similar in form to a traditional SWM with all its
advantages. Moreover, it deals better with large-scale data.

In the dataX ∈ R(m∗n) to be classified, we take positive samples
m1 with the “1” class from the training set to obtain matrix Am1·n

We then take negative samples m2 with the “0” class from the
train set to obtain matrixBm2·n. We obtain a classification plane
for each of the two classes. The data that belong to each class are,
to the extent possible, near the corresponding classification plane.

The required hyperplane parameters can be obtained by
solving the following optimization problem:

min
w(1) ,b(1)

1
2

∥

∥

∥

K(A,C′)w(1) + e1b
(1)

∥

∥

∥

2
+ c1e2

′q

st.− (K(B,C′)w(1) + e2b
(1))+ q ≥ e2, q ≥ 0

(3)

min
w(2) ,b(2)

1
2

∥

∥

∥

K(B,C′)w(2) + e2b
(2)

∥

∥

∥

2
+ c2e1

′q

st.(K(A,C′)w(2) + e1b
(2))+ q ≥ e1, q ≥ 0

(4)

whereK is the kernel function,A refers tom1 positive (wheat ear)
samples and B refers to m2 negative (background) samples., e1
and e2 indicate the unit vector of the corresponding dimension,
c1 and c2 are penalty coefficients, w is the normal vector of
the optimal hyperplane, and b is the offset of the optimal
hyperplane. q represents the discriminant coefficient. Here, the
kernel function K is used to populate the TWSVM. Analysis
shows that different kernel functions have very large impact on
performance of TWSVM, and kernel function is also one of
the adjustable parameters in TWSVM. Kernel functions, nuclear
parameters and high-dimensional mapping space have a one-
to-one relationship, so only select the proper kernel functions,
nuclear parameters and high-dimensional mapping space when
solving classification problem, we can get the separator with
excellent learning and generalization ability. In this paper, we use
the radial basis function (RBF) kernel K because of its excellent
learning ability given large samples and low dimensions. We
optimize the parameters of the kernel function after selecting.
The error penalty factor c and gramma in the RBF are critical
factors that impact the performance of the TWSVM, so these
parameters strongly influence the classification accuracy and
generalization ability of TWSVM. Here, we use the grid-search
method to optimize and select parameters to obtain the global
optimum results. Thus, the linear non-separable problem can be
solved. Each sample in the training set belongs only to one of the
two classes.

By solving Equations (3) and (4), we get the following two
hyperplanes:

K(x′,C′)w(1)
+ b(1) = 0 (5)

K(x′,C′)w(2)
+ b(2) = 0 (6)

The two hyperplanes correspond to two different classes. For a
sample to be classified, the distance to these two hyperplanes
must be calculated. For each sample, the distance to each
hyperplane is compared and the sample is classified into the
nearest class.
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Through the above operation, the pixels in the test samples
could be divided into two classes (wheat ear = 1, background =

0), which generates a binary image to achieve image segment.
After all these operations, we then use the median filter w to

minimize the noise and remove the result of burrs and noise over
the binary image (Igoe et al., 2018). For this, we slide a window
size of three pixels over the entire image, pixel by pixel, and
numerically sort the pixel values in the window and replace them
with a median value of neighboring pixels.

This process provides several separate and disconnected
bright areas, each of which represents an unidentified wheat
ear. Here, we use the regionprops function in Matlab R2017b
(Mathworks Inc., Massachusetts, USA) to count the independent
regions in the image, which corresponds to counting the number
of wheat ears. In addition, we apply the ground truth function to
each image, and manually label the wheat ears in the image so as
to compare with the result of computer recognition.

Criteria to Evaluation Algorithm
To evaluate the quality of the segmentation, we use the six
indicators Qseg, Sr, structural similarity index (SSIM), Precision,
Recall, and the F-measure. The following is a detailed description
of the meaning and range of each index (Xiong et al., 2017).

Qseg, which is based on both plants and background regions,
ranges from 0 to 1. The closer Qseg is to unity, the more
accurate is the segmentation. Thus, Qseg reflects the consistency
of all the image pixels, including foreground ear part and the
background part. Sr represents the consistency of only the
ear part of the image. From the perspective of an image, it
reflects the completeness of the segmentation results. The SSIM
describes the degree of similarity between the segmentation
images and the ground truth images. The SSIM ranges from
0 to 1, with higher values indicating more similarity between
images. Precision and Recall are the most basic indicators for
revealing the final segmentation results. Precision illustrates the
accuracy of the segmentation algorithm, and Recall represents
the completeness of the segmented images. In practice, Precision
and Recall interact with each other. When Precision is high,
Recall is low. The F-measure is proposed to balance these two
indicators. The higher the value of the F-measure, the better
the segmentation results. Table 1 shows how to calculate these
indicators.

In Equations (7) and (8), M represent the ear pixels (with
ω = 255) or background pixels (with ω = 0). N in Equations

TABLE 1 | Formulas to calculate criteria for evaluating segmentation precision.

Evaluation criteria Calculation formula

Qseg Qseg =

a
∑

i=0

b
∑

j=0
(M(ω)i,j∩N(ω)i,j )

a
∑

i=0

b
∑

j=0
(M(ω)i,j∪N(ω)i,j )

(7)

Sr Sr =

a
∑

i=0

b
∑

j=0
(M(ω)i,j∩N(ω)i,j )

a
∑

i=0

b
∑

j=0
N(ω)i,j

(8)

Precision Precision =
TP

TP+FP
(9)

Recall Recall = TP
TP+FN

(10)

F-measure F =
2×Precision×Recall
Precision+Recall

% (11)

(1) and (2) represents a reference set of manually segmented
ear pixels (with ω = 255) or background pixels (with ω = 0).
a and b give the row and column of the image and i, j give the
pixel coordinate of the image. In Equations (9–11), TP, TN, FP,
and FN are the number of true positives, true negatives, false
positives, and false negatives, respectively. True positives (TP)
means when the predicted results and the corresponding ground
truth are both wheat ear pixels. True negatives (TN) are when the
predicted results and the corresponding ground truth are both
background pixels. False positives (FP) are the pixels that are
classified as wheat ear pixels, but the ground truth of those pixels
is background. False negatives (FN) are the pixels that belong to
the ground truth but are not correctly discriminated.

RESULTS

The performance of the proposed machine learning method
is evaluated based on comparing its results against manual
measurements. The algorithms were developed in Matlab
R2017b. Segmenting a 3500 × 1800 image takes only 0.1 s
on average on a Windows 10 PC with 4-core Intel Core
i5 processor (2.71GHz) with 12 GB RAM. For this paper,
we separated the image dataset of 300 plots into three
categories of equal size with different illumination conditions
and show their segmentation results and corresponding ground
truths.

Results of Several Image-Segmentation
Methods
We apply three traditional segmentation methods to compare
their results with those of the proposed method. The
unsupervised methods are the Otsu method, mean shift
and normalized cuts (MSNC), and the edge-region active
contour model.

The Otsu method is a global thresholding method. The Otsu
threshold is found by searching across the entire range of pixel
values of an image until the intra-class variances are minimized.
MSNC first applies the mean shift algorithm to obtain subgraphs
and then applies the normalized cut. Currency denomination
and detection is an application of image segmentation. The edge-
region active contour model consists of two main energy terms:
an edge-region term and a regularization term. This model not
only has the desirable property of processing inhomogeneous
regions but also provides satisfactory convergence speed (Cheng
et al., 2001) (Figure 4).

Figure 4 shows the input and output images that there are
mainly three cases where these method has not worked properly:
(i) pixels labeled as ear actually corresponded to leaves; (ii)
contrast between the ear and soil was not great enough and (iii)
whereas the algorithm labeled the area as an ear, those pixels are
noise.

Furthermore, the linear regression between the manual
counting and the algorithm counting was calculated for 300 plots
with different illumination (Figure 5, Table 2).

We see from Figure 5 and Table 2 that the results of the
proposed method correlate strongly (R2 = 0.99) with the manual
measurements for all selected images. Moreover, the standard
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FIGURE 4 | Examples of test images after segmentation and their corresponding ground truths. The test images are randomly selected from the image dataset under

different illumination conditions: (A) high illumination intensity, (B) medium illumination intensity, (C) low illumination intensity.

deviation (SD) between the test set is smallest which means that
the proposed method is the most stable. But the simple use of
the correlation index cannot accurately evaluate the recognition
accuracy, so we introduce belowmore evaluation criteria to verify
the performance of these methods.

We can draw a conclusion from the Figure 4 that there are
mainly three kinds of regions in the image indicating examples
where the algorithm has not worked properly: (a) Region 1 shows
the case where two ears overlap together and are considered as
one; (b) In Region 2, false negatives resulted in wheat ears that
were not detected by the algorithm because the contrast between
the wheat ear and soil was not great enough and the segmentation
algorithm discarded that region; (c) In Region 3, whereas the
algorithm labeled the area as a wheat ear, those targets are noise
being a result of background brightness caused by a foreign
object.

Comparing the manual counting results with the
statistical results obtained by different segmentation
methods gives satisfactory results. To evaluate the
segmentation results more comprehensively, six indices
were introduced to judge the effect of the segmentation
(Figure 6).

Figure 6 shows that, compared with other three common
methods mentioned in this paper, the proposed method
gives the maximum mean value of the six indicators.
The mean values of Qseg, Sr, SSIM, Precision, Recall and
F-measure (%) are 0.62, 0.72, 0.82, 0.82, 0.73, and 0.73,
respectively. Moreover, Figure 6 shows that the proposed
method gives the minimum standard deviation for each
evaluation index, which means that it gives the most stable
performance with images under different illumination
conditions.
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FIGURE 5 | Plots of Mannual counting with different segmentation method in different illumination. (A) Proposed method, (B) Otsu method, (C) MSNC method and

(D) Edge-region method.

TABLE 2 | Results of counting wheat ears by using different segmentation

methods in different illumination conditions.

Proposed

method

Otsu

method

MSNC

method

Edge-region

method

High R2 = 0.99 R2 = 0.92 R2 = 0.90 R2 = 0.92

illumination SD = 4.07 SD = 15.82 SD = 15.72 SD = 15.82

Medium R2 = 0.99 R2 = 0.94 R2 = 0.90 R2 = 0.85

illumination SD = 4.07 SD = 13.33 SD = 18.10 SD = 22.05

Low R2 = 0.99 R2 = 0.94 R2 = 0.90 R2 = 0.88

illumination SD = 4.08 SD = 14.22 SD = 17.29 SD = 18.35

Total result R2 = 0.99 R2 = 0.94 R2 = 0.90 R2 = 0.86

SD = 4.05 SD = 14.44 SD = 17.21 SD = 20.57

Results of Segmentation Accuracy With
Different Classifiers
Differences in selecting the classifier can lead to quite different
segmentation precision. To verify the proposed algorithm

(TWSVM), we compare it against three well-established
algorithms: rough set, Bayesian, SVM (Figures 7, 8).

Figure 8 shows that the TWSVM provides better
segmentation, and the wheat-ear integrity is well maintained.
Except for the TWSVM, the SD of the other three algorithms
is relatively large, which reflects their weak adaptability to
different field testing images. In addition, the average of
Qseg for the proposed algorithm is about 0.626, which is
significantly greater than for the other three algorithms.
Thus, the proposed algorithm is more consistent for both
the panicle foreground part and the background part. In
addition, the mean value of the SSIM for the proposed
algorithm is greater than that of the other three contrast
algorithms. Moreover, the F-measure is a comprehensive
indicator and accounts for Precision and Recall; it is as
high as 0.738 using our proposed algorithm compared with
0.398, 0.452, and 0.578 for the other algorithms, respectively.
These results show that the proposed algorithm accurately
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FIGURE 6 | Results of evaluating segmentation with different methods. The color columns represent the means value and the black lines represent the standard

deviations for the test images. In addition, the color differences between columns refers to the categories of segmentation methods. Blue is for the proposed method,

green is for the Otsu method, yellow is for the MSNC, and purple is for the edge-region active contour model.

FIGURE 7 | Segmentation results for different classifiers under different illumination conditions: (A) high illumination intensity, (B) medium illumination intensity, (C) low

illumination intensity.

segments the wheat ears and guarantees the integrity of
segmentation.

Results of Recognition Accuracy With
Different Image Features
The color feature, texture feature, and EHD feature are optimized
to perform the segmentation of images, in Figure 8, the

segmentation testing results by using different number of features
are given (Figure 9).

Results are found by Figure 9 that for each class of wheat ear
image, the segmentation accuracy of the proposed algorithm is
obviously better than that when using a single feature. And it
can be seen that for the selected color feature, texture feature,
and EHD feature, each feature has very different segmentation
results, which also shows that there is a complementary
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FIGURE 8 | Comparison of segmentation with different classifiers. The color columns represent the mean values and the black lines represent the standard deviations

for the testing images. Blue represent TWSWM, green is for rough set, yellow is for Bayesian, and purple is for SVM.

FIGURE 9 | Comparison of segmentation accuracy with different feature numbers. The color columns represent the means value. The color differences between

columns means the categories of evaluating indicator. [Precision (Blue), Recall (Green), and F-measure (Yellow)].

relationship between each feature. After optimizing each feature,
the proposed algorithm gives the weight to each feature,
each sample constructs a reasonable feature space, and the
average precision of the whole image is more than 82%,
which is 12.4, 7.5, and 9.2% higher than the recognition
accuracy of color feature, texture feature, and EHD feature,
respectively.

We use Qseg, and Sr to judge the segmentation accuracy; the
results are given in Table 3.

As shown in Table 3, the use of multiple features is more
robust against background noise and variations in illumination.
As a result, we select the multi-feature method as the optimum
technique and compare it with the state-of-the-art vegetation
segmentation described herein.
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Moreover, robust hue histograms (RHH) (color) and Scale-
invariant feature transform (SIFT) (texture) were used as two
typical features to participate in comparative experiments to
verify the reliability of feature selection (van de Sande et al., 2010;
Seeland et al., 2017). Here, CCV and GLCM were replaced with
RHH and SIFT in order to test the variation of precision after
different combination of features (Table 4).

Table 4 could provide a conclusion that the combination of
features given in this paper could get better segmentation effect.
Although on some indices, for example,Qseg and Sr , the proposed
feature combination strategy was slightly lower than the match
group (<5%). In general, it usually gives more accurate results
especially in Precision and F-measure.

DISCUSSION

To be relevant for high-throughput phenotyping in field
conditions, the segmentation algorithms must be sufficiently
robust to handle dynamic illumination conditions and complex
canopy architecture throughout the entire observation period.
We find that the recognition accuracy of the classifiers differs
substantially depending on the number of features and the
illumination intensity. Here, we analyze how these factors affect
the accuracy of the segmentation results, respectively.

Effect of Illumination Intensity and Shadow
on Recognition Accuracy
Analyzing images acquired outdoors is a challenging task because
the ambient illumination varies throughout the growing season.
Unlike single plants grown in pots in greenhouse facilities,
segmenting the vegetation from a field-grown plot is complex
because of overlapping leaves and because portions of the canopy
are shadowed or have high specular reflectance, each of which
contribute to underestimating vegetation pixels in an image. To
study the robustness of the method under different illumination
conditions, we use the image brightness adjustment function
of Photoshop CS6 (Adobe Systems Incorporated, California,
USA) to adjust the luminance components. The original image
brightness is called the “central value of brightness adjustment,”
and the image results of five different luminance conditions are
simulated by varying from dark to bright. The results are then
associated with the artificial recognition results by using the
proposed method to determine how the different illumination
conditions affect this recognition method (Figure 10).

Figure 10 shows that the segmentation accuracy reaches
the highest value under conditions of lower brightness,
which corresponds to overcast sky without overexposure
or underexposure. We thus conclude that the illumination
condition affects the recognition accuracy.

Unlike the use of artificial light and enclosures, our flexible
and fast image acquisition technique presents some major
challenges related to image processing. Sharp shadows and bright
surfaces may appear in the images as a product of the light
conditions. As such, in order to provide robust results, the image
processing algorithm pipeline must consider effects related with
shadows. When the training set is set up, the images under
different shading conditions are included. The recognition results
in Figure 5 and Table 2 show that there is not much difference in
the recognition results under different shading conditions.

Analysis of Effect of Noise on Recognition
Accuracy
Noise may be generated through the entire process of the
image processing and may be divided into two categories:
system noise and environmental noise. System noise is
usually caused by the imaging system itself and includes
electronic noise and photoelectron noise. Environmental noise
is caused by a poor image-acquisition environment and
unreasonable image-acquisition methods. The proposed method
relies on counting disconnected regions and fitting the obtained
number to the manually counted amount of wheat ears via
linear regression. So the excessive noise points will increase
the error in statistical results. Here, Gauss noise, Rayleigh
noise, exponential noise, and salt-and-pepper noise were
introduced to test the noise robustness of the proposed method
(Figure 11).

Figure 11 shows that noise affects the accuracy of
segmentation. Specifically, Rayleigh noise and salt-and-pepper
noise reduce the accuracy by over 40% whereas the two other
types of noise have little effect on the result (<20%). The first
two types of noise are denser and larger and are easily mistaken
for wheat ears. However, a Median filter or a Laplacian filter
can effectively filter out these two types of noise and may be
considered for denoising in actual production.

TABLE 4 | Comparison of mean accuracy rate between different feature

combination strategy.

Proposed RHH SIFT

Qseg 0.62 0.60 0.63

Sr 0.72 0.73 0.71

SSIM 0.82 0.72 0.69

Precision 0.82 0.78 0.71

Recall 0.73 0.65 0.61

F-measure 0.73 0.68 0.67

TABLE 3 | Comparison of mean accuracy rate between multi-feature and single feature.

Multi-feature Color Texture EHD Color+Texture Color+EHD Texture+EHD

Qseg 0.62 0.41 0.52 0.47 0.54 0.55 0.58

Sr 0.72 0.49 0.55 0.67 0.71 0.70 0.68
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FIGURE 10 | Comparison of segmentation accuracy under different illumination intensities.

FIGURE 11 | Analysis of the noise resistance of the proposed method.

Effect of Different Camera Angles and
Field-of-View on Recognition Accuracy
The performance of the algorithm was further tested through
the different camera angles and fields of view. First, the images
are taken at six different angles: 90, 75, 60, 45, 30, 15, and 0◦

under same light intensity and camera parameters. Then, the
center of each image is taken as the center of shooting, and the
image is cut at 1/2, 1/4, and 1/8 long sides, respectively, then

the imaging results of different fields of view are obtained. We
use the same algorithm pipeline proposed for different camera
angles and field-of-view images. As before, manual image-based
counting is used as the validation data (Figure 12).

The different camera angles show, with respect to the original
images taken at 45◦, a decrease of over 20% in success rate
while the shooting angle is close to 0◦. The interference of
leaves and stems and the mutual occlusion between ears make
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it impossible to get an accurate number near the horizontal
position. Meanwhile, the accuracy of image recognition from
the vertical angle is also reduced by about 15%. The significant
difference in wheat morphology between vertical and oblique
observations may at the origin of this result.

The different field-of-view results show an increase of 8% in
success rate when the images are reduced to 75% of their original
size. Success rates increased by a maximum of 13 and 15% for
image size divided by 50 and 25% values, respectively. Near the
edge of the image, distortion of the wheat ear shape reduces the
recognition accuracy. At the same time, other interference factors
affect the edge parts, such as noise, which will also affect the final
result. In future work, the proper range of field of view should be
studied.

Analysis of Algorithm Efficiency
We use the average running time of each segmentation method
as a metric for the efficiency of the algorithm (Figure 13).

We conclude from Figure 13 that the average running time
of the proposed algorithm is 0.1 s for calculating the number
of wheat ears in a single scene, which means that the proposed
algorithm is an efficient method. Moreover, the running time
increases as the number of wheat ears increases (compare Table 3
and Figure 13A). It seems that the increase in the number of
target objects may lead to an increase in the time complexity of
the algorithm. Thus, the proposedmethodmay be used as a high-
throughput post processing method to measure seeding statistics
for large-scale breeding programs.We can also draw a conclusion
from the Figure 13B that the most time-consuming step is

FIGURE 12 | Analysis of different camera angles and field-of-view on recognition accuracy. (A) The variation of accuracy under different observation angles; (B) The

variation of accuracy under different field of view.

FIGURE 13 | Algorithm efficiency analysis: (A) Operating efficiency of different segmentation methods. (B) The running time of each step of the proposed method. “A”

represents the images obtained under low intensity illumination, “B” represent images obtained under normal illumination conditions, and “C” represent images

obtained under high-intensity illumination.

Frontiers in Plant Science | www.frontiersin.org 14 July 2018 | Volume 9 | Article 1024

https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/plant-science#articles


Zhou et al. Automatic Wheat Ear Counting Method

patch classification by TWSVM. An intuitive improvement to
further improve algorithm efficiency would be to parallelize all
the procedures. However, such an improvement is likely to be
hardware limited (due to the input-output speed of the memory
and hard drive).

To summarize, the proposed machine learning approach
offers the advantage of versatility and can extract the number of
green vegetation, such as wheat, maize, etc. Given an adequate
training dataset, it could even detect disease or pest symptoms. As
already mentioned, the performance of any supervised learning
model strongly depends on the training datasets. Therefore,
to have a good model, a substantial set of training data is
important. Acquiring a training data is time consuming and can
be subjective. Our aim is to expand this study by integrating
a semi-adaptive approach to semi-automatically generate larger
and more reliable training datasets. In addition, we must test the
model on more varieties and different crops.

CONCLUSION

Accurately estimating wheat yield requires accurate statistics
of the number of wheat ears per unit area. This is achieved
in this study by using a method for automatic segmentation
of target plant material in RGB images of wheat ears and by
splitting these images into individual targets. The initial step
in this proposed method requires minimal manual intervention
to generate patches from the original images. This technique
is partially verified by comparing its results with those of

manual and automated measures of image segmentation. The
good correlation between manual and automated measurements
confirms the value of the proposed segmentation method. The
segmentation performance is evaluated in this way because
manual image segmentation is labor intensive and subject
to observer bias. Manual inspection of segmented images
indicates good quality segmentation in all images. Compared
with other approaches, the proposed algorithm provides better
segmentation and recognition accuracy. Moreover, this method
can be expanded for use in different field environments and with
different light intensities and soil reflectance.
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